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Abstract

This thesis discusses two substructures in finite geometry.

Firstly we investigate k-arcs in projective planes covering a line. In a finite project-
ive plane, a k-arc K covers a line [/, disjoint from it if every point on /., lies on a
secant to K. This concept arises from the problem of trying to ascertain the size of
the smallest set of elements for which no linear (n, g, t)-perfect hash family exists.
In particular, in PG(2,q), the Desarguesian plane of order ¢, no linear (¢?, g, k)-
perfect hash family exists if there is a k-arc covering a line. We are interested in
finding k-arcs covering a given line [, such that k is small with respect to g. We
obtain a lower bound on the size of such k-arcs and prove that there are only 4
cases where this bound is met. These cases are characterised by the property that
every point on [, is covered by exactly one secant to the k-arc. We then consider
the generalisation to n-regular k-arcs, where every point on [, is covered by ex-
actly n secants. We show that n is at most g and characterise g-regular k-arcs as
hyperovals in planes of even order. In planes of odd order, however, there are no
X_regular k-arcs, but we show that (£ — 1, £)-regular k-arcs, where half the points
on [, lie on g — 1 secants and the other half on % secants, are precisely the ovals in
the plane. In addition, we present examples and constructions of families of small

k-arcs covering a line in PG(2, q).

We consider also the generalisation of k-arcs covering a line to (k, n)-arcs covering
an arbitrary set of points in the plane and obtain lower bounds on k. Furthermore,
we show that the concept of k-arcs covering a line can be extended to that of
sets of points covering a hyperplane in higher dimensional projective spaces and
show that, in fact, a k-arc covering a line in PG(2, q) also covers a hyperplane in
PG(n,q) for all n > 2.

Secondly we investigate the properties of a certain type of family of planes in
PG(5, g) introduced by Yoshiara. This is a family of ¢+3 planes £ = {m,, ..., Tg12}
such that
(1) the set O; = {mnm; | j€{0,...,q+2}\ {i}} is a hyperoval in m; for all
1=0,...,9+2;

(2) any 3 planes in £ span PG(5,q).



This structure may be used to construct a family of Extended Generalised Quad-
rangles of order (¢ + 1,g — 1). We are interested principally in the combinatorial
and geometric properties of £. We show that the dual of £ also satisfies conditions
(1) and (2), and that this leads to new examples. We also present a coordinatisa-
tion of £ and prove a necessary and sufficient condition for a set of o-polynomials

to determine £.



Acknowledgements

I would like to thank my supervisor Professor Fred Piper and my advisor Professor

Peter Wild for supervising my work and providing guidance and inspiration.

I am grateful to the staff and students of the maths department at Royal Holloway

for making the past three years very enjoyable.

Thanks also to my family and my friends for their support. Special thanks are due

to Dr Jon Chambers for his support and understanding.

Finally T would like to acknowledge the financial support of the Sarawak Tunku
Abdul Rahman Scholarship Foundation.



Contents

1 Introduction

1.1 Projective and affine planes . . . . .. .. .. ... ... ......
1.2 Sharply focused sets . . . . . . . ...
1.3 Derivation . . . . . . . . ...
1.4 Projective and affine spaces . . . . . . .. ...
1.5 Motivation and outline . . . . . . . ... oL

2 Arcs covering a line

2.1 Definitions and lower bounds . . . . . . .. ... ...
2.2 Examples of k-covers . . . . . .. ... ...
2.3 Two new constructions . . . . . . . .. ... L.
2.4 Minimum k-covers in small planes . . . . . . . ... ... ... ..
2.5 TIrreducible k-covers . . . . . . . ..o oL

3 Regular k-covers

3.1 1l-regular k-covers . . . . . . . . ...
3.2 mnm-regular k-covers . . . . ... Lo
3.3 (ni,mg)-regular k-covers . . . . ... ...
3.4 Related work and otherresults. . . . . . . ... .. ... ... ..



4 Some generalisations of k-covers

4.1 (k,n)-arcs covering arbitrary sets of points . . . . . ... ... ...

4.2 k-covers in projective spaces . . . . . . . .. ...

4.3 Some open questions

5 Some properties of a family of planes by Yoshiara

5.1 Introducton . . . ..

5.2 Combinatorial results

5.3 Intersections of £ with subspaces of PG(5,¢) . . . . . . . ... ...

5.4 Coordinatisation of £

5.5 A new family of £ . .

5.6 Self-duality of the Thas construction . . . .. ... ... .. .. ..

5.7 Some open problems

Bibliography

67

67

74

78

80

80

85

92

99

110

121

126

129



List of Figures

2.1

2.2

2.3

24

3.1

4.1

4.2

4.3

5.1

5.2

9.3

5.4

9.5

Extension of K, to KC.. . . . . . . ..o 21
Points A;, A and R; in Construction 2.3.4. . . . . . . .. ... ... 36
Bad points in Construction 2.3.4. . . . . . . . ... ... ... ... 37
An irreducible 4-coverin II5. . . . . . . . . . . ... ... ... ... 42
Possible configurations deriving to 5-covers in 4. . . . . .. .. .. 50
A 3-arc covering 2 = yz in PG(2,5). . . . . . . .. ... ... ... 71
Arcs covering (¢ +1,¢)-arcs. . . . . . ... 72
Embedding Pin P'. . . . . . .. .. ... 76
A point P not on any planeof &. . . . . . ... ... ... .. ... 87
HI: <l,,l]> ............................... 89
[ does not lie on any planeof £. . . . . . . . . ... ... ..., 93
Pij, Py, and Py, collinear. . . . . . ... ... ... 95
<P1R3,P2R2,P3R1> = PG(5,q) .................... 96



Chapter 1

Introduction

The first four sections of this chapter gives some of the necessary background to
this thesis. For a comprehensive treatment of projective geometry we refer the
reader to the books by Hirschfeld [15] and Hughes and Piper [17], and more details
on sharply focused sets can be found in Chapter 5 of Jackson’s thesis [18]. The
last section describes the motivation for this research and gives an outline of the

thesis.

1.1 Projective and affine planes

A projective plane is a set of points and lines with an incidence relation between

points and lines such that

1. Any two distinct points are incident with a unique line.
2. Any two distinct lines are incident with a unique point.

3. There are four points such that no three are collinear.

If P is a projective plane, let P’ be a set of points and lines with an incidence
relation such that the points and lines of P’ are respectively the lines and points of
P, and two elements in P’ are incident if and only if they are incident in P. Then

P’ is also a projective plane and is called the dual of P.



In a finite projective plane of order g, there are ¢*> + g + 1 points and ¢> + ¢+ 1
lines. Every line is incident with ¢+ 1 points and every point is incident with g+ 1

lines. We write II, for a projective plane of order g.

For every prime power ¢ there is a projective plane PG(2, q) defined over the Galois

Field of order ¢, GF(q). The points are given homogeneous coordinates
{(zo, 1, x2) | z; not all zero, z; € GF(q)}

such that (zo,z1,22) and p(xg, x1,22), p € GF(q) \{0}, represent the same point.
From now on we write GF(q)* for GF(q) \{0}. A line of PG(2, q) is a set of points

(zo, T1, T2) satisfying a homogeneous linear equation
azo + bxy + cxs =0, a,b,c € GF(q) not all zero.
We sometimes represent a line by the homogeneous coordinates [a, b, c].

A k-arc in I, is a set of k points such that no three are collinear. It is well known
that k < g+1if gisodd and k < ¢+ 2 if g is even. A (¢+ 1)-arc is called an oval
and a (g + 2)-arc is called a hyperoval. A k-arc K is complete if every point in
the plane lies on a secant to K. A (k,n)-arc is a set of k points such that every
line in the plane meets it in at most n points and some line meets it in n points.
A k-arc is therefore a (k,2)-arc. We say a line is a ¢t-secant of K if it meets K in

t points. A 1l-secant is also called a tangent or a unisecant.

A subplane II, of a projective plane II is a subset of elements of II which forms a
projective plane with the incidence relation inherited from II. If II, is a projective
plane of order ¢ and II, is a proper subplane of II, of order g,, then either ¢ = ¢2
or q > ¢+ ¢, If ¢ = ¢2 then we call II, a Baer subplane. The lines of II,
meets a Baer subplane II, in either 1 or ¢, + 1 points and are called tangents or
secants respectively. We refer to a secant to a subplane II, as a line of II, or a

Baer subline if TI, is a Baer subplane.

An affine plane A is a set of points and lines with an incidence relation between

points and lines such that

1. Any two distinct points are incident with a unique line.

2. Given any line / and any point P not on [ there is a unique line m such that

P is incident with m, and [ and m have no point in common.



3. There are three non-collinear points.

Two lines [ and m are parallel if ] = m or [ and m do not intersect. Parallelism is
an equivalence relationship and every point is on exactly one line from each parallel

class.

An affine plane of order ¢, A,, has ¢* points and ¢®+¢ lines. Every point is incident
with ¢ 4+ 1 lines and every line is incident with ¢ points. An affine plane of order
g, Ag, can be constructed from a projective plane I, by removing a fixed line, say
lw, and the points of II, on l. We write A, = Hfl‘x’, and if I, = PG(2,q), A, is
denoted AG(2,q). For any affine plane A, there is, up to isomorphism, a unique
projective plane II, such that A = IT'* for some line I, of II. We call I, the line
at infinity or the ideal line, the points of A affine points and the lines of A affine
lines. The set of lines of II through each point on /., corresponds to a parallel class

of A. There are ¢ + 1 parallel classes in .4, and ¢ lines in each class.

A collineation of a projective plane II is a bijection from points to points and from
lines to lines which preserve collinearity. A collineation of order 2 is an involution.
If a collineation o fixes a line | pointwise and a point V linewise then o is a (V, 1)-
perspectivity. We call V the centre and [/ the axis of the perspectivity. A
plane II is (V,1)-transitive if for all points A, B of II collinear with V', there is
a (V,1)-perspectivity mapping A to B. If I is (Xl )-transitive for all points X
on l, then [, is a translation line of II. We say that II a translation plane

with respect to I, and we call A = IT' a translation plane.

1.2 Sharply focused sets

Let IC be a k-arc, k > 2, and let [ be a line external to L. The intersection set

or focus of I on [ is defined to be
Int(K,l) = {ABNIl| A BeK,A# B}.
By considering the secants through a fixed point on K, we see that

Int(KC, 1) > & — 1.
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If |Int(/C,1)| = k then K is said to be sharply focused on I. For instance, any

3-arc is sharply focused on any line missing it.

Wettl [21] showed that in PG(2, q), if K is sharply focused on [ then K is contained
in a conic. Jackson [18] showed that given a conic C and a line [, for any s|n,
n = |C\l|, there is a partition of the conic C into sharply focused sets of size s,

and these are the only sharply focused sets in PG(2, q).

The results of Jackson in [18] depend on conics and the groups acting on them,

so before giving a summary of the results we give a brief description of conics in
PG(2,q).

In PG(2,q), an irreducible conic C is a set of points (z,y, z) satisfying an irre-

ducible homogenous quadratic equation over GF(q):
Az + By + C22 + Fyz + Gzz + Hzy = 0.

From now on we shall use the term conic to mean an irreducible conic. A conic
is a (¢ + 1)-arc. A well-known result of Segre says that in PG(2,q), ¢ odd, every
oval is a conic. If ¢ is odd, a point of PG(2,¢) not on C is external or internal
to C according to whether it lies on 2 or 0 tangent to C. If ¢ is even, the tangents
to C are concurrent in a point N, called the nucleus and the set C U {N} forms a

(regular) hyperoval.

The projective group PGL(3,q) acts transitively on conics of PG(2,q). The or-
thogonal group PGO(3,q) is a subgroup of PGL(3,q) fixing a conic C and acts
3-transitively on the points of C. If ¢ is odd, PGO(3,q) acts transitively on the
set of external points and the set of internal points of C, and hence on the set of
external lines and the set of secants of C. If ¢ is even, PGO(3, q) fixes the nucleus
N and is transitive on all points not on CU{N }. Every point P not on C, P not the
nucleus of C if ¢ is even, is the centre of a unique involution [P] in PGO(3,q). If
A, B are two points of C, then [P] interchanges A and B if and only if P, A, B are
collinear. If [, is any line and P € [\ C, then [P] fixes I, so [P] € PGO(3,q);..-
We call such involutions in PGO(3, q);,, proper involutions. If [, is a line secant
or external to C, then the group PGO(3,q);,. fixing C and [, is isomorphic to the

dihedral group of order 2n, Dy,, where n = g+ 1 if l, is external and n = ¢ — 1 if

11



lo is a secant. We may write
PGO(3,q)i, = (@, v | &® =7" =1, aya =77"),

where o, av, ..., ay""! are the proper involutions [P], P € I\ C, and v acts

regularly on C \ ly.
An operation @ can be defined on the points of C as follows:

Fix a point P € C, and for points Q, R € C,
QO R=((QRNIx)PNC)\ {P},

where QR is the line joining the points ) and R, and Q@) represents the tangent
to C at Q. We let QQ NC = {Q,Q}. It was shown in [18] that (C,®) is a cyclic
group of order n = |C\lw|. The points on C and the points on I, can be identified
with the integers modulo n, Z,, in the following manner: the point P is labelled
((0) and the point P labelled ((1)). A point X on I\ C is labelled () if X, (0)),
(7)) are collinear. Then the point ((k)) lies on the secant ((¢))((4)) if and only if
1+ j =k mod n.

The following results and sketches of proofs are summarised from [18, Chapter 5].

Result 1.2.1 Let [, be a line secant or external to C. Let H = PGO(3,q);,, =
(a, v | a®> =9" =1, aya = v 1), where n = |l,\ C|. For any s|n, s > 3,
let K(s) = {Ki,..., K=} be the orbits of N = (y%) on C, each of size s. Then
K € K(s) is a sharply focused set.

Sketch of proof: Let A be a point of K and let [P] be the (unique) proper
involution fixing A. Let J = ([P], N). Then J = D, the dihedral group of order
2s. It is shown that J = Hk, the subgroup of H fixing K:

Since N is a normal subgroup of H, the orbits of NV form a system of blocks for H,
so both [P] and N fix K, hence J fixes K and so J < Hg. By the orbit-stabiliser
theorem, H
H 2n
Hyl= 2L 20 g
Hal = g =
Since (Hg)a < Hj and (Hg)4 contains [P] and the identity collineation, we must

have |(Hg)a| = 2. Since N < Hyg, we have |A#x| = 5. By the orbit-stabiliser

12



theorem again,
|Hy| = |(Hx)al - [A"| =25 =25 = |J].
Hence J = Hg.

Next it is shown that the set I = {P | [P] is a proper involution in Hg} is the
focus of K on ly. Now, |I| = s. If s is odd, then the s proper involutions each
fixes a point of K, so there are (s — 1)/2 secants through each P. This accounts
for all the secants of K meeting l,. If s is even, [P] fixes two points or none at all
in K. There are s/2 involutions [P] fixing two points of K and there are (s —2)/2
secants through each P. The remaining s/2 proper involutions fix no points in K
and so there are s/2 secants through each centre. This accounts for all the secants.

Hence I = Int(K,l) and so K is sharply focused on .. a

Such sharply focused sets are called subgroup induced. Identifying the points
of C with Z,,, the sharply focused sets are precisely the cosets of the subgroups of
Z,.
Result 1.2.2 Let K;, K; € K(s) and
Int(Ki,Kj,loo) = {AB N loo | A € KZ,B € K]}

Then,

(a) For Kz', K] € }C(S), Kz 75 Kj, \Int(Kz,KJ,loo)\ = S.

(b) For K € K(s), Int(K,ly) NInt(K, K;, 1) = 0 for all K; € K(s) \{K}.

(c) For any K € K(s), Int(K, K;,ls) NInt(K, Kj, o) = 0 for all K; # K;, K;,
K; € K(s) \{K}.

(d) If Int(ly) is the set of distinct sets Int(K, 1), Int(K, K, o), K, K; € K(s),
then Int(l,) partitions I, \ C.

Sketch of proof:

(a) If P € Int(K;, Kj,l), then [P] interchanges K;, K, so that through P there
are |K;| = s secants. Since there are only s? secants joining points in K; and
Kj, \Int(K,, K]aloo)‘ = S.
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(b) Suppose A € Int(K,l)NInt(K, K;, 1), then [A] fixes K, since K is sharply
focused. But A € Int(K, K;,l) implies that [A] maps K to K;. This is a
contradiction, so Int(K,l.) N Int(K, K;,ls) = 0.

(c) Suppose A € Int(K, K;, lo)NInt(K, Kj, l). Then [A] maps K to K; and also
maps K to K;. This is a contradiction, so Int (K, K, lo) NInt(K, K, lo) = 0.

(d) By (a), [Int(K,le)| = |Int(K, Ki, I )| = 5. By (b) and (c),

[Int(le)| = s+ (IK(s)] - 1)s

ey ’n,’
and the result follows. O

The next result describes the types of points on Int(K,l.) with respect to C in
PG(2,q), q odd:

Result 1.2.3 Let K € K(s) and let h =n/s, s > 3. Let H = PGO(3,q),...

(a) If s is odd or if both s and h are even, then Int(K, /) contains only external
points and there is a unique K' € K(s) \{K} such that Hx» = Hg and
Int(K, ) = Int(K', l).

(b) If s is even and h is odd, then half of the points in Int(K,l,,) are external
points and the other half are internal, and K is the only element of IC(s)
fixed by Hg.

1.3 Derivation

Let II be a projective plane of order ¢® and let A = IT*°. Let D be a set of ¢ + 1
points on [, such that for every pair A, B of points of A for which the line AB
intersects o, in a point of D, there is a Baer subplane of II containing A, B and
D. We call D a derivation set and any Baer subplane containing D is said to

belong to D.

We define a new structure D(.A) as follows:

14



1. The points of D(.A) are the points of A.

2. The lines of D(A) are of two types: the Baer subplanes belonging to D and
the lines of A which intersect [, in [\ D.

3. The incidence in D(.A) is the natural one.

It can be shown that D(A) is an affine plane of order ¢, which can be completed
to a projective plane II' by adding the line I, so that D(A) = I The points
of I\ D correspond to ¢> — ¢ points of I . The remaining ¢ + 1 points of I, is
denoted by D'.

If A is a translation plane, then so is D(A). If [T = PG(2,4¢?), then any Baer

subline of I, is a derivation set and II' is the Hall plane of order ¢?.

1.4 Projective and affine spaces

Let V be a vector space of n + 1 dimension over GF(q). The nm-dimensional
projective space of order g, PG(n,q), is defined as follows: a ¢-dimensional
projective subspace is a (t + 1)-dimensional vector subspace of V, 0 < ¢t < n.
The incidence relation in PG(n,q) is that of subspace containment. Projective
subspaces of PG(n, q) of dimension 0,1,2 and n — 1 are called points, lines, planes
and hyperplanes respectively. We usually abbreviate the term “t-dimensional sub-

space” to “t-space”. The empty projective subspace has dimension —1.

For any space S there is a dual space S’ whose points and hyperplanes are re-
spectively the hyperplanes and points of S. If S is PG(n,q), then &' is also an
n-dimensional projective space over GF(q). A theorem in S stated in terms of
points and hyperplanes gives a dual theorem in &’ by substituting points for hy-
perplanes and hyperplanes for points. Hence the dual of an r-space in S is an

(n — r — 1)-space.
The points of PG(n, q) are given homogeneous coordinates
{(zg,x1,...,2,) | z; not all zero, z; € GF(q)}
such that (zg,z1,...,2,) and p(xo, 1,...,2,), p € GF(q) \ {0}, represent the

same point. A hyperplane of PG(n,q) is a set of points (xg, 1, ..., z,) satisfying

15



a homogeneous linear equation
aoZo + a1y + + -+ + aptn, = 0, a; € GF(q) not all zero,

and is represented by the homogeneous coordinates [ag, a1, . . ., ay].

A collineation of PG(n, q) is a bijection that preserves incidence. A projectivity
T of PG(n,q) is a collineation given by a non-singular matrix 7" such that a point
X = (xg, 21, -..,2,) is mapped to the point X7 =Y = (yo, 1, ..., ¥,) if and only
if
(zo, 21, ..., 20)T = p(Yo, Y1, - - -, Yn) for some p € GF(q)*.

An automorphism o of GF(q) can be extended to a collineation o of PG(n,q). A
point X = (zg, x1,...,x,) is mapped under o to the point X = (z§,zJ,...,z2).
The Fundamental Theorem of Projective Geometry says that every collineation 7~
of PG(n,q) is given by 7' = o7, where o is an automorphism of GF(q) and T is
a projectivity. If {P,..., Py41} and {P, ..., P, } are two sets of n + 2 points in
PG(n, q) such that no n+1 points from the same set lie in a hyperplane, then there
is a unique projective 7 such that P{ = P/ foralli =0,...,n+1. A correlation
T is a projectivity from & = PG(\,1I) to its dual S’. If T is involutary then 7 is
a polarity.

Every line of PG(n, q) contains ¢+ 1 points and PG(n, q) contains ¢"+---+¢+1

points. There are
m qn—i+1 -1

subspaces of dimension m, each of which contains ¢™+- - -+¢+1 points of PG(n, q).
The dimension of the intersection X NY and span (X,Y) of subspaces X,Y can

be determined using Grassman’s identity:

dim X + dim Y = dim (X NY)+ dim (X,Y).

Let W be an n-dimensional vector space over GF(g). Then the set of all cosets of
subspaces of W is called the n-dimensional affine space of order g, denoted
AG(n, q). The cosets of i-dimensional subspaces of W are the i-dimensional flats of
AG(n, q). Incidence is subspace containment. The 0-, 1-, 2- and (n—1)-dimensional

flats of AG(n, q) are called points, lines, planes and hyperplanes respectively. Two
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given ¢-dimensional flats are parallel if and only if they belong to the same subspace

of W. In this thesis we are mainly concerned with parallel classes of hyperplanes.

An n-dimensional affine space AG(n,q) of order ¢ can be obtained by removing
from PG(n,q) a fixed hyperplane H,, together with all the subspaces contained in
it. We call H,, the hyperplane at infinity. The hyperplanes of a parallel class of
AG(n, q) are the hyperplanes containing a given (n — 2)-dimensional subspace of
Hoo, S0 there is a correspondence between the parallel classes of AG(n,q) and the

hyperplanes of H .

1.5 Motivation and outline

The motivation for the first part of this research arises from the problem of trying
to ascertain the size of the smallest set of elements for which no linear (n,g,t)-
perfect hash family exists. We give a brief description of perfect hash families taken
from [5] and refer the interested reader to [5] and [3] for a detailed description and

a more extensive bibliography.

Let V be a set of order n and let F' be a set of order ¢q. A set S of functions from
V to F is an (n, g, t)-perfect hash family if for any ¢-subset P of V', there exists a
function ¢ in S which is injective when restricted to P. An (n, g, t)-perfect hash
family is linear if F' may be identified with the field of order ¢, GF(q), and V a
vector space over F', such that S becomes a set of linear functionals. In this case,

g is a prime power and n = ¢¢ for some d > 2.

Interpreted geometrically, the elements of V are the points of the affine space
AG(d, q), and for any linear functional ¢, the set of point v € V with ¢(v) = 1+,
where 7 is an element of GF(q), forms a hyperplane of AG(d, q), and ¢ corres-
ponds to a parallel class of hyperplanes. Hence a set of parallel classes determines
a linear (g%, g, t)-perfect hash family if any ¢ points of AG(d, q) belong to distinct
hyperplanes of some parallel class in the set. By embedding AG(d, q) in PG(d, q)
such that AG(d,q) = PG(d, q) \Hs for some hyperplane H,, of PG(d, q), a par-
allel class of hyperplanes of AG(d, q) corresponds to the hyperplanes of PG(d, q)

containing a given (d — 2)-dimensional subspace in H,. Then a set of parallel
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classes S is a linear (g%, q,t)-perfect hash family if and only if for every set P of ¢
points, there is a (d — 2)-dimensional subspace in H, corresponding to a parallel
class in S such that the secants of P miss it. In particular, in PG(2,¢), no linear
(¢%, q, k)-perfect hash family exists if there is a k-arc K covering a line [, that is,
every point on [, lies on a secant of K. The first part of this thesis investigates

such k-arcs:

In Chapter 2, we give a definition of k-arcs covering a line, and obtain a lower bound
on the size of such k-arcs, as well as present some examples and constructions of
families of small k-arcs covering a line in PG(2,q). We discuss also the notion of

irreducibility in this context.

In Chapter 3 we discuss 1-regular k-arcs I covering a line /.. These are precisely
the k-arcs meeting the lower bound in Chapter 2, and are characterised by the
property that every point on [, lies on exactly one secant of K. We show that
there are only four cases where such k-arcs exist if ¢ is a prime power, and we
discuss this in detail. We then consider the generalisation to n-regular k-arcs IC,
where every point of [, lies on exactly n secants of . It is shown that n is at most
k/2 and the k/2-regular k-arcs are characterised as hyperovals in planes of even
order. We consider also (ng, ny)-regular k-arcs X, where half the points of [, lie
on n; secants to /C and the other half on n, secants. The last section of Chapter 3
discusses some concepts and results in the literature related to those of Chapters
2 and 3.

Chapter 4 examines some generalisations of k-arcs covering a line. We consider
(k,n)-arcs covering arbitrary sets of points in the plane, as well as the generalisa-
tion of the concept to sets of points covering a hyperplane in higher dimensional
projective spaces. We show that in fact a k-arc covering a line in PG(2, q) also
covers a hyperplane in PG(n, q) for all n > 2. This implies that if there is no linear
(¢, q, k)-perfect hash family then there is no (¢, ¢, k)-perfect hash family for all

n > 2. We discuss also some open questions that arise from this research.

The last chapter of this thesis chronicles the investigation into the combinatorial
and geometric properties of a family of planes in PG(5, q) constructed by Yoshiara.

A detailed outline of this chapter is given at the end of Section 5.1.
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Chapter 2
Arcs covering a line

This chapter introduces the concept of k-arcs covering a line in finite projective
planes. In Section 2.1, we establish a lower bound on such k-arcs. Section 2.2 gives
some examples of k-covers arising from existing structures in a projective plane and
Section 2.3 gives two new constructions in the Desarguesian planes using sharply
focused sets. We give examples of minimum k-covers in small planes, of order

g < 11, in Section 2.4 and discuss irreducible k-covers in Section 2.5.

2.1 Definitions and lower bounds

Let II, be a projective plane of order g. Let K be a k-arc in II, and let [, be a

line disjoint from /.

Definition 2.1.1 We say that a pair of distinct points 1, @2 covers a point P
if P lies on the line Q1Q)>. We say that I covers [, if every point on [, lies on

at least one secant of IC, and we call K a k-cover for /.

By simple counting we obtain the following lower bound on the size of a k-cover

IC:

Theorem 2.1.2 If K is a k-cover for [, in II,, then

> 1++8¢+9
i 2 Y
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with equality if and only if every point on [ lies on exactly one secant of .

Proof: The number of distinct secants to K is k(k — 1)/2 and each secant meets

lo, exactly once. Hence, if K covers [, then

k=D 41,

Rearranging the above equation we have
K> —k—2(g+1)>0,

and since k£ > 0, we have
k> 14++8q¢+9
—_— 2 .
Every point on [, lies on exactly one secant of K if and only if the number of

secants of /C is exactly ¢+ 1, that is, k(k — 1)/2 = ¢+ 1, and the result follows. O

Definition 2.1.3 We say that a k-cover K of [, is 1-regular if every point of [,
lies on exactly one secant to K. In general, K is an m-regular k-cover if every

point on [, lies on exactly n secants of K.

Using the same counting argument as in the proof of Theorem 2.1.2 above, if I is

an n-regular k-cover then
k(k —1)

5 =n(qg+1),

so that
k> —k —2n(qg+1) =0.

Taking the positive root, we have

L1t 1+8n(g+1)
- 5 _

We discuss 1-regular k-covers in Section 3.1 and n-regular k-covers in Section 3.2.

If II, is a plane of square order admitting a Baer subplane II, which in turn admits
a ko-cover IC, for a line I, N II, of II,, then IC, can be extended to a k-cover KC of
I containing /C, by adding some points in II, \ II,. The following result gives a

lower bound for the number of points which must be added in such an extension:
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Figure 2.1: Extension of I, to K.

Theorem 2.1.4 Let II, be a projective plane of order ¢, ¢ a square, and let [, be
a line of II,. Let II, be a Baer subplane of II, such that [, is a secant to II,. Let
Ko C II, be a k,-cover of I, NI, = D. (See Figure 2.1.) Suppose K is a k-cover
of IT containing /C,. Then

. 1+/1+ 4[k,,(ko2— D +2(a-va)

Equality is achieved if and only if the points of IC\ &, lie on distinct lines of II,
missing IC,, no secant joining two points of K \ K, meets l, in D, and every point

on Iy \ D is covered exactly once.

Proof: Through every point on II,\ II, there pass ¢ tangents and one secant to
II,. Since Iy is a secant to II,, every affine line through a point on /., \ D meets

K, in at most one point.

Let P be a point of K\ IC,. Then P lies on a unique line [, of IT,. If [, is a tangent
to Ko, then IC, U {P} covers k, — 1 points of I\ D. If [, misses KC,, then K, U {P}
covers k, points of [\ D. Since there are (k — k,) points of K\ /C,, the secants of
K of type {PQ | P € K\ K,, Q € K,} covers at most (k — k,)k, points of I\ D.
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On the other hand, the secants of type {PQ | P, @ € K\ K,} covers at most

k—k,
( ) points of I\ D. So if K is a k-cover for l,,, we must have
2

k—k,
9 +ko(k_k0)2q_\/a-
Collecting terms in k, we have

k> — k — [ko(ko — 1) +2(q — v/)] 2 0,

and since k£ > 0, we have

. 1+,/1+ 4[k,,(ko2— D+2(a-va)

Equality is achieved, that is, (
2

¢ ) + ko(k — ko) = g — /3, if and only if

(a) the secants joining a point of K\ /C, and a point of K, cover exactly k,(k —k,)
points of I\ D, that is, every point P € K \ I, lies on a line of II, missing
KO’

ko .
) points of I,,\ D,
2

that is, the points of I \ I, lie on distinct lines of II, and no secant PQ,
P,Q € K\ K,, meets [, in D, and

(b) the secants joining points of K\ K, cover exactly (

(c) every point on Iy, \ D is covered exactly once.

Hence equality is achieved if and only if the points of K \ K, lie on distinct lines
of TI, missing IC,, no secant PQ, P,Q € K\ K, meets [, in D, and every point on

I\ D is covered exactly once. O

The question then arises as to whether, in general, one can extend an n-regular
Ko-cover K, in II, to an n-regular k-cover K in II,. We discuss this in Section 3.2.

In the next section we give some examples of k-covers.
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2.2 Examples of k-covers

Example 2.2.1 Let K be a complete arc in a projective plane of order g, II,, that
is, every point of II, lies on a secant of K. In other words, K covers every point of
II, and hence every line of II, disjoint from it. It follows that a complete k-arc is
a k-cover for every line disjoint from it. In II,, a complete k-arc satisfies

3+\/m<k< { g+ 1 if qisodd,

2 | ¢g+2 ifgiseven,

so there is a k-cover for a line with &k in that range. The upper bounds are well-
known. The lower bound is obtained as follows (see [15]): Let I be a k-arc and
[ a tangent to K at a point P. If the (kK — 1)(k — 2)/2 secants of K do not cover
I\{P}, then K is incomplete. This is certainly the case if ¢ > (k—1)(k —2)/2. So
a complete arc satisfies (k — 1)(k — 2)/2 > g, that is, k > (3 + /8¢ + 1)/2.

In PG(2, q), there is a complete k-arc and hence a k-cover with the following values:

5
% if = —1 mod 4,
k =
qg+4 .. .
S if ¢ is even.

These examples can be found in [15]. We describe them briefly here:

In PG(2,q), ¢ = —1 mod 4, a set of (¢+5)/2 points can be chosen consisting of an
external point ) of a conic C, the 2 points of contact of the tangents to C through
@, and one point of C on each of the (¢ — 1)/2 secants of C through @, so that it
forms a complete arc. For example, if o is a primitive root of GF(q), the (¢+5)/2

points

1

{(1,a2i,a—2") lie {1, . q%} } U {(1,0,0),(0,1,0),(0,0,1)}

is a complete arc.

In PG(2,q), q even, a set of (¢ +4)/2 points can be chosen consisting of a point @
not on a hyperoval O, and one of the points of O on each of the (g + 2)/2 secants
to @ through Q. Now, in GF(2"), let D(t) = t + > +t* + --- +t>"". Then an
element t of GF(2") is said to belong to Category 0 or 1 according to whether the
value of D(t) is 0 or 1. It can be shown that the (¢ + 4)/2 points

{(t,t2, 1) | t belongs to Category 1 } U {(1,0,0),(1,s,0)},
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where s is of Category 1, is a complete arc. O

The k-covers described above have sizes the order of ¢/2, which far exceeds the
order of the lower bound of Theorem 2.1.2, which is 1/2q. In the next example we
describe a family of k-covers which are not complete arcs in general. This family

of k-covers has k the order of 4\/5.

Example 2.2.2 In [12], Giulietti and Ughi constructed a family of 4(,/qg — 1)-arcs
K in PG(2,q), where ¢ = p? and p = —1 mod 4 is a prime. These arcs are complete
for ¢ < 961 and for 961 < ¢ < 16129, there is a complete arc K containing K with
K| < 6,/q. In [11], Giulietti generalised this construction to ¢ = p?, where p is any
odd prime power. He showed that this construction yields many small complete

arcs in PG(2, q) for ¢ < 1681 and ¢ = 2401. Giulietti’s construction K is as follows:
Let ¢ = p?, p an odd prime power. Let 6 be a quadratic non-residue in GF(p) and
let i € GF(q), * = 6. Then K = K; U Ky U K3 U Ky, with

K, = {P(a): (a,—§,1> |a€GF(p)*},

5
6 = (R = (im-21) 1 oror].

?

Ky = {S((S)z (ia,—5,1) |6EGF(p)*}.

Ky = {Q(ﬁ)=(ﬂ,—@,1) IﬂeGF(p)*},

By using a computer, Giulietti showed that, while K is complete in many cases
as mentioned above, for ¢ = 1681, 1849, 2209, and 2401 < ¢ < 6241, K is not
complete for all valid values of 8. We show that, nevertheless, K covers the line

z =0 for all q.

Proof: Every element of GF(q) can be written in the form a + ¢b, with a, b €
GF(p). The points on z = 0 can be written as

{(1,a+1ib,0)|a,be GF(p)} U{(0,1,0) }.
We partition the points on z = 0 into several parts,

Ly = {(0’1’0)’(1’050)}a
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Ly = {(1,a,0)|a€ GF(p)*},

L, = {(1,ia,0) | a € GF(p)*},

Ly = {(1,a+1,0)|a# —b,a,b € GF(p)*'},
Ly, = {(1,a—1ia,0)|a€ GF(p)*},

and prove that each part is covered by K:

(a) The points Ly = {(0,1,0),(1,0,0)} are covered:
The points (1,—6,1) on K; and (1,—i6,1) on Ky cover the point (0,1,0),
while the points (1, —6,1) on K; and (i, —6, 1) on K3 cover the point (1,0, 0).
(b) The points Ly = {(1,a,0) | a € GF(p)*} are covered by K;:
The points (1,-6,1), (8,—0/8,1) of K1, B # 1, cover the point (1,z,0) if

and only if
1 = O
1 -6 1|=0,
g -1
that is, g
x(l—ﬁ):()(T),
and so z = /0.

As (3 ranges through GF(p)* \{1}, « ranges through GF(p)* \{6}. Also, the
points (o, —0/a, 1), (o !, —0/a™1,1) of K1, a # 1, cover (1,6, 0), since

)

0
Q -6 1 :(—g—i-%)—&(a—al):ﬂ.
1

Hence all the points of L, are covered by K.

(c) The points Ly = {(1,a,0) | a € GF(p)*} are covered by Ka:

The points (1, —i6,1), (8, —i6/5,1) of Ka, B # 1, cover the point (1, iz, 0) if

and only if
1 4 O
1 —i@ 1|=0,
5 %1



that is,

idl—ﬂ%zﬁ(iéﬁ),

and so z = 0/0.

As above, x ranges through GF(p)* \ {6} as § ranges through GF(p)* \ {1},
and the points (o, —10/a, 1), (™, —if/a"1,1) of Ky cover (1,i0,0). Hence
all the points of Ly are covered by KC,.

The set Ly = {(1,a +4b,0) | a # —b,a,b € GF(p)*} is covered:

The point (1, z,0) is covered by (a, —0/a, 1) of Ky, (8, —i0/3,1) of Ko, o # B,
if and only if

1 x 0
o —g 1]=0,
g -2 1
that is,
0 ) 6

r = —

+1 )
ala—p) Bla-p)
and (1,z,0) is covered by (ia, —6/a, 1) of K3, (i3, —i/83,1) of K4, a # 3, if
and only if

1 =z 0

ia =2 1]=0,

103 —é 1
that is,

1 . 1
x = —1 )

Bla=p) ala-p)

Let

"o {([xal— Dl ﬂ)) o FeCron a7 5}’

2= {(_a(ae— 5)’ ﬁ(ae— ﬁ)) (P EGER), o7 B}'

We show that |Fi| = |Fb| = 3(p — 1)(p — 2) and F; N F> = (. This means
that as «, B range through GF(p)*, a # 3,

1 1
—1 and — 4 ; 4

Bla—p) 'ala—p) ala—8) " 'Bla—p)
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takes on every value of a + b, a # —b, a,b € GF(p)* and so the set L3 is
covered by K.

Let 8 € GF(p)* be fixed and let

(F)s = {(ﬂ(al_ 5w m) € GF), a# ﬂ} .

1 1
= < a1 = Qo,

Blar —B)  Blaz —B)
so as « ranges through GF(p)* \ {8}, the ordered pairs in (F})s take on

Then,

distinct values. Hence |(F1)g| =p — 2.
For a fixed g,

(e cara-ca) - (6@ w-»)
(=B)(=a) = (=B (=a)l(-a) = (=B)])  \Bla—B)" ala—p)
so that (Fy)g = (F1)-p.

Suppose [ # t, and suppose that there is an ordered pair (z,y) € (Fi)g N
(F1)., then there are ay # 3, as # 7y such that

Blaw — B) =v(a2 —7) and ay(a1 — B) = as(as —7)-

Hence

%:%:k, for some k € GF(p)*, k # 1.

Substituting a; = kB3 and as = k7, the above equations become
Bk —1)=~*k—1) and kB*(k —1) = ky*(k — 1),

which implies that 3% = 42, since k # 0, 1, but this is a contradiction since

B # t7, so we conclude that (F1)s N (F1), = 0. Hence we have that

Al=| U (F)|=30-D0-2).

BEGF(p)*

A similar argument shows that |Fy| = (p — 1)(p — 2).

Now, suppose that there is an ordered pair (z,y) € Fy N F>. Then there exist
a1, Oz, B1, B2 such that a; # 51, as # B2 and

<_ 041(0419— B1)’ 51(0410— ﬁl)) N <52(0<21— Ba)’ _az(azl— 52)) '
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Hence,

[ 1 [ 1
and =

_041(041 - 1) N B2(ag — Ba) Bi(ar — Br) _a2(a2 ) ’

which gives

—041(041 - 51) = 952(042 - 52) (T)

and

—p (a’l - 51) = 9042(042 - 52)-

Adding the two equations, we have

Bt — of = 0(a3 — B3) (1)
and taking ratio we have
(65 ﬁl *
— = — =k, for some k € GF(p)*, k # 1.
B2 251

If k # —1, then substituting a; = 51 /k, as = kfs, equation (1) becomes

2

B — = =0(kB)” — 053,

B\
(%) _o.

If kK = —1, then substituting 51 = —ay, B2 = —an, equation (1) becomes

that is,

—op (a1 + 1) = 0(—an) (g + az),

2
(ﬂ) —8
65}

However, there is a contradiction in both cases, since 6 is not a quadratic

that is,

residue modulo p, so we must have F; N F, = (. This proves that Ls is

covered by K.

Lastly, the points Ly = {(1,a — ia,0) | a € GF(p)*} are covered:

We use the fact that a point P is covered by K if and only if P™ is covered
by IC, where 7 is a collineation fixing K. In [11], it was shown that the group
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H = {(¢,,¢,n | p € GF(p)*) is a subgroup of PGL(3, ¢*) which fixes K and

z = 0, where

p 0 0 010 £00
p=10pt 0], ¥v=(100],n7=]0 40
0 0 1 001 001

If P=(1,a —ia,0) then
a ' fa .
P¢p: (1);(1—2),0) s P¢p77: (1,?(1—2),0) .

There is therefore a collineation 7 that maps (1, a —ia,0) to (1,b—1b), b # a,

a, b non-zero, where

bp, p=1/a/b, if a/b is a quadratic residue modulo p,
T =
é,m, p=4/0a/b, if a/bis not a quadratic residue modulo p.

This shows that H is transitive on L, and therefore if one point of L, is

covered, all points of L, are covered. Since

1 %(1—@) 2

0
—1 0 1

the point (1,20(1 — i)/(8 — 1),0) is covered by the line joining the points
(1,—6,1) of K; and (—4,6,1) of K3, and so Ly is covered. a

We note that in the above example, Iy, Ko, K3 and K4 are all sharply focused sets,

each fixed by the subgroup {¢, | p € GF(p)*} of the cyclic group G of order ¢ — 1

fixing the conic xy = —62? containing K, K4, as well as the conic zy = —if2?

containing /Cy, k3. (See Section 1.2.) The group G is in fact (¢,,), where p, is a

generator of the multiplicative group GF(q)*. From the proof above we note also

that all the points on z = 0 are covered more than once:

(a) In Ly, the point (0, 1,0) is covered by the pair of points { P(«), Q(a)}, while

the point (1,0,0) is covered by the pair of points {P(«), R(a)}, for all a €
GF(p)*. So each point in Lg is covered at least p — 1 times.
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(b)

(c)

(d)

Every point in L; is covered at least (p — 3)/2 times by K; and (p — 3)/2
times by K4, since K; and /4 are both sharply focused on L;.

Similarly, every point in L, are covered at least (p — 3)/2 times by Ky and
(p — 3)/2 times by K3, since both Ky and K3 are sharply focused on L,.

The points on L3 are covered at least twice, since a point on L3 covered
by P(a) on Ky, Q(B) on K is also covered by the pair {P(—a),Q(—0)}.
Similarly, a point covered by the points R(a) on K3, S(8) on K, is also
covered by the pair {R(—a), S(—0)}.

The points P(a) on Ky, R(—a) on K3 cover the point X (a) on L4, where

X(a) = (1,_%9_0)(1—2'),0),

since P(a), R(—a) cover (1,z,0) if and only if

1 z 0
o % 1|=0,
a
—ja 2 1
(87

that is, z = —26(1 —1)/a?(1 — 6). Tt is staightforward to verify that X («) is
also covered by the pair of points { P(—«a), R(a)}. These two pairs of points
{P(a),R(—a)}, {P(—a), R(a)}, are in fact the images of { P(1), R(—1)} and
{P(—1), R(1)} respectively under ¢,.

Similarly, the points Q(3) on K, and S(—£5/6) on K4 cover the point Y (53)

on L4, where
YB)=11 7202 1—1),0
( ) ,/62(0 1)( Z)’ I

since Q(f), S(—05/0) cover (1, z,0) if and only if

1 z 0
6 _
/B _E 1= Oa
B i0
-8 % 1

that is x = 26%(1 — 1) /3%(# — 1). The point Y (3) is also covered by another

pair of points, {Q(—2), S(5/6)}. These two pairs of points {Q(5), S(—5/0)},
{Q(—p),S(B/6)}, are images of {R(1), P(—1)} and {R(—1), P(1)} respect-
ively under ¢gn.
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From these observations, it would appear that some of the points on the IC;’s can
be removed without affecting the ability of the remaining points to cover z = 0.

This is certainly true in the following case:

Let B be a subset of GF(p)* of size (p — 1)/2 such that if b;, by are in B, then
by # —by. Let Ky be the subset of Ky with

K, ={Q(8) | 5 € B},

and let K' = K\ {K,}. Then the points in Lo, L; and Ly would still be covered by
K', while the points on L3 formerly covered by a secant joining Q(5) on K, to a
point P(a) on K; would still be covered by the pair {Q(—03), P(—a)}. As for Ly,
the points formerly covered by a secant joining Q(3) on K, to the point S(—3/6)
on K4 would still be covered by the pair {Q(—/3),S(3/6)}. Hence, by removing
the points of Ky from K, we have a 7(\/q — 1)/2-cover of z = 0. However, it is not
clear exactly how many more points may be removed from X' before it ceases to

cover z = 0.

In the next section we present two families of k-covers constructed using sharply
focused sets. They give examples of k-covers about half the size of the k-covers in

Example 2.2.2.

2.3 Two new constructions

We use sharply focused sets to construct two families of k-arcs covering a line in
PG(2, q). Before that, we deduce the following result from Results 1.2.1 and 1.2.2

and interpret it in terms of point sets covering a line:

Lemma 2.3.1 Let C be a conic in PG(2,q) and [, a line external or secant to C.
Let KC(s) be the set of subgroup induced sharply focused sets of size s on C' = C\l.
For K € K(s) and P € C' \ K, let

Int(K,P,ly) ={APNlyx | A€ K}.

Then,
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(a)

(b)

IInt(K, P,l)| = s for P € C'\ K, that is, the lines joining P to K cover s

points on l.

If P e '\ K, then Int(K,ly) NInt(K, P,ly) = 0, that is, Int(K,l,) and
Int(K, P,ly) are disjoint subsets of points on [, if P belongs to a sharply
focused set in KC(s) different from K. Hence the (s + 1)-arc K U {P} covers

2s points on .

Int(K, P', 1) NInt(K, P",1.0) = 0if P' € K', P" € K", K', K" € K(s)\{K},
K' # K", that is, Int(K, P',l) and Int(K, P” 1) are disjoint subsets of
points on Iy if P’ and P” belong to distinct sharply focused sets in I(s)
different from K.

Proof: We recall from Section 1.2 that if K, K’ are distinct sharply focused sets
in IC(s) then

Int(K,l) = {ABNly | A,B € K, A+# B},
Int(K,K' l) = {ABNlyw | A€ K,Be K'}.

If we define, for a point P € C'\ K, the set of secants Skp to be

SKPI{AP|AEK},

and for K, K',

Skx = {AB | Ae K,B € KI},

then Int(K, P,l) and Int(K, K’ 1) are the sets of points on Iy, covered by the

sets of secants Sxp and Sk g respectively.

(a)

(b)

This follows from the fact that |K| = s, and the lines PA, PB meet [, in
distinct points if A, B are distinct points of K.

If P ¢ K then P belongs to a sharply focused set K’ in K(s) distinct from
K. The set of secants Skp is then a subset of Skx. By Result 1.2.2(b),
Int(K,l) and the set of points Int(K, K',l,) covered by Sk are disjoint,
so it follows that the set Int(K, P,ly,) covered by Sxp must also be disjoint
from Int(K,ly).

The (s + 1)-arc K U {P} covers 2s points on [, because K covers a set of s

points and the secants PA, A € K cover a disjoint set of s points.
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(c) Asin (b) above, the set of secants Sk p: is a subset of Sk x+, and the set S pn
is a subset of Skx». By Result 1.2.2(c), the two sets of points Int(K, K’ 1)
and Int(K, K", 1) on ly covered by the two sets of secants Sk and Sk
are disjoint, so it follows that Int(K, P’,ly) and Int(K, P”,l,,) must also be
disjoint. O

Corollary 2.3.2 Let C be a conic in PG(2,q) and [, a line external or secant
to C. Let K(s) be the set of subgroup induced sharply focused sets of size s on
C'=C\lx and let n = |C'|. Let K € K(s) and let P(K) be a system of distinct
representatives of the sharply focused sets in K(s) different from K. Then the set
KU{P|PeP(K)} covers I, \ C.

Proof: Let Int'(Io) = {Int(K, loo) }U{Int (K, P,ls) | P € P(K)}. Then by Lemma
2.3.1 and Result 1.2.2(d), Int'(l,,) partitions I, \ C and so K U{P | P € P(K)}
covers Iy, \ C. O

Construction 2.3.3 follows from Corollary 2.3.2:

Construction 2.3.3 In PG(2,q), there is a k-arc K covering any given line /.,

with k = s + % — 1 for any s|g+ 1, s > 3. The construction is as follows:

Let C be a conic disjoint from ly,. Let () be the (unique) cyclic group of order
g+ 1in PGO(3,q);, fixing C and ly. For any s dividing ¢ + 1, the subgroup
N = (y(e+1)/s) partitions the points of C into orbits of size s, each of which is sharply
focused on [, (Result 1.2.1). Let the orbits be denoted K(s) = {Ky,---, Kqs1}.
Let K; be one of the sharply focused sets in K(s) and let P(K;) be a systerri of

distinct representatives of the sharply focused sets in K(s) different from K,

. +1 . .
,P(K,):{P]‘]Zl,,qT,]#’L},

where P; is a representative of the sharply focused set K; in K(s). Now, let
K={K;}U{P | P € P(K;)}, that is, K consists of K; together with one point
from each of the other sharply focused set. Then Kisa (s+(¢+1)/s—1)-arc and

by Corollary 2.3.2, IC covers [n,.

For this construction we have 2/¢ + 1—1 < k < ¢+ 1. This construction yields k-
covers with k close to the lower bound 24/q + 1—1 only if there is a factor s of g+1
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close to v/q + 1, for example, if g+1 = s% g+1=s(s+1)org+1 = (s—1)(s+1).
We give some examples below to show that this construction does give small k-

covers in these special cases.

In the first case, if ¢ is a prime power, then ¢ + 1 = s? if and only if (g, s) = (3,2)
or (8,3). For (g,s) = (3,2), the construction does not apply since we need s > 3.
For ¢ = 8, the lower bound 24/g +1— 1 = 5 is attained and coincides with that
of Theorem 2.1.2, so this construction gives a best possible k-cover for ¢ = 8. For
qg # 3,8, k > 2y/g+1— 1. In the instance where ¢ + 1 = s(s + 1), we have
k = 2s = \/4q +5—1, so the construction gives k-covers of the order of 2,/g when
q is of the form s(s+ 1) — 1 for some positive integer s. The following table gives

a numerical comparison of such k& with that of the lower bound in Theorem 2.1.2.

v8q+9
k=+yAg+5—1 |[}4L812)

s

2 4
3 11 6 6
4 19 8 7
5 29 10 9
6 41 12 10
8 T1 16 13

In the case where g+1 = (s—1)(s+1), we have k = 24/¢ + 2—1, and the following
table gives a comparison of such k£ with that of the lower bound in Theorem 2.1.2

for small q.

v/8q+9
g k=2y/g+2-1 |}+ 2]

s
3 7 3 it
5 23 9 8
7 47 13 11
9 79 17 14

We see then that this construction gives smallest possible k-covers for some small
g. If ¢ is odd, we can always construct a k-cover with £k = (¢ + 3)/2 by taking
s = (g + 1)/2. This gives a smaller k-cover than that given by a complete arc in
Example 2.2.1. O
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Now, a conic covers every line disjoint from it. Using sharply focused sets and ideas
from Theorem 2.1.4, we construct a family of k-covers in PG(2, q), ¢ a square, with
k at most 2,/q + 1. We extend a conic contained in a Baer subplane to a k-cover

by adding points from sharply focused sets outside the Baer subplane.

Construction 2.3.4 Let [T, = PG(2,q), q a square, ,/q > 5, and let [, be a line
of II,. Let II, be a Baer subplane secant to /. Let C, be a conic in II, disjoint
from [ N1II, and C the conic containing C, in II,. Since /o, misses C,, it must meet

C in two distinct points. Let {P;, Po} = C N ly.

The subgroup of PGO(3,,/q) fixing both C, and I, NI, is isomorphic to the
dihedral group of order 2(,/g + 1) (see Section 1.2). Let G be the cyclic subgroup
of order /g + 1 fixing both C, and l. Then G acts regularly on the points of
C, and, as a subgroup of PGO(3,q),, acting on II,, partitions C \ {P;, P>} into
/@ — 1 orbits of \ /g +1 points and fixes { P, P,}. Each orbit is sharply focused on
l and, by Corollary 2.3.2, the set of points consisting of an orbit together with
one point from each of the remaining orbits covers I\ C = I, \ {P1, P}. We show
that it is possible to choose at most one point from each of the /g — 2 orbits on
C\ {P,, P,} other than C, and a point off the conic so that, together with C,, they
form an arc which covers . Note that, by part (¢) of Lemma 2.3.1, points from

distinct orbits cover disjoint parts of I, \ C when joined to the points of C,.

Let A; be any point on C \ C,. Let I be the line PyA;. At most ,/q(y/q + 1)/2
points of [ \{P;, A} lie on a secant to C,, and one on the tangent to C at P,. Let
R be a point chosen from the remaining (¢ — 1) — (¢ +,/¢)/2 — 1 > 0 points on
I\{P1, A1} not lying on a secant to C, or the tangent to P». Let A be the point
C N RP,. (See Figure 2.2.) Then P is covered by RA; and P, is coverd by RA.

There are at most ,/q + 1 secants through R joining a point of C, and a point of
C\ C,. Let these points on C\ C, be called bad points and the remaining points on
C\ C, good points. (See Figure 2.3.) So there are at most /g + 1 bad points. We
show that it is possible to choose only good points so that together with C, and

R, they form an arc covering .

There are two possible distributions of bad points among the orbits: either all

the bad points lie in one single orbit, or they are distributed among n orbits,
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Figure 2.2: Points A;, A and R; in Construction 2.3.4.

P]_ P2

2 <n < ,/q—2. We consider the two cases separately.

Suppose there are /g + 1 bad points all in one orbit w. Then 4; ¢ w, A ¢ w,
and every line joining R to a point of C, is a line joining a point of w to a point of
Co, 50 Int(Cy, R, o) € Int(C,y, w, o). However, |[Int(C,,w,ls)| = /g + 1 by Result
1.2.2(a), and since R does not lie on a secant to C,, |Int(C,, R, ls)| = /g + 1. So

Int(Co, w,leo) = Int(Co, R, loo)-

That is, the points on [, covered by the secants joining points of w to C, are covered
by the secants RP, P € C,. This means that we do not need to choose a point
of w to cover Int(C,,w,ls) on Iy, since these points are covered by the secants
joining R to points of C,. We then choose {Ay,..., A 5 3} from the remaining

orbits, which do not contain any bad points, as follows:

If A and A; belong to the same orbit or A € C, then choose Ap 1, h=1,...,,/q—4,
successively from each of the remaining /g — 4 orbits on C\ C, which are not w and
do not contain A;, such that A, ; does not lie on RA; for all ¢+ < h. This is possible
since the number of such lines is at most /g — 4, and each such line contains at
most one point of the (h + 1)™ orbit. Let K = C, U {R, A, Ay, Az, ..., A -3}
Then

x| WarD+(va-2=2va-1 itdec,
(Va+1)+(/ea—1)=2,/4q if A, A; lie in the same orbit.
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Figure 2.3: Bad points in Construction 2.3.4.

pae
p

If A and A; belong to different orbits and A ¢ C,, let A, = A and choose
{Ag, ceey A\/q_3} as before. Then IC = CO U {R, Al, AQ, ce ey A\/q_g} and

Kl=(Va+1)+ (Va2 =25 1.

If there are /g + 1 bad points distributed among n orbits wy,...,wy, 2 < n <
v/@— 2, then every one of w; has between 1 and /g +2 —n bad points ( and hence
between ,/q and n — 1 good points). Since they cannot all have /g + 2 —n bad
points, at least one orbit, say w, must have at most /g + 1 —n bad points and

hence at least n good points, and wy,...,w, 1 each has at least n — 1 good points.

Now, if A and A; belong to the same orbit or A € C,, let A5 be any good point
from wy, then pick A;y; from the good points of w;, ¢ = 2,...,n, such that A,
does not lie on RA; for all j = 2,...,h, 2 < h < n. This is possible since
Wwi,...,wn_1 have at least n — 1 good points and w, has at least n good points.
Choose {An12,...,4 /4 2} from the remaining orbits such that A, does not lie
on RA; forall j <h,n+1<h <,/q—3. This is possible since there are at most
/@ — 4 such lines. Let £ =C, U{R, A, A1, As,..., A g2} and

o[ VitDH(a-D=2v ifacc,
(Va+1)+/q=2,q+1 if A, A; lie in the same orbit.

If A and A; belong to different orbits and A ¢ C,, let A, = A and choose
the points {Aj3,..., Any2} and {Apys,..., A 4 2} as before. Then K = C, U
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{R, A]_,Az, .. ,A\/a_2} and
Kl=a+1)+(Va-1)=2a

If there are strictly fewer than /g + 1 bad points distributed among n orbits,
1 <n <,/q—2, then the above argument still works, giving

2,/q if A, A; in the same orbit and A € C,,
IKl=1 2/g+1 if A A in the same orbit and A ¢ C,,
2,/q if A, A, in different orbits.

In all cases, the points of C, together with the A;’s cover [\ C by Corollary 2.3.2
and the points { P, P»} are covered by RA; and RA. Furthermore, the points R
and the A;’s have been chosen so that K is an arc. Hence K is a k-cover of [, of

order at most 2,/q + 1. O

2.4 Minimum k-covers in small planes

Let m(q) denote the smallest k for which a k-arc exists that covers a line /4, in a
projective plane of order g. From Theorem 2.1.2 and the examples in Sections 2.2,

2.3, we have

—— if ¢ is odd (Construction 2.3.3),
L8902 1 ( )
2 - - 4
% if ¢ is even (Example 2.2.1).

For small ¢, ¢ < 11, we have m(q) = B + \/Sg+9'J:
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g mq) =[5+ ‘/Sgwj Description
2 3 A triangle.
3 4 A quadrangle.
4 4 A quadrangle, see Example 2.4.1 below.
5 4 Construction 2.3.3 in PG(2,5), s = 3.
7 5 Construction 2.3.3 in PG(2,7), s = 4.
8 5 Construction 2.3.3 in PG(2,8), s = 3.
9 ) A 5-arc in the Hall plane of order 9, see
Theorem 3.1.5 in the next chapter.
11 6 Construction 2.3.3 in PG(2,11), s = 3 or 4.

Example 2.4.1 In PG(2,4), the line z = 0 is covered by the quadrangle ABCD,
where A is the point with homogeneous coordinate (1,1,1), B the point (0, 1, a?),
C the point (1,0,1), and D the point (0,1,1), and « is the primitive root of
z?+x + 1 over GF(2). Note that in PG(2,4), the diagonal points of a quadrangle
are collinear, hence the points A, B, C, D must be chosen so that at most one

diagonal point is on z = 0. O

Related to the concept of a minimum cover is that of an irreducible cover. We

discuss this in the next section.

2.5 Irreducible k-covers

Definition 2.5.1 A k-cover K for a line [, is irreducible if for all points P on
K, K\{P} is not a cover for l.

For example, 1-regular k-covers, as well as the k-arcs constructed using Construc-
tion 2.3.3 with s = (¢ + 1)/2, ¢ odd, are irreducible covers. In the first case, this
is because a 1-regular k-cover K covers each point on [, exactly once, so that the
removal of any one point P results in the loss of £ — 1 secants, so there would be
k — 1 points on Iy, not covered by K\ {P}. In the second case, the (¢ + 3)/2-cover
K constructed using Construction 2.3.3 with s = (¢ + 1)/2 lies on a conic which

is partitioned into two sharply focused sets Fy, F», each of size (¢ + 1)/2, and K
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consists of one of the sharply focused sets, say Fi, and a point () from the other.
Half of the points on [, lie in the focus of F}, that is, they lie on secants joining
points of F;. Each point on the other half of [, however, lies on exactly one secant
of IC which joins @ to a point of F;. So if a point of F} is removed then one of
the points in that half would not be covered, while if () is removed, then all the
points in that half would not be covered. Hence K is irreducible. On the other
hand, n-regular k-arcs, n > 2, are not irreducible covers, since every point on /.,
lies on more than one secant and the removal of any single point of X would leave

l still covered.

A minimum cover is necessarily irreducible, while the converse is not true. For
example, in PG(2,11), a minimum k-cover has k = 6, so a 7-cover constructed

using Construction 2.3.3 with s = (¢ + 1)/2 = 6 is irreducible but not minumum.

Call a secant of K critical if it covers a point on [, not covered by any other

secants. We have the following bounds on the number of critical secants of K.

Lemma 2.5.2 Let ¢(K) be the number of critical secants of /. Then,

g < ¢(K) < —k(k; D |

Proof: The upper bound follows from the fact that /C has k(k —1)/2 secants. It is
reached when all secants of IC are critical, that is, when K is a 1-regular cover. The
lower bound is derived from the fact that in an irreducible cover K, every point
P of IC lies on at least one critical secant, for otherwise P could be removed and

the points on [, covered by a secant on P would still be covered by other secants,

contradicting the irreducibility of K. We count the set of flags
F={(P,l)| P € K, | a critical secant of K}.

There are k points on K and each point lies on at least one critical secant, so
|F| > k. On the other hand, there are ¢(K) critical secants, and each one lies on
two points of I, so |F| = 2¢(K). Hence we have 2 ¢(K) > k and the result follows.
O

Using Lemma 2.5.2, we prove an upper bound of an irreducible cover:
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Theorem 2.5.3 If I is an irreducible k-cover for a line [/, in a projective plane
of order ¢, then
2(q +3)

k<
- 3

Proof: We count the flags
F ={(P,1)| P €ly, l asecant of K}.

Firstly, there are k(k — 1)/2 secants of K and each one lie on exactly one point of
loo, 80 |F| = k(k — 1)/2. On the other hand, there are ¢(K) points on [, each
lying on 1 critical secant, and ¢ + 1 — ¢(K) points on [, each lying on at most k/2
secants of K. So |F| < (¢+1—¢(K))(k/2) + ¢(K). Hence we have

k(k—1 k
% < (q—|—1—c(IC))§+c(IC)
_ k(g+1) k
= 5 c(K) (2 1)
ko+1) _k(k_,
- 2 2\2 ’
since ¢(K) > k/2 by Lemma 2.5.2. Simplifying the final inequality, we have
R < 2 ;r 3)

O

From the proofs of Lemma 2.5.2 and Theorem 2.5.3, we see that this upper bound
is reached only if there are exactly k/2 critical secants and each of the ¢+ 1 — k/2
points on Iy, not on a critical secant lies on exactly k/2 secants of IC. This forces
k to be even, and implies that critical secants partition the points of K into pairs,
and the secants through each one of the ¢ + 1 — k/2 points on [/, not on a critical
secant also partition the points of I into pairs. The upper bound is certainly
reached in the smallest case ¢ = 3. In this case, k£ = 4, that is, K is a quadrangle
in II3, a projective plane of order 3. We illustrate this in Figure 2.4. The four
points of the quadrangle K are labelled A, B, C and D, while the points on [, are
labelled P, @, R, and S. Then two of the points, P, @, lie on critical secants AC
and BD, while the remaining points R, S lie on two secants each. It is not clear,

however, if the upper bound is reached at all for larger q.

In the next chapter we discuss m-regular k-covers, including 1-regular k-covers,

which are precisely those for which k reaches the lower bound of Theorem 2.1.2.
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Figure 2.4: An irreducible 4-cover in II3.

T
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Chapter 3
Regular k-covers

This chapter discusses n-regular k-covers. Section 3.1 examines in detail the cases
where the lower bound on k-covers is met. These are the 1-regular k-covers. In
Section 3.2 we consider the generalisation of 1-regular k-covers to n-regular k-
covers and characterise the k-covers when n is maximum. Section 3.3 introduces

(n1, ng)-regular k-covers, and Section 3.4 discusses other related work.

3.1 1-regular k-covers

From Theorem 2.1.2, if K is a k-arc covering a line in II,, then & > (1++/8¢ + 9)/2.

In this section we determine when this bound is met if ¢ is a prime power.

Lemma 3.1.1 Let g be a prime power, that is, ¢ = p”, where p a prime and h > 1.
If 8¢ + 9 is a square then g € {2,5,9,27}.

Proof: Suppose 8¢q + 9 is a square, that is, 8¢ + 9 = 2% for some positive integer
z. Since g = p", we have

Sph =22-09,

that is,
280" = (x — 3)(x + 3).

Hence we have
T —3=2"Mph (3.1)
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T+ 3 = 2"ph (3.2)

with ny + ny = 3, hy + he = h, where ny, ny, hy, he are non-negative integers.

Subtracting equation (3.1) from equation (3.2) we have

2m2phe _ gmight — 9. 3, (3.3)

The only possible values for n; and ny are (ny,n2) € {(0,3),(1,2),(2,1),(3,0)}.

We consider equation (3.3) for all four possible values of (n,ns):

(a) (n1,n2) = (0,3): Equation (3.3) becomes 23ph? — pht = 2.3,

(1)

(i)

If hy > ho then p"2(8 — p™~h2) =2-3 and so p"* =1, 2 or 3.

If p*2 = 1 then we must have hy = 0 and 8 — p™ = 6. Hence p = 2,
h;y =1 and so ¢ = 2.

If p"2 = 2 then we have p = 2 and hy = 1. Hence 8 — 2! = 3, which
has no solution for h;.

If p"> = 3 then p = 3 and hy = 1. Hence 8 — 3171 = 2, which also has
no solution for A;.

If hy < hy then p"(8ph2 " — 1) = 2.3, Since 8" ™M —1 > 2.3 if

ho > hy, there is no solution in this case.

Hence in this case the only possible value for ¢ is ¢ = 2.

(b) (n1,ms) = (1,2): Equation (3.3) becomes 22ph? — 2p™ = 2.3, that is,
2phz — ph = 3.

(1)

(i)

If hy > hy then ph?(2 — p"1="2) = 3 and so p"2 =1 or 3.

If p*2 = 1 then hy = 0 and 2 — p** = 3. This means that p* = —1, and
so there is no solution for A; in this case.

If p"> = 3 then p = 3 and hy = 1. This means that we have 371 =1
and so h; = 1. Hence q = 3%

If hy < hy then pht(2ph2=ht — 1) =3, and so p" =1 or 3.

If p»* =1 then h; = 0 and 2p"* — 1 = 3. Hence we must have p"? = 2
and so ¢ = 2.

If p"* =3 then hy =1 and p = 3. Hence 2-3"71 =2 so hy = 1, and so
q = 32
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Hence in this case the only possible values for ¢ are ¢ = 2 and 9.

(c) (n1,m3) = (2,1): Equation (3.3) becomes 2p"* — 2%p™ = 2.3, that is,
ph? — 2pht = 3.

(i) If hy > hoy then ph2(1 — 2pM1~h2) = 3. Since 1 — 2p™ "2 < 0 if hy > hy,
there is no solution in this case.

(i) If hy < hy then pM(ph2~™ — 2) = 3, and so p" =1 or 3.
If p** =1 then hy = 0 and p"*? — 2 = 3. Hence ¢ = 5.
If p" = 3 then hy = 1 and p = 3. Hence 3"*~! = 3 and so ¢ = 33.

Hence the only possible values of ¢ in this case are ¢ = 5 and 27.
(d) (n1,n2) = (3,0): Equation (3.3) becomes phz — 23pht = 2. 3.
(i) If hy > hy then p2(1 —8ph1=t2) = 2.3, Since 1 —8ph1="2 < 0 if hy > hy,
there is no solution in this case.
(ii) If hy < hy then ph(ph2=h1 —8)=2.3 sop™ =1, 2 or 3.

If p"* =1 then p" — 8 = 6 so there is no solution in this case.

If pP* = 2 then hy =1, p =2 and 2"*~! — 8 = 3, so there is no solution
for hs.

If p» = 3 then hy = 1, p = 3 and 3">~! — 8 = 2, so there is also no

solution for h, in this case.

Hence in this case there is no solution for q.

Thus we conclude that 2, 5, 9 and 27 are the only possible values of g for which ¢

is a prime power and 8q + 9 is a square. d

Since the 1-regular k-covers are precisely those with £ = (14 +/8¢ + 9)/2, we have

the following corollary:

Corollary 3.1.2 If K is a 1-regular k-cover in a projective plane of prime power

order ¢, then K must be one of the following:

(a) ¢ =2 and K is a 3-arc;
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(b) ¢ =5 and K is a 4-arc;
(c) ¢ =9 and K is a 5-arc;

(d) ¢ =27 and K is an 8-arc.

In the rest of this section we investigate the existence of 1-regular k-covers in each
of the four cases of Corollary 3.1.2. For the first two cases we have the following

result:

Theorem 3.1.3 There exists a 1-regular 3-cover in PG(2,2) and a l-regular 4-
cover in PG(2,5).

Proof: Let [, be any line in PG(2,2). Then any triangle not on Iy, is a 3-arc in
PG(2,2) which covers [,. Since a triangle has 3 secants and covers the 3 points

on lu, it is 1-regular.

In PG(2,5), Construction 2.3.3 gives a 4-cover K for any line [, with s = 3, that
is, K lies on a conic C disjoint from [, where C is partitioned into two sharply
focused sets of 3 points each, and K consists of the points of one of the sharply
focused sets together with one point from the other. Since K has 6 secants and

covers the 6 points on /., it must be 1-regular. O
Theorem 3.1.4 There is no 1-regular 5-cover in PG(2,9).

Proof: Let [, be any line in PG(2,9). Suppose K is a 1-regular 5-arc covering l
in PG(2,9). Then K lies on a conic C disjoint from I, for every 5-arc lies on a
conic in PG(2, q), and if C is not disjoint from [, then the points of [, NC will not
be covered by any secants of C \ l. Now, the ten points on C can be partitioned
into two sharply focused sets, both focusing on the external points of /o, (Result

1.2.3). Hence the only possible distribution of the points of /C on C are

(1) K is one of the sharply focused sets;

(2) four points of K belong to one of the sharply focused set and one belongs to
the other;
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(3) three points of K belong to one of the sharply focused set and two belong to
the other.

The first case cannot occur, since K would then cover only the five external points
of l. In the second case, there are six secants to the four points of I in one
sharply focused set, and these six secants meet [, in only the five external points.
Hence at least one of the external points on [, lie on more than one secant and
so IC cannot be 1-regular. In the last case, let P;, P, P; denote the three points
belonging to one of the sharply focused set and @)1, ()2 denote the two points
belonging to the other. Then the secants P, P,, P, P3, P,P; and Q1()2 meet [, in
the external points. The remaining six secants are of the form P;@Q); and they meet
lw in internal points (Result 1.2.2(b)), so at least one of the external points on Iy,
is not covered by K. Hence if K is a 1-regular 5-cover of [, then it does not lie
on a conic. This contradicts the fact that every 5-arc lies on a conic. Hence we

conclude that there is no 1-regular 5-cover in PG(2,9). O

There are four non-isomorphic projective planes of order 9: the Desarguesian plane
PG(2,9), the Hall plane, its dual, and the Hughes plane. Even though there is no
1-regular 5-cover in PG(2,9) by the above result, it is possible that such a 5-cover
exists in one of the other planes. The next result is obtained using a computer

search:

Theorem 3.1.5 There exists a 1-regular 5-arc covering the translation line in the

Hall plane of order 9. There exists also 1-regular 5-arcs covering any affine line.

Proof: The Hall plane # of order 9 is obtained from PG(2,9) by derivation (see
Section 1.3). Let PG(2,9) be coordinatised by the Galois field of order 9,

GF(9)={0,0"|n=0,...,7, a* —a—1=0},

where « is a primitive element of GF(9). Let [, be the line z = 0 and let the
derivation set D be the Baer subline {(1,2,0) | z € GF(3)} U {(0,1,0)}. This is
the standard derivation set. Then the points and lines of 4 may be represented as
follows ([17, Chapter X]):

e The affine points of A are the points of PG(2,9) \ I, that is, points of the
form (z,y,1), z,y € GF(9).
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e The affine lines of H are of two types. The lines of H which are lines of
PG(2,9) meeting I, in a point not in D are of the form y = mz + ¢, where
m € GF(9) \ GF(3), ¢c € GF(9). For each m € GF(9) \ GF(3), the set of
lines {y = mz + ¢ | c € GF(9)} forms a parallel class.

The lines of H which are the Baer subplanes of PG(2,9) belonging to D are
the sets R(a, b, ¢) = {(ua+b,va+c,1) | u,v € GF(3)}, where a, b, c € GF(9),
a # 0. Now, R(ay,by,c1) and R(as,bs, co) are disjoint or coincident if and
only if as/a; € GF(3), and are coincident if and only if as/a; € GF(3),
(by—b1)/a1 € GF(3) and (c2—c1)/a; € GF(3). So the 36 distinct affine lines
of H of this form are R(a,b,c), a € {1,a,a? a3} and b, c € {0, aa, —aa}.
For each a € {1,,a?, a®}, the set of lines {R(a,b,c) | b,c € {0,aa, —aa}}

forms a parallel class.

e The ideal points of # are (1,m,0), m € GF(9)\ GF(3), and R(a), a €
{1,a,0a? a®}. The ideal point (1,m,0) corresponds to the parallel class of
lines {y = mz + ¢ | ¢ € GF(9)}, while the ideal point R(a) corresponds to
the parallel class of lines {R(a,b,c) | b,c € {0, aa, —aa}}.

e The ideal line (translation line) of # is the set of ideal points.

Using the above representation, a computer search was performed and the following

1-regular 5-covers were found:

The translation line is covered by the 5-arc Kj:
K1 = {A(0,0,1), B(0,1,1),C(~1,-a,1), D(—1,0,1), B(a® o, 1)} .

It is straight forward to verify that the line AB meets the translation line in R(1),
AC meets it in (1,0,0), AD in (1,—a,0), AE in (1,—a?,0), BC in (1,02,0), BD
in (1,0*,0), BE in R(a?®), CD in R(a), CFE in (1,—a? 0) and DE in R(a?).

The affine line y = ax is covered by the 5-arc Cs:
}C2 = {A(la 07 1): B(OJ 17 1)a C(_17 a, 1)) D(_17 _a27 1)7 E(la 043, 1)} .

The line AB meets the line y = az in (0,0,1), AC meets it in (1,,0), AD
in (—a*,1,1), AE in (—a?,—a? 1), BC in (a?a* 1), BD in (1,a,1), BE in
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(a3,-1,1), CD in (—a,—a?,1), CE in (a,a% 1) and DE in (—1,—a,1). Since
the automorphism group of H is transitive on the affine lines of #, there is a

1-regular 5-cover for every affine line in H. O

Corollary 3.1.6 Let Iy be a translation plane of order 9 and let [, be a transla-
tion line of IIg. Then there exists a 1-regular 5-arc covering [, if and only if IIy is

the Hall plane of order 9. O

Since there is no 1-regular 5-cover in PG(2,9), a 1-regular 5-cover in H must either
not derive to an arc in PG(2,9), or derive to a 5-arc in PG(2,9) which is not a
1-regular cover. The example of a 5-cover for the translation line in Theorem 3.1.5
is a 5-arc in PG(2,9) contained in the conic az?® + y% — yz + o®zz — zy = 0 but is
not a 5-cover in PG(2,9). We consider 5-covers for the translation line in 7 which

do not derive to arcs in PG(2,9).

Theorem 3.1.7 Let K be a 1-regular 5-cover for the translation line [, in H
which does not derive to a 5-arc in PG(2,9). Let K = {A,B,C, D, E} and let D

be a derivation set. Then K must derive to one of the following configurations:

(i) The points A, B, C are collinear and both AB and DFE meet [, in X € D.
See Figure 3.1(i).

(ii) The points A, B, C are collinear and AB meets l, in the point X which lies
in D. The line DE meets [, in Y € D, Y # X. See Figure 3.1(ii).

(iii) The points A, B, C are collinear and AB meets Iy, in X € D, and the line
DE meets [, in Y ¢ D. See Figure 3.1(iii).

In the first two configurations of IC;, AB, AC, BC, DE cover the ideal points
R(1), R(a), R(a?), R(a?), and DA, DB, DC, EA, EB, EC cover the remaining
ideal points in I\ D. In the last case, AB, AC, BC cover three of the four ideal
points R(a), a € {1,a, a?,a®}, and one of DA, DB, DC, EA, EB, EC covers the

remaining one, while the remainder, with DE, covers I\ D.

Proof: We identify the affine points of H with the points of PG(2,9) and specify

“line of PG(2,9)” or “line of H” as the case arises.
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Figure 3.1: Possible configurations deriving to 5-covers in H.
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Since K does not derive to a 5-arc in PG(2,9), at least three points of L must be
collinear in PG(2,9). Let ! be the line in PG(2,9) containing at least 3 points of
K. Then [ must meet [, in D, for otherwise [ would be a line of H and K would

not be an arc in 4. We show that there are exactly 3 points of K on [.

Suppose all 5 points of IC lie on I, then all the secants of K are lines of H corres-
ponding to Baer subplanes in PG(2,9), and the points on [\ D are not covered at
all. This contradicts the assumption that IC is a 5-cover in . Suppose then that
[ contains 4 points, say A, B, C and D, of K. Then there are at most 4 secants
AE, BE, CE, DE covering points on Iy \ D, but [\ D has 6 points, so K is not
a b-cover in . Hence [ must have exactly 3 points, say A, B, C of K.
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Since [ meets [, in D, the secants AB, AC, BC are lines of H corresponding to
Baer subplanes in PG(2,9), and since K is 1-regular, they must cover three of
the four ideal points R(a), a € {1,a,a?, a®}. The line joining the remaining two
points D, E meets [y, either in [ Ny, D\ {{ Nlx} or I\ D, corresponding to
cases (i), (ii) or (iii) respectively. The properties of the secants follow from the

assumption that I is a 1-regular 5-cover for [, in H. O

The next two results show that the first two configurations do not exist.

Theorem 3.1.8 There is no configuration in PG(2,9) satisfying case (i) of The-

orem 3.1.7.

Proof: Let [, be the line z = 0 in PG(2,9) and D the standard derivation set.
The collineation group G of PG(2,9) fixing D is 2-transitive on the points of D, so
we may pick X to be the point (1,0,0). The subgroup of G fixing X is transitive
on affine points, hence we may pick the point A to be (0,0,1). This determines the
line [ to be the line y = 0. The subgroup of G fixing both X and A is transitive on
I\{A4, X'}, so we may pick B to be (1,0, 1). Let G’ be the subgroup of G fixing X, A
and B. Then the set of affine lines y +tz = 0 through X, t € {£1, +a, +a?, +a?},
is partitioned into 4 orbits {y+tz = 0}, t = 1, a, a?, a®, under G’, so we need only

to consider the points D, E on y+tz =0 for t = 1, o, o2, a3.

Let C be (¢,0,1). Then ¢ ¢ GF(3), since C can’t lie in the same Baer subplane as A
and B. The points D, E lie on y+tz = 0 for some t. Let D be (d, —t,1), E (e, —t, 1).
We show that there is no ¢, d, e and t such that K = {A, B, C, D, E'} satisfies case
(i) of Theorem 3.1.7. Now, for any fixed t € {1, a,a? a®} and c € GF(9) \ GF(3),

we have:

(a) The points A, B lie in R(1,0,0), so AB covers R(1) in H. The points A, C
lie in R(c, 0,0), so AC covers R(c) in H.

(b) The points B, C lie in R(c — 1,a(c — 1),0) if ¢ € {a, —a,a?} and R(c —
1,—a(c—1),0) if c € {—a? a® —a?}, so BC covers R(c— 1) in H. This can
be verified as follows:

Let
L(c) ={(u(c—1)+a(c—1),0,1) | u € GF(3)}
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and
L'(c) ={(u(c—1) —a(c—1),0,1) | u € GF(3)}.

Then L(c) is a subset of R(c — 1,a(c — 1),0), while L'(c) is a subset of
R(c—1,—a(c—1),0).

For ¢ € {a,—a,a?}, if ¢ = a then L(c) = {(1,0,1),(e,0,1),(—a?0,1)},
if c = —a then L(c) = {(—a3,0,1),(1,0,1),(—a,0,1)}, and if ¢ = o? then
L(c) = {(a?,0,1), (a3 0,1),(1,0,1)}, so in all three cases, B, C lie in L(c).
Hence, if ¢ € {a, —a, a?}, the points B, C lie in R(c — 1, a(c — 1),0).

For ce {—a? a® —a?}, if c =—a? then L'(c) = {(1,0,1),(—a?%0,1),(,0,1)},
if c = o® then L'(c) = {(a?,0,1),(1,0,1), (¢? 0,1)}, if c = —a® then L'(c) =
{(=a3,0,1),(-,0,1),(1,0,1)}, so in all three cases, B, C € L'(c). Hence
for c € {—a?,a®,—a?®}, B, C lie in R(c — 1, —a(c — 1),0).

(c) The line AD meets Iy, in (—dt™',1,0) and AE meets lo, in (—et™!,1,0).
Since both these points must lie in [, \ D, we have d, e # 0, £t.
Similarly, BD covers ((1 — d)t™*,1,0) and BE covers ((1 —e)t™%,1,0) and
both the points must lie in I\ D, so d,e # 1,1 + ¢.

Furthermore, for any c, the line CD covers ((c—d)t™!, 1,0), while CE covers
((c—e)t1,1,0),s0d,e #c,ctt.

Let N be the set {0,1,¢,+t,1+ ¢, ¢+ t}. Then, if K satisfies case (i) of Theorem
3.1.7, there must be d,e € GF(9) \ N for some t € {1,a,a? a®} and c € GF(9) \
GF(3).

By considering all possible values of ¢ and ¢, we show that either N = GF(9),
which means that there is no d, e such that & forms the configuration of Theorem
3.1.7(i), or for all valid choices of d, e, the point D, E cover R(t).

Fort =1, if ¢ € {a, —a?, a3}, the only possible values of d and e are {—a, —a?, a®}
and for all these values, D and F liein R(1, —a,0). If c € {—a, a?, —a?}, the only
possible values of d and e are {@, a?, —a3} and for all these values, D and FE lie in

R(1,,0). Hence in all cases, DE covers R(t).

For t = q, if c € {—a?, —a®}, then N = GF(9), so there is no d, e such that K
satisfies case (i) of Theorem 3.1.7. If ¢ € {a, —a, a? a3}, then the only possible
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values for d and e are {—1,—a? —a3} and for these values, both D and E lie in
R(a, —a?,0). Hence DE covers R(t).
Similarly, for t = o?, if ¢ € {a, @®} then N = GF(9), while for the remaining values

of ¢, the only possible values for d and e are {—1, o, &®}, and for these values, both
D and E lie in R(a?,a?,0). So DE covers R(t).

Lastly, for t = a3, if ¢ € {—a, a?} then N = GF(9), while for the remaining values
of ¢, the only possible values for d and e are {—1, —a, a?}, and for these values,
both D and F lie in R(a?,—1,0). So DE covers R(t).

Consider the values of ¢t and ¢ where DE covers R(t). Since AB, AC, BC' cover
R(1), R(c), R(c — 1) respectively, we must have ¢t = ¢ + 1. In this case, however,
N ={0,+1, +¢,£(c+ 1), £(c — 1)} = GF(9).

So for all values of ¢ and ¢, there is no d, e such that K satisfies case (i) of Theorem
3.1.7. -

Similarly, we show that

Theorem 3.1.9 There is no configuration in PG(2,9) satisfying case (ii) of The-

orem 3.1.7.

Proof: By the same argument as the proof of the previous result, we choose
A(0,0,1), B(1,0,1), X(1,0,0) and Y(0,1,0). Let C be (c,0,1), then since C
cannot lie in the same Baer subplane as A and B, ¢ € {£+a, +a? +a®}. Let D, E
be on the line x +tz2=0,t € GF(9), D = (—t,d,1), E = (—t,e, 1), d,e # 0.

(a) As in the proof of the previous result, AB covers R(1), AC covers R(c) and
BC covers R(c—1) in H.

(b) If t =0, —1 or —c¢, then AD, BD, or C'D respectively meets I, in Y. Since
we require that AD, BD and CD cover points of I, \ D, we must have
t¢{0,-1,—c},sot € {l,c,(c+1),£(c—1)}.

(c) The lines AD, AE, BD, BE, CD and CE cover (—td~!,1,0), (—te™!,1,0),
(CQ+0)d,1,0), (—(4+2)e,1,0), (—(e+1)d1,1,0) and (—(e+)e,1,0)
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respectively, and since we require that all these points lie in [\ D, we must

have
d,e ¢ {0,£t,£(1+1¢),£(c+1t)} = N.

Hence we have, if C satisfies case (ii) of Theorem 3.1.7,

t=1 = d,e€{c,—c,c—1,—c+1},
t=c = dec{l,—-1l,c—1,—c+ 1},
t=c+1 = dyec{l,-1,¢ —c},
t=c—1 = dyee{l,-1},
t=—c+1 = d,ec{c, —c},
t=—c—1 = deec{c—1,—c+1}.

Let e = —d, that is, D is the point (—t,d, 1) and F the point (—t, —d, 1). We show
that DE covers R(d). Now, there is a Baer subplane R(d, z,0), z € {0, ad, —ad},
containing both D and E if and only if there are elements u, v1, vy of GF(3) such
that

ud+xr = -—t,
’Uld = d,
’U2d = —d.
Now, v; = 1, v = —1 are certainly solutions for the last two equations. As for the

first equation, the following addition table show that, for any ¢t € GF(9), there is
always a u in GF(3) and an z in {0, ad, —ad} such that ud + z = —t:

T
+ 0 ad —ad
ad —ad

ud d | d (a+1)d (—a+1)d
—d|—-d (a—1)d (—a—-1)d

Since all the entries of the table are distinct for d # 0, we conclude that there is
always a Baer subplane R(d, z,0), z € {0, ad, —ad}, containing D and E. Hence
if e = —d then DE covers R(d). So, in the last three cases, where t = ¢—1, —c+1,
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—c — 1, DE covers R(1), R(c) and R(c — 1) respectively. However, R(1), R(c)
and R(c—1) are already covered by AB,AC and BC), so the only valid choices for
tare 1, cand c + 1.

If K satisfies case (ii) of Theorem 3.1.7, then, from (a) and (c), we must have, for
some ¢, d, e and t, DE covers R(c+ 1), and

{_tdil’ _teila _(1+t)d71a _(1+t)671a _(C+t)d71a _(c+t)eil} = GF(9)\GF(3)
By trying all valid values of ¢, d and e for each choice of ¢, we conclude that there
is no ¢, d,e and ¢ such that C satisfies case (ii) of Theorem 3.1.7. O

By performing a computer search, we have the following result:

Theorem 3.1.10 There is a 1-regular 5-cover in the Hall plane of order 9 which

derives to the configuration in Result 3.1.7 (iii).

Proof: Let A be the point (0,0,1), B (1,0,1), C (a,0,1), D (0,a% 1) and E
(a?,a3,1). Then AB covers R(1), AC covers R(a), AD covers R(a?), AE covers
(—a3,1,0), BC covers R(a®), BD covers (a?/1,0), BE covers (—a?,1,0), CD
covers (a3,1,0), CFE covers (—a, 1,0) and DE covers (a, 1,0). O
By fixing A and B, an exhaustive computer search found 384 distinct 5-covers

containing A, B, three quarters of which derive to 5-arcs in PG(2,9) and the rest

92
derive to the configuration in Theorem 3.1.7 (iii). Since there are ( ) = 3240
2

5
choices of A, B, and each 5-cover is counted ( ) = 10 times, there are altogether
2

3240 x 384
10

= 124416

1-regular 5-covers in the Hall plane of order 9.

For completeness, we investigate the existence of 1-regular 5-covers in the two other

planes of order 9, the dual Hall plane and the Hughes plane.

Theorem 3.1.11 There exists a 1-regular 5-cover for each line in the dual Hall

plane of order 9.
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Proof: The dual of a 1-regular 5-arc covering a fixed line is a set of five lines no
three concurrent such that the intersection of every pair of lines lies on distinct
lines through a fix point. There is a 1-regular 5-cover in the dual Hall plane of

order 9 if and only if the dual exists in the Hall plane of order 9.

Using the same representation as in Theorem 3.1.5, we perform a computer search

and obtain the following result:

Let P(0,0,1) be a fixed affine point in the Hall plane H. Then P corresponds to
a line not through the translation point in the dual Hall plane. The lines of H
through P are R(1,0,0), R(a,0,0), R(a?,0,0), R(a?,0,0), y = az, y = —ax,
y = oz, y = -z, y = oz, y = —aoz. Let K' be the set of 5 lines of H

consisting of:
ly : the translation line,
lo © y=azr+1,
I3 : y=—azx—1,
Iy © y=—-ad’zx—1,

ls : y=—-az—«a

Then we have the following incidence:

Lnl, = (1,a,0) € y = az,

Lhnly = (1,—a 0) €y=—axz,
Lhnly = (1,-0d%0) €y=—a’z,
Lhnls = (1,-a%0) ey=—a’z,
lbnly = (oz3, 1) € R(a?,0,0),
IoNly = (—a,—a,1) € R(a,0,0),
lbnly = (—a?,a,1) €y =a’z,
lsnly = (0,—-1,1) € R(1,0,0),
IsNls = (a,0% 1) € y= o,
I,nls = (a?0,1) € R(a?,0,0).

Hence {l1, l2, 13, 14,15} forms a dual 1-regular 5-cover for the point (1,0, 0) in the Hall

plane, so there exists a 1-regular 5-arc covering a line not through the translation
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point in the dual Hall plane of order 9.
Similarly, the lines of H {l},1},15,1,, 1L} with
I7 © R(1,0,0),
I, : R(e,0,0),
Iy : y=—az—1,
Iy : y=—azxz+1,
Ik R(*1,0),
form a dual 1-regular 5-cover for the point (1, a,0) which corresponds to a line

through the translation point in the dual plane. Hence there is a 1-regular 5-arc

covering any line in the dual Hall plane of order 9. O

Theorem 3.1.12 There is a 1-regular 5-arc covering a complex line and a 1-

regular 5-arc covering a real line in the Hughes plane of order 9.

Proof: We represent the Hughes plane of order 9 as in [17, Section IX.6] with
GF(9) represented as in the proof of Theorem 3.1.5:

e The points are the elements of V' \ {(0,0,0)}, where V = {(zo, 21, 22) | z; €
N}, N is the regular nearfield of order 9 with elements and the addition
operation of GF(9) but with multiplication defined as

_ ) yz  ifyis asquare in GF(9),
s { yz® otherwise,
and with the proviso that k(zg, z1, z2) refers to the same point as (zg, 1, Z2)

if k € N\ {0}.

e The lines are the point sets L(¢t)A™, 0 < m < 12, t ranges over N \ {0, —1},
where L(t) is the set of points satisfying the equation

$0+$1t+1’2 :0,
and A is a 3 X 3 matrix in PGL(3,3) of order 13. In this case, we use

0 01
A=11 01
010
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e Incidence is containment.

The Hughes plane of order 9 contains PG(2, 3) as a Baer subplane, and we call a
line secant to PG(2,3) a real line and a line tangent to PG(2,3) a complex line.
The automorphism group of the plane is transitive on the set of real lines and on
the set of complex lines. Using a computer search, we have the result that the

complex line L(«) is covered by the 5-arc
{(-1,-1,1),(-1,1,1),(0,-1,1), (0, -, 1), (—, 0,1) },
and the real line L(1) is covered by the 5-arc

{(-1,-1,1),(-1,1,1),(0, —, 1), (0, =% 1), (2, , 1) } .

As a corollary to Theorems 3.1.4, 3.1.5, 3.1.11 and 3.1.12, we have

Theorem 3.1.13 Let Iy be a projective plane of order 9. Then a 1-regular 5-cover

exists if and only if Ilg is not the Desarguesian plane of order 9.

For ¢ = 27, we show that if a 1-regular 8-cover exists in PG(2,27), then it does

not lie on a conic.
Theorem 3.1.14 In PG(2,27), a 1-regular 8-cover does not lie on a conic.

Proof: The proof of this result is similar to that of Theorem 3.1.4. Let K be a
1-regular 8-arc in PG(2,27) covering a line . Suppose that K lies on a conic C,
which must be disjoint from [, for otherwise the points [,,NC cannot be covered by
K. The 28 points on C can be partitioned into 2 sharply focused sets, both focusing
on the external points on [, (Result 1.2.3). The only possible distributions of the

points of K on C are:

(1) All 8 points of K lie in one of the sharply focused sets.
(2) 7 points of K lie in one of the sharply focused sets and 1 lies in the other.
(3) 6 points of K lie in one of the sharply focused sets and 2 lie in the other.
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(4) 5 points of K lie in one of the sharply focused sets and 3 lie in the other.

(5) 4 points of I lie in one of the sharply focused sets and 4 lie in the other.

We show that in all of the 5 cases, K cannot be a 1-regular cover of [, and hence

IC does not lie on a conic.

In the first case, all the points of K lies on one of the sharply focused sets and so
the secants of K meet [, only in external points, so the internal points on [, are

not covered.

In the second case, the 21 secants of the 7 points of I lying in one of the sharply
focused sets meet [, in the 14 external points, so some external point lies on more
than one secant, which contradicts the property that I is 1-regular. Similarly, in
the third case, the 15 secants of the 6 points of I in one of the sharply focused set
meet [, in the 14 external points, so one external point of [, lie on more than 1

secant.

In the fourth case, the 5 points on one sharply focused set cover at most 10 external
points on [/, and the remaining 3 points cover another 3 external points on /.
The remaining 15 secants cover internal points on [, So there is at least one
external point on [, not covered by K. Similarly, in the last case, the 4 points
on one sharply focused set cover at most 6 external points on [, and the other
4 points on the other sharply focused set cover at most 6 external points. The
remaining 16 secants cover internal points, so there are at least 2 external points

on I, not covered by K.

Hence in every case, we showed that either [, is not covered by /C, or some point
on it lies on more than one secant to K, which contradicts the property of K as a

1-regular cover. So K does not lie on a conic. a

By a computer search we have
Theorem 3.1.15 There exists a 1-regular 8-cover for the line z = 0 in PG(2, 27).
Proof: Let [, be the line z = 0 in PG(2,27). Let GF(27) be represented by

GF27)={0,1,a" [n=1,...,25, & —a+1=0}.
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Then the 8-arc

K = {(0,0,1),(1,0,1),(0,1,1), (e, 0, 1), (a? 0" 1),

(a®,0™,1), (o™, a®,1), (0®, 0, 1)}

found by computer search is a 1-regular 8-arc covering /. O

By Corollary 3.1.2, Theorem 3.1.3, Theorem 3.1.5 and Theorem 3.1.15, we have

Theorem 3.1.16 Let II; be a projective plane of order ¢, ¢ a prime power. Then,

a l-regular k-cover exists if and only if ¢ € {2,5,9,27}.

3.2 n-regular k-covers

We give a few characterisations of n-regular k-covers in II,. Recall that a k-arc K

is an n-regular k-cover of a line [, if every point on /., lies on exactly n secants to

K.

Theorem 3.2.1 If K is an n-regular k-cover for [, in a projective plane of order
q, then
n <

o |

and n = k/2 if and only if ¢ is even and K is a (¢ + 2)-arc.

Proof: Every point on [, can lie on at most k/2 secants to K if K is a k-arc, so
the inequality follows. If K is a (¢ + 2)-arc, ¢ even, then K has no tangents, and
every point on [ lies on exactly k/2 secants to K. If K is not a (¢ + 2)-arc then
there is at least one tangent to each point on I so that every point on /., lies on

at most (k — 1)/2 secants. O

For the second largest n, we have the following characterisation:

Theorem 3.2.2 Let I be an n-regular k-cover for [, in a projective plane of
order ¢. Then n = (k—1)/2 if and only if ¢ is even and K is a (g + 1)-arc with the

nucleus not on /.
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Proof: If g is even and K is a (¢ + 1)-arc with the nucleus not on [, then every
point on [, lies on exactly one tangent to I and hence on exactly (k—1)/2 secants.
Conversely, if K is a (k — 1)/2-regular cover, then k must be odd and every point

of I lies on exactly one tangent and (k — 1)/2 secants. Counting the number of

hk—1) (g+1) (E>

secants of I we have

2 2
which implies that k£ = ¢ + 1 and hence ¢ is even. Since every point of [, lies on

exactly one tangent to K, the nucleus of I is not on [. O

By Theorem 2.1.4, it is possible that, in a projective plane of square order admitting
a Baer subplane I1,, a k,-cover in II, for a Baer subline of [, can be extended to a
k-arc covering the whole of [,. The following discusses the possibility of extending

n-regular k,-covers in planes of prime powers ¢, where ¢ is a square.

From Section 2.1, an n-regular k-cover in II, has

L 1+\/8nq+(8n+1)
B 2

= f(n,q).

Hence if IC, is an n-regular k,-cover in a Baer subplane II, and is contained in a
k-cover for I, then k, = f(n,,/q) and by Theorem 2.1.4,

. 1+\/8q+8\/§(721—1)+(8n+1)

= g(n,9).
Now, let
Ay = 8ng+ (8n+1),
Ay = 8¢+8yq(n—1)+ (8n+1).
Then A; — Ay = 8(n —1)(¢ — /g) > 0 with equality if and only if n = 1. Hence

f(n,q) > g(n, q) with equality only if n = 1. This implies that for all n, it may be

possible to extend an n-regular k,-cover to an n-regular k-cover.

For n = 1, however, if ¢ a prime power, 1-regular k-arcs exist only if ¢ = 2, 5, 9
or 27. Only 9 is a square but there is no 1-regular cover in II3. Hence in planes of

prime power orders, a 1-regular k-cover cannot be extended.

For n > 1, if an n-regular cover K, for a Baer subline of [, can be extended to an

n-regular k-cover K for the whole line, then k£ = f(n, q), and every point of IC\ I,
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must lie on distinct lines of II, missing KC,, and for every pair of points P, ) of
K\ Ko, PQ covers a point of I, \ D. It is not clear if such an extension is always
possible, but for small n and ¢, n < 4, ¢ < 132, the only n, g such that both f(n, q)
and f(n,/q) are integers is n = 2, ¢ = 4. In this case, k, = 4, k = 5 and I, is the
affine plane PG(2,2) \ I, and so every point in II4\ I lies on a line meeting /C,
in 2 points. This means that no point of II4\ I, can be added to &, to extend it

to a 2-regular cover of /.

3.3 (n1,ng)-regular k-covers

For a regular cover, every point on [, is of the same type, that is, every point
on ly lies on the same number of secants and tangents. A conic in PG(2,q), ¢
odd, however, is not a regular cover for any line /., disjoint from it. There are two
types of points on lo,: (¢+1)/2 points of I, lie on (¢ —1)/2 secants, and the other
(¢ + 1)/2 points lie on (g + 1)/2 secants to the conic.

Definition 3.3.1 In a projective plane II, of odd order g, we say a k-arc K is an
(n1,n2)-regular k-cover for I if K is disjoint from .., and exactly half of the

points on [, lie on n; secants and the other half on n, secants.

A conic in PG(2, q), for example, is a ((¢ — 1)/2, (¢ + 1)/2)-regular (g + 1)-cover.
The next results are on ((¢ —1)/2, (g + 1)/2)-regular covers in arbitrary projective

planes of odd order:

Theorem 3.3.2 In a projective plane of odd order ¢, if Cisa ((¢—1)/2, (¢+1)/2)-

regular cover, then K is a (¢ + 1)-arc.

Proof: Let K be a ((¢ —1)/2, (¢ + 1)/2)-regular k-cover. Then,
(q-l—l) (q—l) N (q+1> (q+1) _ k(k-1)
2 2 2 2 /) 2

q(g+1) = k(k - 1),

that is,

and so k = ¢+ 1. Hence K is a (¢ + 1)-arc. a
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Theorem 3.3.3 If K is a (¢ + 1)-arc in a projective plane II, of odd order ¢, then
Kisa ((¢g—1)/2,(q+ 1)/2)-regular cover.

Proof: Firstly, we prove that every point in II, lies on 0,1 or 2 tangents to . A
point P lies on exactly one tangent if and only if P lies on K. For, if P does not
lie on I and P lies on at least one tangent [, then, since ¢ + 1 is even, P must lie
on at least one more tangent. There are g tangents to K other than [ and ¢ points
on [ not on K, each of which lies on at least one more tangent other than /. Hence

P lies on exactly two tangents.

Now, every point on [, lies on either two tangents or none at all, hence every point
on ly lies on either (¢ — 1)/2 secants or (¢ + 1)/2 secants. Suppose there are n,
points on I, lying on (¢ — 1)/2 secants and n points on (¢ + 1)/2 secants. Then,

-1 1 1
ny (%) + ng (%) = q(q; ) and ny+ny=q+ 1

Substituting no = ¢ + 1 — ny, we have

n(g—1)+(g+1-n1)(g+1)=q(g+1),

and so
n = 4 +1
1 — 9 -
Hence K is a ((¢ — 1)/2, (¢ + 1)/2)-regular cover. O

Theorem 3.3.4 Let K be a k-arc in IT;, ¢ odd. Then K is a ((k—2)/2, k/2)-cover
if and only if K is a (¢ + 1)-arc.

Proof: Suppose K is a ((k — 2)/2, k/2)-cover, then

) (5 (45 (2) - 452

which implies that £ = ¢ + 1. The converse is Theorem 3.3.3. O

Next we consider (n,n + 1)-regular covers. If K is an (n,n + 1)-regular k-cover

then
kE(k—1) gq+1 g+1
= 1).
5 5 n+ 5 (n+1)
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Solving the quadratic in k£ and taking the positive root, we have

. 1+ /1+4(g+1)(2n+1)
B 2

A (q + 1)-arc, for example, is an (n,n + 1)-regular cover with n = (¢ — 1)/2.
However, the converse is not true in general, that is, an (n,n + 1)-regular cover is
not necessarily a (¢ + 1)-arc. For example, using Construction 2.3.3, the 6-arc in
PG(2,9) consisting of a sharply focused set F' of 5 points on a conic C and a point
of C\ F is an (n,n + 1)-regular cover with n = 1. Another example, found by a
computer search, is when ¢ = 17, k = 10 and n = 2. If the points on a conic in
PG(2,17) disjoint from a line [, are identified with the integers modulo 18 (see

Section 1.2), the 10-arc {((0)), (1), (2)), (4)), (5)), (6), (8), (10), (12), (15))} is a

(2, 3)-regular cover of [,.

The next section discusses some ideas and results related to those in the last chapter

and the preceding sections of this chapter.

3.4 Related work and other results

In Chapter 2 we answered partially a question of G. Ebert mentioned in [7] re-
garding how large a set of points in AG(2, ¢) must be if it determines all possible
directions of the affine plane. This is equivalent to asking how large a set of points
in PG(2, q) must be to cover a given line. We obtained a lower bound and charac-
terised the set of points satisfying the bound as 1-regular k-arcs. The lower bound
is met only if ¢ satisfies the condition that 8¢ + 9 is an integer square. It is not
clear in general what the smallest set of points must be if 8¢ + 9 is not a square.
For small ¢, there are examples for which the lower bound in Theorem 2.1.2 is best
possible, as shown in Section 2.4. For large ¢, Construction 2.3.4 gives a family
of k-covers in planes of square orders, where k is of order 2,/q, while the lower
bound is of order /2q. For arbitrary ¢, the smallest examples we have are the
complete arcs in Example 2.2.1, and those constructed in Construction 2.3.3, of
order a fraction of ¢q. It will be of interest to construct a family of k-covers with

smaller order for arbitrary gq.

In view of the fact that points on a conic in PG(2, ¢) may be identified with Z,,
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(see Section 1.2), if there exists a subset A of Z,;; such that every element g in
Z 41 can be written as a sum g = v+ v, u,v € A, u # v, then there is a |A|-arc
lying on a conic in PG(2, ¢) which will cover a line disjoint from it. Theorem 2.1.2

and the results of Section 3.1 can thus be reworded as follows:

If G is a cyclic group of order n = ¢ + 1, ¢ a prime power, and A is a subset of
G, |A| = a, satisfying the condition that every element g € G can be written as
g =u+ v, where u,v € A, u # v, then
ala — 1)
n< ——=.
- 2
Equality is achieved if and only if n € {3,6}. In the case of equality, every element

in G is written exactly once as the sum of two distinct elements in A.

In [13], Graham and Sloane showed that if n(k), k& > 2, is the largest number n
such that a k element subset A of Z, exists with the property that every element

of Z, can be written as a sum of two distinct elements of A, then

5 \ k(k — 1)
S— 1) < (k) < T

It was shown that equality holds in the upper bound if and only if (k, n(k)) = (3, 3)
or (4,6). This is the same as our result. The lower bound is not relevant to our

work because it implies that k < 324n?/25 + 1, which is trivially true since a k-arc
satisfies k < ¢+ 2 < 324(¢ +1)%/25+ 1.

There are examples of A and Z 1 for small ¢ given in [13] which imply the existence
of k-covers in PG(2,q). For example, there is a 7-cover in PG(2,16), an 8-cover
in PG(2,23), and a 9-cover in PG(2,31), all lying on conics and all giving best
possible k-covers according to the lower bound of Theorem 2.1.2. However, this
method will at best give us a proper subset of all possible k-arcs covering a line
because such a k-arc does not necessarily lie on a conic, as exemplified in the case

of a 1-regular 8-cover in PG(2,27).
In [7], Blokhuis, Wilbrink and Sali proved a similar but more general result:

If G is a finite abelian group of odd order n, and A C G, |A| = a, satisfies the

condition that every element g € G can be written as ¢ = u + v, where u,v € A,
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u # v, then

—-1)2+1
M if a is even,

2
=9 (@-1)2+2
2
Equality is achieved if and only if n € {3,5,9,13,25,243}. In the case of equality,

if @ is odd.

exactly one element of G can be written a/2 or (a — 1)/2 times depending on
whether a is even or odd, and the remaining elements can be written exactly once,

as a sum of two distinct elements in A.

The two results overlapped only in n = 3. The two approaches are different: we
fixed n and obtained a lower bound on a while Blokhuis, Wilbrink and Sali fixed
a and obtained an upper bound on odd n. It is not clear if the method of proof
for the result can be modified to give an indication to the size of the smallest set
of points covering a line in PG(2, q) and other planes. It is also not obvious if an

analogous group structure can be imposed on arbitrary complete arcs.

In the next chapter we discuss some generalisations of the notion of k-arcs covering

a line in projective planes.
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Chapter 4
Some generalisations of k-covers

This chapter discusses some generalisations of k-arcs covering a line in a projective
plane. In Section 4.1, we examine (k, n)-arcs covering a disjoint set of points T and
obtain lower bounds on k in terms of n and the intersection properties between
T and the lines of the plane. In Section 4.2, we show that the concept of k-arcs
covering a line can be extended to that of sets of points covering a hyperplane in
higher dimensional projective spaces and show that, in fact, a k-arc covering a line
in PG(2,q) also covers a hyperplane in PG(n,q) for all n > 2. In the last section

we discuss some open questions.

4.1 (k,n)-arcs covering arbitrary sets of points

Let II, be a projective plane of order q. A (k,n)-arc in II, is a set of k points
such that every line of II; meets it in at most n points and some line meets it in
n points. Let T' be a non-empty set of ¢ points and let & be a (k, n)-arc disjoint
from T'. We say that K covers T if every point of 7' lies on a t-secant of I, t > 2.

Let £(T') be the set of lines of II, containing less than ¢ points of 7" and let u(T)
be the minimum number of lines belonging to £(T') such that T lies in the union
of these lines. These definitions are made because we are primarily concerned with
obtaining a lower bound on £k by counting the number of secants of X that would

contain 7', and a line containing ¢ or more points of 7' cannot be a secant of K and
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hence is disregarded.

Lemma 4.1.1 Let m be the maximum number of collinear points of 7', that is, T'
is a (t, m)-arc. Then
t
— ifm<qg-1,
wT)=q m
m  otherwise.

Proof: If m = 1, T is a single point, that is, t = 1, and so u(7) = 1 = t/m since

exactly one line is required to cover 7.

If 2 <m < qg—1, then let M(T) be a subset of u(T) lines of L(T') such that T
lies in the union of the lines in M(T). We count the flags

F={(P1)| PeT,lecM(T)}

Firstly, there are ¢t points of 7" and each point lies on at least one line of M(T), so
|F'| > t. On the other hand, there are u(7') lines in M(T), each line containing at
most m points of T, so |F'| < u(T) m. Hence u(T) > t/m.

If m =qor g+ 1, let I’ be an m-secant of 7. Then the m points of T on I’ must
lie on m distinct lines of £(T'), so u(T) > m. a

Lemma 4.1.2 Let K be a (k,n)-arc in II,. Then K has the maximum number of
secants of all (k,n)-arcs when exactly one of the secants of I is an n-secant and

the rest are 2-secants.

Proof: Let s be the number of secants of IC, and let s,, be the number of n-secants
of K. We count the number of flags F' = {(P,l) | P € K, | a secant of K}.

Since |[K| = k and through every point of I there are at most k — 1 secants, we
have
|F| < k(k—1).

On the other hand, on s, of the secants, there are n points of X and on sx — s,, of

the secants, there are at least 2 points of K. Hence

|F| > ns, + 2(sx — Sn)-
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Combining the inequalities, we have
k(k —1) > ns, + 2(sx — sn),

and so ( ) ( )
k(k—1 sp(n —2
< — .
=Ty 2

Hence sx is maximum when s, = 1, that is, K has exactly one n-secant, and all

other secants of IC are 2-secants. O

Theorem 4.1.3 Let T be a (t,m)-arc and K a (k, n)-arc covering 7. Then

1+4/4(n? —n+2u(T)) -7
Py LEVAD ne2uI) =T

where

t
W(T) > - ifm<gqg-1,
| m  otherwise.

Proof: We count the flags
F={(P1)| PeK,lasecant of K£}.

Firstly , there are k points in IC, each of which lies on at most £ — 1 secants, and

at least n of which lie on at most £ — n + 1 secants, so

IF| < nlk—n+1)+(k—n)(k—1)
= kK —k—-n?+2n.

On the other hand, since K covers 7', the number of secants of C must be at least
w1(T), and there are at least 2 points of K on each secant, and n points on at least

one of the secants. So we have
|\F| >n+2(u(T)-1).
Combining the two inequalities, we have
k2 —k—n®+2n>n+2u(T) 1),

that is,
B —k—(n*—n+2uT)—-1)) > 0,
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and so, since k > 0, we have

The lower bound on u(T) is proved in Lemma 4.1.1. O

From the proof of Theorem 4.1.3, if equality is achieved then exactly one secant
k—n
2
and T is contained in the union of exactly u(7') lines which are all the secants of

of K is an n-secant, the remaining n(k — n) + ( ) secants being 2-secants,

K. We show, in the following examples, that the lower bound of Theorem 4.1.3 is

met in some cases.

Example 4.1.4 If T is a single point and K is a (k, n)-arc covering T', then u(T) =
1, and by Theorem 4.1.3,

1+4/4n2-—m+2-1)-7 1+4/(2n —1)2
. V/A( ’ ) =T _ (2 r_

The lower bound is achieved when K is just n points collinear with 7. O

Example 4.1.5 If T is a (¢,2)-arc and K is a (k, 2)-arc, then u(7") = t/2 and the

lower bound of Theorem 4.1.3 becomes

. 1+\/4(22—2+2-%)—7 1+/4t+1
- 2 2

There are examples meeting this lower bound. For instance in PG(2,5), the 3-
arc {(1,0,0),(0,—1,1),(0,1,1)} covers the conic #? = yz (See Figure 4.1), and
in PG(2,11), the 4-arc {(0,1,1),(0,—4,1),(3,0,1),(4,—3,1)} found by computer

search covers the conic 22 = yz. O

Example 4.1.6 If T is a (¢, ¢)-arc and K is a (k, n)-arc covering T', then u(7) > ¢,

and

1+ 4/4(n? — 2q)— 7 1 8(g—1 2n —1)?

J LA 4 2) =T 1+ f8lg- 1)+ (@n 1)
- 2 2

There are examples meeting this bound when T is a (¢+1, ¢)-arc and K is a (k, n)-

arc. For example, by using a computer, we found the 3-arc K in PG(2, 3) covering
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Figure 4.1: A 3-arc covering z? = yz in PG(2,5).

(0, 1,0)

o points of

e points on 22 = yz

the (4, 3)-arc T, where

K = {@1,0,1),(~1,0,1),(0,—1,1)},
T = {(1,0,0),(1,1,0),(1,—1,0), (0,0,1)},

and the (4, 3)-arc K’ in PG(2,4) covering the (5,4)-arc T, where, with a®>+a+1 =
0,

K' = {(0,1,1),(1,a,1),(c? a,1),(0,,1)},
T = {(0,0,1),(0,1,0),(1,0,0),(1,1,0),(1,a?0).

(See Figure 4.2.) O

Example 4.1.7 If T is a line or contains lines and K is a (k, n)-arc covering it,

then u(T) > g+ 1, and

1+4/4(n> —n+2(¢g+1)) -7 1+4/8¢+ (2n —1)2
R LRV (@+1)-7 _ 1+y8a+@n—17
- 2 2
There are examples where the lower bound is achieved. For instance, if 7' is a

line and K is a k-arc, then 1-regular k-covers meet the lower bound. If n = 3,
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Figure 4.2: Arcs covering (¢ + 1, ¢)-arcs.

(1,-1,0)(1,1,0) (1,0,0)

(0,1,0) (1,0,0) (1,1,0) (1,a?0)

//’/
(a? a,1
£\

Py
»
/
/

/

PG(2,3)

o points of K
e points of T

the (5, 3)-arc {(0,1,1),(0,0,1),(0,-1,1),(1,0,1),(—1, 3,1)} found by a computer
search covers the line z = 0 in PG(2,7). Note that in this and Example 4.1.6, the
lower bounds do not take into account the size of T'. In fact, if K covers a line (or
g points of a line) then every set consisting of that line and points on the secants

of K is also covered by K. O

Now, a set of points S covers a set of points 7" if every point on 7T lies on a t-secant
of S, t > 2. It is clear then that a set S of more than one point always covers
itself, since every point of S lies on a secant of S. In view of this, we consider a

set S covering a set T containing it. We obtain the following result:

Theorem 4.1.8 Let T be a set of ¢ points in a projective plane II, of order ¢
and let S be a set of s points contained in 7. Suppose that T is a (¢, m)-arc,

3<m<gq+1,and Sisan (s,n)-arc. If S covers T, then
s > s(n;t,m)

where

(m —4) +/(m — 4)2 — 4(m — 2)[2m — (m — 2)n2 + (m — 4)n — 2] |

s(n;t,m) = 2m—2)
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Proof: We count the flags F' = {(Q,1) | Q € T\ S, | a secant of S} :

The number of points in 7\ S is ¢t — s and there is at least one secant of S on each

of these points, so |F| >t — s.

On the other hand, S has at most

n(s—n)—f—( . )—i—l

secants, each one of which has at most m — 2 points of 7'\ 'S and one of which has

at most m — n points of T\ S, so

|F| < (n(s—n)+(S;n>)(m—2)+(m—n).

Combining the two inequalities we have

t—s< (n(s—n)+(8;n))(m—2)+(m—n),

and the inequality s > s(n;t,m) follows. O

If equality is achieved, then exactly one of the secants of S is an n-secant and all
the others are 2-secants, every secant of S has m points of T" and every point of T’

lies on exactly one secant of S.

For the case when m = 2, that is, T is a t-arc, if S is contained in 7" and covers T
then S must be the whole of T'. For if S is a proper subset of T, then every line
through a point P in 7'\ S would meet S in at most one point since T is an arc,
so that S would not cover P. In fact, a set 7" that is not covered by any proper
subset of itself is necessarily an arc. This is because if T is not covered by any
proper subset of itself, then for any point P in 7', every line through P must meet
T\ {P} in at most one point. Thus every line of the plane meet T in at most two

points, so 7' is an arc. Hence we have the following result:

Theorem 4.1.9 A set T of t points in a projective plane of order g is not covered

by any proper subset of itself if and only if T is a t-arc. O

Example 4.1.10 If T is a line of a projective plane II, of order g, that is, T" is a
(¢g+ 1,9+ 1)-arc, and if S is an (s,n)-arc in T that covers T, then

s>s(njg+1,g+1)=n.
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This bound is met since .S would just be n points on 7.

If T is the whole of II, and S is an s-arc covering T, then S is a complete arc, and

¢—3 \/[4(q— )= (¢g=3)+8¢(¢g—1)
2(¢—1) 2(¢—1) ’

and this bound is met only if every point of 7T lies on exactly one secant of S.

323(2;q2+q+1,q+1):

This bound is not as good as the existing bounds (for example, the one obtained
from blocking sets by Ball in [1], which has s > |4/2¢ + 2]). We give a numerical
comparison of s(2;¢*+ g+ 1,q+ 1) with the lower bound on the size of complete
arcs given in Example 2.2.1 (s > (3 + 4/8¢+1)/2) and that given by Ball [1]
(s > |+/2q + 2]) for a few values of g:

g I35 [V2g+2] [s(2?+g+1,q+1)]
2 4 4 4
5 5 6 5
41 11 12 10
49 12 12 11
101 16 17 15
1009 a7 a7 46

4.2 k-covers in projective spaces

Let P = PG(n, q) be the projective space of dimension n over the field of order gq.
Let H, be a fixed hyperplane of P designated as the hyperplane at infinity. Then
P\ Heo is the affine space AG(n,q). A parallel class of hyperplanes of AG(n,q)
corresponds to the hyperplanes of P, excluding H,, containing a given (n — 2)-
dimensional subspace in H,,. Each parallel class contains ¢ hyperplanes and these
hyperplanes partition the affine points of P. There are (¢" — 1)/(¢ — 1) parallel

classes.

We say that a set of affine points IC in P covers a parallel class of AG(n,q) (or

the corresponding (n — 2)-dimensional subspace in H,) if there is a hyperplane
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Figure 4.3: Embedding P in P'.

belonging to that parallel class containing at least two points of K, and we say
that K covers H, in P if K covers every parallel class. This is equivalent to saying

that the secants to K meet every (n — 2)-dimensional subspace in H.

Theorem 4.2.1 Let P = PG(n,q) and let H, be the hyperplane at infinity. Let
K be a set of k points in P covering Ho,. Then there is a set of £ points covering

the hyperplane at infinity H._ of P’ = PG(n + 1, q).

Proof: Since K covers H,, for every (n — 2)-dimensional subspace in H,, there is
a hyperplane of P through it containing two points of K. Now, let P be embedded
in P’ as a hyperplane meeting #'_ in the (n — 1)-dimensional subspace H, (see
Figure 4.3). We show that K covers H_, that is, for each (n — 1)-dimensional
subspace in H._, there is a hyperplane of P’ through it containing at least two

points of .

The parallel class of hyperplanes of P’ through #H, is covered, since it contains P
and hence K. Let 8 be an (n — 1)-dimensional subspace of H._, § # Ho, and let
Y3 be the parallel class of hyperplanes of P’ through . Let X = H, N [. Then

X is an (n — 2)-dimensional subspace contained in H.,. The ¢ hyperplanes in the
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parallel class ¥5 meet P in ¢ distinct (n — 1)-dimensional subspaces containing X,
that is, the intersections of the ¢ hyperplanes of the parallel class ¥z with P form
the parallel class of hyperplanes of P through X. Since K covers H,, one of these
intersections contains at least two points of K. Hence one of the hyperplanes in
Y3 contains at least two points of X, so Y3 is covered. This is true for all parallel

classes of P'. Hence I covers H.  in P'. O

As a corollary to the above theorem, we have

Corollary 4.2.2 If there is a k-arc covering a line in PG(2,q), then there is a
k-cap covering a hyperplane in PG(n, q) for all n > 2.

Proof: Let I be a k-arc covering a line I, in II = PG(2,q) and let Hy be a
hyperplane in PG(n,q), n > 2. Let II be embedded in PG(n,q) in such a way
that IT meets Ho, in the line /. Then K is a k-cap in PG(n, q) and, by applying
Theorem 4.2.1 inductively, K covers Hoo. a

There are (¢" — 1)/(q — 1) parallel classes of hyperplanes in PG(n, q), so it would
seem that for a set of k points to cover a hyperplane H, in PG(n,q), we would

need
k(k—1)>q —1.
2 —q-—1

However, by Corollary 4.2.2, all that is necessary is a k-cap I contained in a plane
IT of PG(n,q) which meets Ho, in a line I, such that K covers Iy, in II. Hence,
since there are ¢ + 1 points on [, the lower bound on £ is

kE(k—1

that is, £ > (1 + /8¢ +9)/2.

The case when n = 3 gives an interesting example relating to blocking sets in

planes:

Example 4.2.3 Let ¥ = PG(3,q) and let m, be the plane at infinity of ¥. Let
K be a k-cap in ¥ \ 7y, covering 7. Let B be the points of intersections of the
secants of IC with 7. Then, since K covers 7., the secants of K meet every line
of 7, that is, B forms a blocking set of 7, in the sense that every line of 7

contains a point of B.
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If B is a line then
k(k —1)

2
which gives the lower bound of Corollary 4.2.2.

>q+1,

If B is a non-trivial blocking set (that is, B does not contain a line), then it is

well-known (see, for example, [8]) that

Bl >q++/q+1.

In this case, K does not lie in a plane. We have

k(k —1)
2

_ 1+ /8a+9+8va

- 2

> q+4/q+1,

and hence

If KC lies in a plane then B is certainly a line. However, it is not clear if the converse

1s true.

In general, let ¥ = PG(n, q) and let H, be the hyperplane at infinity of . Let K
be a k-cap in ¥ \H covering Ho, and let B be the points of intersections of the
secants of IC with H .. If IC is contained in a hyperplane H of %, then B lies wholly
in a hyperplane H N Hy, of Ho. This is certainly the case when K is inherited by
embedding, as in Theorem 4.2.1. Again, it is not clear if the converse is true, that
is, whether B lying in a hyperplane of H,, necessarily implies that IC is contained

in a hyperplane of X.

If B does not lie in a hyperplane of H,, then B must be a 1-blocking set in H ., that
is, every hyperplane of H,, contains a point of B, and as shown by Beutelspacher
in [2, Theorem 1],

B| > q++/q+1.
Hence in this case,

k(k —1)
2

1+,/8¢+9+8,7

>
k= 2

>q++/q+1,

and so
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4.3 Some open questions

In this section we discuss some open questions arising from the generalisation of

k-covers.

The set of all complete arcs forms a subset of the set of all k-arcs covering a line.
Consider a (¢ + 1)-arc K in a projective plane II, of order ¢, ¢ even. Every point
P on II,, P not the nucleus of I, lies on ¢/2 secants and 1 tangent of K, while
the nucleus lies on ¢ + 1 tangents and no secant. Hence K covers all lines missing
K, but is not a complete arc. One of the questions that arises is as follows: If K
is a k-arc covering a line in II;, how many other lines does K cover if K is not a
complete arc? Furthermore, is there an €, such that if I covers n lines, n > €,

then IC covers all lines, that is, K is a complete arc?

In Example 4.1.7, we see that if a k-arc K covers a set of points 7' containing a
line, then K covers all the points on the secants of I as well, and the lower bound
on k does not depend on |T'|. We ask whether there is a lower bound on & in terms
of the number of lines T contains: if 7" is the union of « lines, is there a lower

bound k() such that if IC covers T then k > x(a)?

In Theorem 4.1.8, the lower bound is achieved only if 7" lies in the secants generated
by S. One may ask then, if 7" is a union of « lines, what is the minimal number of
points in a set S C T that could “generate” T (that is, T lies wholly in the secants
of S)? By “minimal” we mean that for every point P of S, the set of points S\{P}

does not generate 7.

We conjecture that if 7" is a set of o lines and S is a minimal set of s points
contained in 7 such that S generates 7', then

1+\/804+1<
— <s

<a+1
2 sat+d,

where the lower bound is met when 7' is the set of secants of an s-arc, and the
upper bound is met when T is a set of a concurrent lines. The lower bound is easily
proved, since a set of s points has at most s(s — 1)/2 secants. The upper bound
is yet to be proved. At present we have only proof that s < 2a, by observing the
fact that if S is minimal then through every point of S there must be a line of T’

which contains exactly one other point of S. There is hence a “skeleton” graph G
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in T whose vertices V are the points of S and whose edges E are the lines of T’
containing exactly two points of S. The degree of each vertex of GG is at least 1, so

that by counting the set {(P,{) | P €V, l € E, P €1}, we have s < 20.
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Chapter 5

Some properties of a family of

planes by Yoshiara

In this chapter we investigate the properties of a family of planes in PG(5, ¢) con-
structed by Yoshiara [22] which is used to construct a family of extended generalised
quadrangles of order (¢ + 1,g — 1). We are interested mainly in the combinatorial
and geometric properties of the family of planes in PG(5, q) and will not discuss in
any detail the properties of the resulting extended generalised quadrangles. The

interested reader is refered to [22], [20] and [23].

5.1 Introducton

Let & = {my,...,mg12} be a set of ¢ + 3 planes in PG(5, q), ¢ even, such that

N\

(a) the intersection of two planes m;, 7; in £ is a point for all
i, §=0,...,q+2 0%

(b) theset O; ={mnm;|j€{0,...,q+2}\ {i}} is a hyperoval ¢ ()
inm; foralli=0,...,q+ 2;

(c) the planes in £ span PG(5,q).

7

An extended generalised quadrangle (EGQ) of order (s, t) is a connected geometry
with three types of elements, points, lines and blocks, belonging to the following

diagram:
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[ e ®
1 s t
points lines blocks

such that the point-residues are generalised quadrangles of order (s, t), the block-
residues are isomorphic to the complete graph on s+2 vertices, and the line-residues
are generalised digons. (See [19] for details on diagram geometries.) We describe
briefly how an EGQ of order (¢g+1,¢—1) (denoted EGQ(g+1, ¢—1)) is constructed

from €&:

Let 3 denote the 5-space containing the ¢ + 3 planes £ = {m, ..., T2} and let ¥
be embedded as a hyperplane in a 6-dimensional projective space PG(6,q). Let

G> = the set of projective points in PG(6,q) \ &,

G = the set of projective lines of the form (m; N 7;, P),
mi,mj € E, m #m; and P € Gy,

Go = the set of projective 3-spaces of the form (m;, P),

where m; € £ and P € G,.

Then Gy, G and G, are respectively the points, lines and blocks of an EGQ(q +
1, — 1) T with ¢3(¢ + 3) points, ¢°(q + 3)(¢ + 2)/2 lines, ¢° blocks, and incidence
given by symmetrised inclusion. The residue of a point (m;, P) is isomorphic to the

dual of the Tits quadrangle T5(0;) for i =0,...,q+ 2.

(Briefly, the Tits quadrangle is constructed as follows: Let O be a hyperoval in the
plane IT = PG(2,q), ¢ = 2", and let IT be embedded as a hyperplane in PG(3, q).
The Tits quadrangle 75 () is then a generalised quadrangle of order (¢ — 1,9+ 1),
with points defined as the points of PG(3,q) \ II, and lines defined as the set of
lines of the form {PQ | P € PG(3,9) \1I, Q € O}.)

In [20] it was shown that if there is a point P, in PG(5, q) which is not contained
in any of the hyperplanes (m;,7;), i # j, then, by projecting m; from P, onto
a hyperplane # not containing P,, the set of planes {ay,...,az+2}, where o; is
the projection of m;, satisfies only conditions (a) and (b) of (f) in PG(4,q). By
embedding PG(4, q) as a hyperplane in a 5-space PG(5,q), an EGQ(¢+ 1, — 1)
with ¢2(q + 3) points, ¢*(q¢ + 3)(¢ + 2)/2 lines and ¢° blocks can be constructed:
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Let X' denote the 4-space containing {ap,..., a2} and let ¥’ be embedded as
a hyperplane in a 5-space PG(5,q). Then the points, lines and blocks of the
EGQ(g+ 1,9 — 1) I' are respectively G, G; and Gj, where

G, = the set of projective points in PG(5,q) \ ¥,
Gi = the set of projective lines of the form (o; N a;, P), ; # o, P € Go,
Gy = the set of 3-spaces of the form {(a;, P), P € G,.

Suppose now that ¥ is a 5-space containing a set of ¢ + 3 planes & satisfying
conditions (1), and suppose that there is a point of projection P, in ¥ not contained
in any hyperplane spanned by pairs of planes of £. If ' is the EGQ constructed
by embedding ¥ in PG(6, q), then, by choosing another hyperplane ¥ of PG(6, q)
not containing P,, I' can be projected from P, onto ¥, and this projection is the
EGQ I'". Hence I is a g-fold covering of I and conversely, I'' is a g-fold quotient
of I' . We refer the reader to [20] for details.

There are two known constructions for a set £ of ¢ + 3 planes in PG(5, q), ¢ even,

satisfying conditions (). They are described in Examples 5.1.1 and 5.1.2.

Example 5.1.1 In [22], Yoshiara constructed as follows a set of ¢ + 3 planes in
PG(5,q), q even, satisfying conditions (). Let O* be a dual hyperoval of PG(2, q),
q even, that is, a set of ¢ + 2 lines no three of which are concurrent. Let ¢ be a

bijection from the points of PG(2, q) onto the Veronese surface V3 in PG(5, q):

¢ : PG(2,q9) — PG(59)

(1170,93‘1,-’132) — (-’Bg,m%,-"f%,ﬂ?ofﬂl,xomz,ﬂ?lxz)-

The g+ 2 lines of O* are mapped by ¢ onto g+ 2 conics Cy, . . . ,Cyr1 of V5 and if N;
is the nucleus of the conic C; then the set {Ny, Ni,..., N1} is a hyperoval in the
nucleus of Vj. (See [16] for a detailed description of the Veronese surface.) Let ;
be the conic plane containing the hyperoval O; = C;U{N;},i=0,...,q+1, and let
Ty+2 be the nucleus of Vy containing Oyy2 = {Ny, N1, ..., Nyy1}. Then the set of
planes {mo, ..., T2} satisfies conditions (f). The hyperovals O;, i =0,...,q + 1,
are regular, while the hyperoval Oy, is projectively equivalent to the dual of O*.
We shall use £(O*) to denote this family of ¢ + 3 planes and refer to it as the

Yoshiara construction using the Veronese map.
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The point-residue of a point (m;, P) of the extended generalised quadrangle result-
ing from this construction is isomorphic to the dual of the Tits quadrangle T5(0;),
i € {0,...,q+2}. In particular, if O* is a dual regular hyperoval, then the resulting
EGQ is the extension of the dual of T5(Q), where O is a regular hyperoval.

In [20], Thas showed that if P is one of the (¢*> — ¢)/2 points of V4 not contained
in a plane of £(O*), then P is not contained in any hyperplane spanned by pairs
of planes of £(O*). Hence £(O*) admits a points of projection and the resulting
EGQ admits a g-fold quotient. O

Example 5.1.2 In [20], Thas constructed another set of ¢ + 3 planes satisfying
conditions () using the Klein correspondence. The Klein correspondence § maps

each line [ of PG(3,q) to a point of PG(5,q). If [ is the line joining the points
(wOa T, T2, '1“3)a (yOa Y1, Y2, y3)a then

1° = (lo, Loz, los, L2, a1, las)

where l;; = z;y; — x;y;. The image of 0 is the set of points on the Klein quadric

ToTs + T1x4 + T2x3 = 0. (See [14] for more details.)

Let K be a (¢ + 1)-arc of PG(3,q), ¢ even and g > 2, that is, I is a set of ¢ + 1
points in PG(3, q) no four of which are in a plane. Then K can be written in the
form
{(1,t, 2", ") | t € GF(q)} U {(0,0,0,1)}

with ¢ = 2" (m,h) = 1,1 <m < h—1. Let K = {P,..., P,}. Through each
point P; of KC there pass exactly two special unisecants I;, m; of IC at P; such that
for each j # ¢, the planes (P;,1;), (Pj, m;) meet K in only P; and P;. The special
unisecants can be labelled in such a way that {lo,...,I,} and {my,..., m,} are the
systems of generators of a hyperbolic quadric. For each i € {0,...,q}, the ¢ + 2
points in PG(5, q)

(PP)° = Py, je{0,..., ¢} \{i},
9 = L,
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form a hyperoval O; of a plane m; of the Klein quadric. Further, {Ly,...,L,} is
a conic Cgyq of some plane 7,y and {My,..., M,} is a conic Cyio of some plane
Tgt+2, and N = mg41 N Mgy is the common nucleus of Cgy1 and Cyio. The set of
planes {m,... T2} satisfies conditions (f). The hyperovals O;, i = 0,...,q, are

projectively equivalent to
O = {(1,t,t*") | t € GF(g)} U {(0,0,1),(0,1,0)},

while the hyperovals Cpi1 U{N}, Cqio U {N} are regular. We shall refer to this as

the Thas construction using the Klein map.

The point-residue of a point (m;, P), i € {0,...,q}, of the EGQ resulting from
this construction is isomorphic to the dual of T3 (O) while the point-residue of a
point (m;, P), i = ¢+ 1 or ¢ + 2, is isomorphic to 75 (), where O is a regular
hyperoval. This EGQ is isomorphic to that constructed from £(QO*) if and only
if O* is regular and K is the twisted cubic. It was shown in [20] that the image
under # of an imaginary chord of K is a point of projection and hence this EGQ

also admits a ¢-fold quotient. O

In the subsequent sections of this chapter we investigate the structure of families
of planes satisfying conditions (). We shall use £ to denote such a family of planes

and we shall say that a point or a line belongs to £ if it lies on a plane of £.

In Section 5.2 we give some combinatorial properties of £ and obtain an upper
and lower bound on the number of hyperplanes generated by pairs of planes of £

containing a given point.

Section 5.3 describes the intersections of £ with subspaces of PG(5,q) as well as
the relation between the subspaces spanned by elements of £ and other subspaces
of PG(5,q). We show also that the dual of £ satisfies conditions (7).

Section 5.4 describes a coordinatisation of £. It gives explicit equations of the
planes of £ and the hyperplanes spanned by pairs of planes. Using this, we are able
to prove necessary and sufficient conditions for a set of o-polynomials to determine

£.

In Section 5.5, we examine the Yoshiara construction in detail using the coordinate

system described in Section 5.4 and present a new family of g + 3 planes satisfying
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conditions () which is the dual of the Yoshiara construction.

In Section 5.6, we examine the Thas construction and show that it is self-dual, and

finally, in Section 5.7, we discuss some of the open problems.

5.2 Combinatorial results

We state first some properties of £ which follow immediately from the definition.

By (a), every pair of planes in £ meet in a point and so span a hyperplane. By (b)
every three planes in £ meet in the empty set and by (c), span PG(5,¢q). Thus of
the ¢® + ¢+ 1 hyperplanes through a fixed plane in £, exactly g+ 2 of them contain
another plane in £. The remaining ¢ — 1 hyperplanes must meet each of the other
planes in £ in a line. Hence a hyperplane in PG(5, ¢) meets £ in either 2 planes

and ¢ + 1 lines of &£, 1 plane and ¢ + 2 lines of £ or ¢ + 3 lines of £. There are
qg+3 .. )
hyperplanes containing 2 planes of £ and (¢* — 1)(¢ + 3) hyperplanes
2

containing 1 plane of £.

+3
Let H¢ be the set of ( e ) hyperplanes spanned by pairs of planes in £. We
2

classify the points of PG(5, q) according to whether they lie on 0, 1 or 2 planes of
€.
qg+3

2
points on O;, ¢ =0,1,...,q+ 2. Every such point lies in 2¢q + 3 hyperplanes of H¢

There are ( ) points of PG(5,q) lying on 2 planes of £. These are the

and every hyperplane of ¢ contains 2¢ + 3 such points.

There are (q+3)(¢* — 1) points of PG(5, q) lying on exactly one plane of £. These
are the points of m;\O;, i = 0,1,...,¢ + 2. Every such point lies on 3(q + 2)/2
hyperplanes of Hg since if P lies on 7;\ O; then P lies in the ¢ + 2 hyperplanes of
He containing m;, as well as on the (¢ + 2)/2 hyperplanes (7, m) of Hg where the
line joining 7; N O; and m, N O; is a secant of O; through P. Every hyperplane
(i, ;) of He contains at most 3(¢> — 1) such points, with equality only if the g+ 1
lines 7, N (m;, m;), k€ {0,1,...,q+ 2} \ {¢, 7}, are skew, since

[(mi Umy) \ (O U O5)| = 2¢° — 2
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and each of the ¢ + 1 lines m N (m;, ;) contributes at most ¢ — 1 points lying on

only one plane. By counting the set of flags
F ={(H,P) | H € Hg, P lies on exactly one plane of £}

we have
3@ -2 2 = jp < ( " ) 3¢ ~1)

Since the two sides are equal we conclude that the ¢+1 lines 7, N (m;, 7;) are indeed
skew and hence every hyperplane of H¢ contains exactly 3(¢*> — 1) points lying on

exactly one plane of £.

There are

6
¢ -1 q+3 2 5 4 99 ¢
_ @4 -D) =P+ - 22T 1
-1 ( 9 ) (q )(q ) q q 2(] 9

points of PG(5, g) not lying on any plane of £ and every hyperplane in H¢ contains

Tl (43 -3¢~ 1) = (@~ D+

such points. The next result gives an upper and lower bound on the number of

hyperplanes in H¢ containing such a point if it lies in a hyperplane of H;.

Theorem 5.2.1 Let P be a point of PG(5, ¢) not lying on any plane of £ and let
kp be the number of hyperplanes of H¢ containing P. If P lies in a hyperplane of
He then

3<kp < qg+3.

Proof: Firstly we prove that if P lies in the hyperplane (m, 7') € Hg, then P lies

in exactly two hyperplanes of H¢ containing 7, one of which is (m, 7').

Let H = (m,n'), m,7' € &, be a hyperplane in H¢ containing P, and for m; €
EN{m,n'},i=1,...,q+ L let i =m N {(m7a"), ;Nm=A; and [; N 7" = A]. Let
O = {A,...,Ags1} and O' = {A},..., A}, ,}. Every point P in H not on any
plane in £ lies on a line joining a point of O to a point on #’. This is because
(n', P) is a 3-space meeting 7 in a line [ through 7 N #’. Since O U {r N 7'} is a

hyperoval, [ must meet O in another point, say A;. Since A; is not on 7', (7', A;)
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is a 3-space and so equals (7', P). Now the points of (7', A;) are just the points

lying on lines joining A; to points of 7, so P must lie on a line joining A; to ='.

Let # N7’ = R and let P lie on a line, say, A,T, T € =’

There are two possible cases: either T lies on O, say, T' = A;, A}, # A} (See Figure
5.1(i)), or T does not lie on O’ (See Figure 5.1(ii)).

Figure 5.1: A point P not on any plane of £.

If T lies on O', then P lies in (m,m) and (n',m) in addition to (m,n’). The
remaining hyperplanes (m,mg), k # 2, containing 7 do not contain P, since they

contain A; but not T'.

If T does not lie on O, then the line RT meets (' in a point A4 . In this case, P
lies in (m,my,) and (7', 1) other than (7, #’). The remaining hyperplanes (m, 7),

k # k,, containing 7 do not contain P since they contain A; but not 7.

Hence we have shown that P lies in at least three hyperplanes of H¢, and if P lies

in (m,7'), P lies in exactly one more hyperplane in Hg containing 7 other than

(m,7").

Now, for each point P not lying on any plane of £, let Gp be a graph on ¢+ 3
vertices, one for each plane in £, such that (m;, 7;) is an edge if and only if (m;, 7;)

contains P. Then, from above, if (m;,7;) is an edge then there is exactly one
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m, # m; such that (m;, 7¢) is an edge. Hence every vertex of Gp has valency either
0 or 2, and Gp has the maximum number ¢ + 3 of edges when Gp is a disjoint
union of cycles with no isolated vertices. This means that P lies in at most ¢ + 3

hyperplanes of Hg. O

Let H be a fixed hyperplane in H¢ and let Py be the set of (¢> — 1)(¢> +q — 1)
points in H that do not lie on any plane of £. As before, let xp denote the number

of hyperplanes in H¢ containing the point P.

1 —-1 3 2 .
Theorem 5.2.2 (a) Y. kp= (@+1)(g—1)(¢" +8¢° +8¢—6)

PcPy 2
(g+1)(¢—1)(¢* + 11¢* + 16¢* — 4 — 8)
(b) 3 (ke —1)(rp—2) = .
PcPy 2
Proof:

(a) We count the set of flags
Fy :{(P,H’) | P € Py, HIEHg, H,#H, PEHIQH}.

Firstly, for each point P in Py there are kp — 1 hyperplanes H' such that P
liesin H' N H, so

Rl = > (kp—1)

PePy

= Z KP—|7DH\
PcPy

= Y kp—(-1)(@+q¢-1)
PePy

On the other hand, there are exactly

(1)

hyperplanes H' in Hg meeting H. If H = (m,7'), then, using the notations
from the proof of Theorem 5.2.1,

H'NH = (m,m;) N H = (l;,1;)

for some m;, m; € £\ {m,n'}. So H'N H contains [;, I; on £, meets m, m’ each

in a line, and meets all other [; in a point. (See Figure 5.2.) Altogether there
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Figure 5.2: H' = (I;,1;).

are 2(¢+1)+2(¢—1)+ (¢ —1) = 5¢ — 1 points in H' N H lying on planes
of £ and so H' N H contains
@+ +q+1)—(5¢—1)= (¢ —1)(¢* +2¢ - 2)

points of Py. Hence

|F1| = ((q;?))—l) (¢ —1)(¢" +2q — 2).

Combining the two equalities, we have

Y kp = ((q;?’)—1)(q—l)(q2+2q—2)+(q2—1)(q2+q—1)

PePy

(g+1)(qg—1)(¢* +8¢> + 8¢ —6)
5 .

We count the set of flags

F2:{(P,H1,H2) ‘ PEHﬂHlﬂH% H]_, HQEH}:\{H} and H1 #HQ}

+3 +3
Firstly, there are (( e ) — 1) choices for H; and (( e ) — 2)
2 2

choices for Hy. Since H N H; N H, is a plane,

() )((5) e
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On the other hand, there are (¢° — 1)/(q — 1) points in H, 2¢q + 3 of which
lie on exactly two planes of £, 3(¢*> — 1) of which lie on exactly one plane of
£ and the remaining lie on no plane of £. A point lying on two planes of £
is contained in 2¢ + 3 hyperplanes of H¢ and a point lying on exactly one
plane of £ is contained in 3(g + 2)/2 hyperplanes of H¢, while a point P not

lying on any plane of £ is contained in kp hyperplanes of Hs. Hence

|Fy] = (2¢+3)(2¢+2)(2¢+1)+

3(¢* - 1) <@ — 1) (@ - 2) + Y (kp —1)(kp —2).

PcePy

Combining the two equalities we have

> (kp—1)(kp—2) = ((q;:)) ) —1) ((q;?’ ) —2) (¢*+q+1)

—(2¢+3)(2¢+2)(2¢g+ 1)
3(g? - 1) (3(q2+ 2) 1) (3(61; 2) 2)

(¢ +1)(g—1)(¢" +11¢* + 16¢° — 49 — 8)
. .

O

Since there are (¢ — 1)(¢> + ¢ — 1) points in H, a point P in H not lying on a

plane of £ lies on an average of Kp hyperplanes, where

1
KRp = —— Rp
‘,PH‘PEPH
@ +8¢+8¢—6
2 +q—-1)
with a variance of o, where
1 ~ \2
o = — Y, (kp—Fp)
|PH|PEPH
]_ 2 — -2
= Kp —3kp+2) + (3 —2Rp)kp + (Rp — 2)
oD@ 2, )+ (3 2Rp)p + (R} — 2)

(¢% + 14¢° + 18¢* — 40¢® — 524 + 20q + 8)
A(* +q—1)?

Hence if P is a point not on any plane of £ and P is contained in a hyperplane of

He, then P lies in about q/2 hyperplanes of H¢, with a variance of about ¢%/4 and
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hence a standard deviation of about ¢/2. This indicates that it is possible that xp

does reach the upper bound of Theorem 5.2.1.

Now, consider the sum of kp over all the points of PG(5,¢) not on a plane of £.
Then, for each such point P, either kp = 0 or 3 < kp < g+ 3 by Theorem 5.2.1.
Counting the flags

F/ = {(P,H)|Pe PG(5,q)\E, He He, PE H},
F, = {(P,H,,H;) | P € PG(5q)\&, H,H; € He, P € H N Ha},

we have

> kP = (q;3)(q2—1)(q2+q—1),

PcPG(5,9)\&

> kp(kp—1) = (q—;g)((q—;3)—1)(q—1)(q2+2q—2).
PcPG(5,9)\E

Using these two equations, the average Kp and variance o in this case are

1 q+3 N 5
kp = g —1)(¢+qg—1
q5+q4—§q2—%q+1< 2 )( . )

(@®+q—1)(a+3)(g+2)(g+1)
2¢* + 4¢3 +4¢>2 —q—2
1
o = > (kp—Kp)

5 1
P©+qt -3¢ —50+1 PEPG(5,9)\€
1 _ _2
= g I Z kp(kp — 1)+ (1 — 2Rp)kp + Rp
R L A R T
(q+3)(g+2)(g+1)(4¢° +8¢° + 3¢* 4 2¢* — 20¢° — 4q + 8)
4(2¢* + 4¢® + 4¢2 — g — 2)? '

)

Hence, if every point of PG(5,¢q) not lying on a plane of £ is contained in a
hyperplane of Hg, then it lies on an average of about ¢/2 hyperplanes with a

variance of about ¢/2.

We had hoped that if we could show that every point not lying on any plane of
€ lies on at least aq + b hyperplanes of He with a > 1/2, then we could show by

contradiction that a point of projection exists by counting the flags
F={(P,H)|PePGb5,q\E HeHs, Pc H}
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and obtaining

q+3 5
|F|=( ) )(q2—1)(q2+q—1)Z(q5+q4—§q2—%+1)(aq+b)-

This inequality would show a contradiction if a > 1/2. However, as the above result
shows, the average number of hyperplanes of H¢ containing a point is about ¢/2,
so that this counting argument does not give us an indication as to the existance

of a point of projection.

In the next section we consider the intersections of £ with subspaces of PG(5, q).

5.3 Intersections of £ with subspaces of PG(5,q)

We show first an elementary property about the set of intersection points of pairs
of planes in &:

q+2 9
Theorem 5.3.1 Let 0 = U Ol Then O is a w

=0

-cap in PG(5,q).

Proof: Since every pair of planes in £ meet in a unique point, and there are

+3
( e ) pair of planes, we have
2

0] = (q+3 ) _ (a+2)(g+3)
2 2

Let [ be any line of PG(5,q). If [ lies on some plane 7; of £, then [ meets O in
either exactly 2 points of O; or none at all.

Suppose then that [ does not lie on any plane of £ and suppose that [ meets O in
2 points lying on 2 distinct planes, say P; € O; on 7;, and P; € O; on mj, i # j.
We show that [ does not contain a third point of O.

Suppose on the contrary that [ meets O in a third point, say R € Oy on m. Let

7, Ny = Sy, and 7, N = Sji (See Figure 5.3).

Since ! does not lie on any plane of £, P; # Sj, and P; # Sjy, for otherwise [ would

lie on 7.
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Figure 5.3: [ does not lie on any plane of £.

If P, # Six and P; # Sji, then 7 meets (m;, 7;) in the line (S, S;r) and the point
R not on (Si, Sjk). Hence m, C (m;, ;) which is again a contradiction. Hence

every line of PG(5, q¢) meets O in at most two points. O
We show next that any dual of £ satisfies conditions (7):

Let &' be a dual of £, that is, £ is a set of ¢ + 3 planes {mg, ..., 7} such that

(a') Every pair of planes m;, 7; in £’ span a hyperplane;

(b’) For each i € {0,...,¢+2}, theset O} = {(n}, 7)) | j €1{0,...,¢+2}\{i}}is

i1y
a dual hyperoval containing 7;, that is, a set of ¢ + 2 hyperplanes containing

m; such that no three have a 3-space in common;

(c') the intersection of the planes in £’ is the empty space.

Theorem 5.3.2 The dual £’ of £ satisfies conditions ().
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Proof: Firstly, condition (a) of (}) follows from condition (a') since

. ' N1 ' . . _ _
dim (m; N 7;) = dim 7; + dim 7} — dim ((7},7})) =2+2—-4=0,

/ /s .
so m; M m; 1s a point.

To prove condition (c) of (f), we show that every 3 planes in £ span PG(5,q).

Suppose that there are 3 planes m;, 7}, 7, in &' spanning a hyperplane. Then

(i, m5) = (m, ™), but by (b’), they are supposed to be distinct. Hence the planes

of & span PG(5,q).

To prove condition (b) of (f), we first show that for any fixed i, m; N7}, j €
{0,...,q+2}\ {i}, are distinct points.

Suppose that m; N7, = m; N m, = P for some point P on m; and j # k. Let
m, € &'\ {m,m},m}. Then by (a), 7}, meets m},7; and 7} each in exactly one
point, so we have either 7}, meets 7;, 7; and 7, in three distinct points or in the

same point P. In the first case, we have

(mhy m) O (Th, 1) = (mp,mO7g) = (mh, P),

(T, M) O (mhy ) = (T, MO = (mh, P),

%

so the three hyperplanes (m;,m;), (m,,m;) and (m,,m;) all contain the 3-space

(m},, P), which contradicts (b’). So we must have the second case. However, since

my, is arbitrary, every plane in £ meets in the point P, which contradicts (c¢’). This

proves that pairs of planes meet in distinct points.

Let m; N w; = By, m N m, = Py, m{ N 7w, = Pip. We show that Py, Py, Py, are

not collinear. Suppose on the contrary that P;;, Py and Pj, lie on a line [ on 7

YR
(See Figure 5.4). From above, P;;, Py, and Py, are distinct, and 7, meets 7 and
m;, each in a distinct point. Then,

<7r;"7rzl'> n <71'; 7l';c> = <7T;"Pik> = <7T;"l>’

(mjm) N (wjomy) = (wj Pan) = (w5, 1)

This means that (7}, m;), (7}, m;) and (7}, m,) contain a 3-space (7}, ), which con-

tradicts condition (b'). This proves condition (b) of (t). O

Corollary 5.3.3 The set of ¢+ 3 plane £ satisfies conditions (a'), (b’) and (¢’). O
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Figure 5.4: P;;, Py, and Py, collinear.

Tk

As a corollary of Theorems 5.3.1 and 5.3.2, we have

Corollary 5.3.4 The hyperplanes (m;, 7;), m;, 7; € £, form a dual cap in PG(5, g).
O

The following result describes how the ¢ + 2 hyperplanes generated by my and 7,

m; € €\ {mo}, intersect a plane 7 disjoint from 7y:

Theorem 5.3.5 Let 7y be a fixed plane in £. Let 7 be a plane in PG(5, q) skew to
o, and let H, = <7Ti,7TO>,i: 1,,q+2 Let £ = {Hiﬂﬂ':li |Z: 1,,q+2}
Then,

(a) At most 3 lines of £ lie on a plane of €.
(b) If exactly 3 lines of £ lie on planes of £ then no other plane in £ meets 7.
(c) The set L contains g + 2 distinct lines.

(d) The set of lines of £ forms a dual hyperoval in 7.
Proof:

(a) Suppose not. Without loss of genarality, let Iy, Iy, I3, l4 be 4 lines of £ lying

on 7y, Ty, w3 and m4 respectively. Then [y, l5, I3, 4 are lines of the plane 7
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Figure 5.5: <P1R3, P2R2, P3R1> = PG(5, (I)

and must therefore pairwise intersect. Since [; belongs to 7;, I; meets another

line /; only in the point where 7; meets 7;. Consider /;:
llﬂlj :Wlﬂﬂ'j € 01 fOI'j: 2,3,4,

which contradicts the fact that O; is a hyperoval. Hence there are at most 3

lines of £ that lie on a plane of £.

Let w1, my and 73 be the three planes such that m; N7 =1;, 1 = 1,2,3. Let
m; be a plane of £, j # 1,2,3. We show that (m,w;) is PG(5,¢) and hence
mNm=0.

Let P, =m;Nm, 1=1,2,3, and let

7T1ﬂ71'2 == R3,
7T1ﬂ7l'3 = Rz,
7T2ﬂ7l'3 = Rl.

(See Figure 5.5.) We show that (PR3, PRy, PsRy) is PG(5,q) and since it
is contained in (m,7;), this shows that (m,7;) = PG(5,q).

The space spanned by the two lines PiR3 and PR, is a 3-space (my, Ps).
Consider then P3R; N (my, Py):
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If P3R; lies in (my, P;) then the 3-space (m, P») contains 73 and 71, which
contradicts the property that every pair of planes in £ spans a hyperplane.

If P;R; meets (my, P») in some point X on 73 then (71, P;) contains the points
X, Ry of m3. This means that 73 meets (71, P2) in a line and so (w3, 71, Ps)
is a hyperplane. But then (w3, 71, P;) contains the three non-collinear points
P,, Ry and R3 of m and hence contains 75, which contradicts the property

that every 3 planes span PG(5,q).
Hence we conclude that P3Ry N (w1, Py) = 0 and (m;, 7) = PG(5,q).

Suppose without loss of generality that [y, I are not distinct, that is,
(o, m) N = (mp, Ma) Nw = 1.

Then
<7T0,7T1> = <7f0,7T2> = <7T0,l>
and (my,l) is a hyperplane containing 7y, 7; and 7y, which contradicts the

property that every 3 planes span PG(5, q).

For convenience, we call a line in £ “real” if it lies on some m; € £ and
“imaginary” otherwise. In (c) we showed that £ is a set of ¢ + 2 distinct
lines of 7. In (a) we showed that three “real” lines cannot be concurrent.
We shall show in the following that no three lines, “real” or otherwise, can

be concurrent.

e An “imaginary” line is not concurrent with two “real” lines:
Let Iy = (m,m) Nm be an “imaginary” line and let I = 7 N 7 and
l3 = m3Nm be two “real” lines. Suppose that l1, ls and I3 are concurrent
in a point R. Then the hyperplane (g, 7;) contains
1. [y and hence the point ms N 73 = R of w3,
2. the point my N w3 of w3, and
3. the point m; N7y of 3.
Since the three points are not collinear, (my, 7;) contains w3 which con-

tradicts the property that every 3 planes span PG(5,q).
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e A “real” line is not concurrent with two “imaginary” lines:
Let Iy = (m,m) N7, ls = mo N and I3 = (w3, me) N, with [; and I3
“imaginary”. Suppose that l;, I and [3 are concurrent in a point R.
Let P, = mo Nm; and let my Ny = Ry, my N 73 = Ry, and me N3 = Ry.
Then the hyperplane (mg, 7;) contains the points R, P, and Rj3 of o,
so R, P, and R3 must be collinear. On the other hand, the hyperplane
(mg, m3) contains the points R, P, and R; of w3, so R, P, and R; must
be collinear. This implies that P,, R; and R; are collinear, which is

impossible since they lie on a hyperoval on .

e No three “imaginary” lines are concurrent:
Let I; = (my,m) N7, 1 = 1,2,3, be “imaginary” lines and suppose that
l1, Iy and l3 are concurrent at a point R. Let P, = my N m; and let

m Ny = R, m N73 = Ry, and my N3 = Ry;. Then,

(o, m3) N (mg, m2) = (mg, l3) N (mg, l2) = (mp, R), and contains Ry,
and

(mo, 1) N {mg, m2) = (mo, 1) N (mg,l2) = (mp, R), and contains Rj.

Hence (7, R) is a 3-space which contains the three non-collinear points
Ry, R3 and P; of my, that is, (mg, R) contains me. This contradicts the
property that every pair of planes spans a hyperplane. O

The next two results describe the intersections of £ with hyperplanes of PG(5, q).
Theorem 5.3.6 gives another proof that the lines m N (m;, m;), k € {0,1,...,¢ +
2} \ {4, }, are mutually skew.

Theorem 5.3.6 Let H be a hyperplane intersecting £ in 2 planes, say, my and ;.
Let L={mNH=11]i=2,...,g+2}. Then L is a set of ¢ + 1 mutually skew

lines.

Proof: Any two lines [;, [ in £ can meet only in the point 7; N7 Since [; already
contains two points of O; on ; (the points m; N my and m; N m), it does not meet
lg. a
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Theorem 5.3.7 Let H be a hyperplane intersecting £ in exactly one plane, say
Tgt2- Then H meets {mg,...,mg11} in ¢ + 2 lines, every one of these lines meeting

exactly one other line in a point, this point being O; N O; for some 4, j.

Proof: Every plane in £ not in H meets H in a line. If [; = m; NH, 1 # q + 2,
then /; lies on m; and meets O; in the point m; N m,12. Since O; is a hyperoval, I;
must meet O; in another point, which is the intersection of 7; with another plane

m; of £ and so belongs to another of the g + 2 lines. O

5.4 Coordinatisation of £

It was shown in [15] that every hyperoval in PG(2, q) can be written in the form
{(F(z),z,1) |z € GF(q)} U{(1,0,0),(0,1,0)}

with F/(0) = 0, F(1) = 1 and such that F' and F; are permutations, where

F(z+s)+ F(s)

Fy(z) = , s€GF(q).

We call such a permutation F' an o-polynomial. We show below that £ can be

coordinatised using o-polynomials:

Let m, my, w3 be three arbitary planes of £. Since we may choose any seven

independent points in PG(5, q) as fundamental points, we choose
T m7"-3 = (1701070: 0’0)7
mNm = (0,1,0,0,0,0),
msNms = (0,0,1,0,0,0).

We show that the remaining fundamental points may be chosen so that the hyper-

ovals Oy, Oy, O3 on 7y, T, w3 respectively may be written as

0, = {4, =(f(x),=,0,1,0,0)}U{(1,0,0,0,0,0),(0,1,0,0,0,0)},
O, = {B;=(0,9(a(z)),a(x),0,1,0)} U {(0,1,0,0,0,0),(0,0,1,0,0,0)},
0; = {C,=(6(z),0,h(B(x)),0,0,1)}U{(1,0,0,0,0,0),(0,0,1,0,0,0)},
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where f, g, h are o-polynomials and «, 8 are permutations of GF(q) such that for
each z € GF(q),
7T(.’L’) = <Aa:a B,, Ca:> €.

So & = {m,me, m3,m(x) | x € GF(q)}.

(Note that by saying that f, g, h are o-polynomials, we are claiming that f(0) =
g(0) = h(0) = 0 and f(1) = g(1) = h(1) = 1. We shall see in the following that

the remaining fundamental points can be chosen so that this is indeed the case.)

We may choose

mNw0) = (0,0,0,1,0,0),
mNw(0) = (0,0,0,0,1,0),
mNw(0) = (0,0,0,0,0,1)

and so we may let f(0) = g(0) = h(0) = «(0) = §(0) = 0.

Finally we may choose the seventh point (1,1,1,1,1,1) to be a point on the line

)Y Y Ty

l : (mnn(1),(1,0,0,0,0,0),(0,0,0,1,0,0),(0,0,0,0,0,1)) N
(r3 N7(1),(0,1,0,0,0,0),(0,0,0,1,0,0),(0,0,0,0,1,0)).

A point on I\ {(0,0,0,1,0,0)} has the form

), MDD 5 B

so we may take §(1) = h(1) = a(1) = g(1) = 1.

, 1)+ A(0,0,0,1,0,0), A € GF(q),

The o-polynomials f, g, h and the permutations «, 3 are related by the following

equation:

Theorem 5.4.1 If £ is coordinatised as above with o-polynomials f, g, A and

permutations «, (3, then for all z,y € GF(q), x # v,

(f(z) + f(y) )(9(e(z)) + g(a(y)) ) (h(B(x)) + h(B(y)))

(z+1)(a(@) + o) (5@ + 6)) =t
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Proof: Since every pair of planes 7(z), 7(y), spans a hyperplane, we have

f(z) T 0 100
0 gla(z)) alz) 01 0
B 0 (@) 00 1|
f(y) (/ 0 100
0 glefy) afy) 010
Bly) 0  h(B(y) 001

Adding row 1 to row 4, row 2 to row 5 and row 3 to row 6, we have

f(z) T 0 100
0 g9(a(z)) azx) 010
B(z) 0 MB@) 00 1|
@)+ f(y) z+y 0 000
0 g(a(z)) +g(aly))  ofz)+aly) 0 00
B(z) + B(y) 0 h(B(z)) +h(B(y)) 0 0 0
and expanding along the last column we have
flz)+ fy) z+y 0
0 gla(z)) +9(aly))  alz)+aly) |=0,
B(x) + B(y) 0 h(B(z)) + h(B(y))
which gives the required equation. O

Using the equation of Theorem 5.4.1, putting z = 1, y = 0, we see that indeed
fy=1

The equations of the planes in £ are

T : To=x4 =x5=0;
T $0:333:.’135:0;
m3 1 =x3 =1x4 =0;

m(z) : xo+ f(z)zs + B(x)zs =0,
1 + 33 + g(o(z))zs = 0,
Ty + a(x)zs + h(B(z))zs = 0.
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Let z, y € GF(q), © # y. The equations for m; N7 (z), 1 = 1,2,3, and 7(z) N 7(y)

are as follows:

mNn(z) = (f(z),2,0,1,0,0) = A,
meNm(z) = (0,g9(a(x)),a(z),0,1,0) = By,
mNa(z) = (6(),0,h(6(x)),0,0,1)=Cy,
m(z)N7(y) =
g(a(z)) + g(a(y)) (f(@) + f(y))(g(a(z)) + g(a(y)) )
<f(”’) cry PO T (@) + BW))
g(a(z)) + g( (y))
Ty + g(a()),
(f(z) + ())( g(a(x)) + g(aly)))
o) ) D B@) + BG)
g(a(2)) +g(a(y)) | (f(z)+ f(y))(g(a(z)) + g(a (y))))
T+y 7 (z+y)(B(z) +B))

Hence we have, in terms of A,, B,, C;,

g(a(r)) + g(a(y)) (f(@) + f(y) )(g(a(z)) + g(a(y)))
P N O E N T

For any 7(z) € £, the points w(z) N7 (y), y € GF(q)\ {z}, together with 7 (z) N,

m(z)Nm(y) =

i = 1,2,3, form a hyperoval on m(z). Hence, if o, is the permutation of GF(q)

with

ga(2)) +9(aly)) . (f(@)+7(y))(g(a(z)) +9(ay)))
T+y (B(z)+Bw) )(z+y)

and 0,(0) = 0, then o, defines a hyperoval on 7(z). We normalise o, as follows to

Op

obtain an o-polynomial o}: Let y, be the element of GF(q) \ {z} such that

g(a(z)) + g(a(ys))

T+ Yo

=1.

We define o7 as the permutation of GF(q) obtained from o, by dividing o, with
the constant (f(z) + f(vz))/(8(z) + B(ya)):

o, 9(a@) +gle) |, (f(@)+7))(g9(a(@) +9(ay))) Bz)+H(y.)
v T+y (B(x) +B(y) ) (z+y) f@)+ flye)

Then o* defines a hyperoval, with ¢%(0) = 0, 0%(1) = 1, so o is an o-polynomial.

g
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Dually, the equations for (m;, w(x)), ¢ = 1,2,3, and (n(x),7(y)), z,y € GF(q),
x # vy, are

(h(B(2)) + h(B(y)) )
(B(z) +6(y))

+

Let L, = (m, w(x)), M, = (m3,n(z)) and N, = (w1, n(z)). Then, in terms of L,,

(g(a(2)) + g(aly)) ) (R(B(2)) + H(B(y)))

a(z) +aly) )(B(x) + B(y))

g(a(z)) + 9(a(y)))
(a(@)+aly))

The hyperplanes (7 (z),7(y)), y € GF(q)\{z}, together with (7 (z),m;), i =1,2,3,

form a dual hyperoval through 7 (z), so if 7, is the permutation of GF(q) with

. (g(af2)) +9(ay))) . (R(B(z)) +h(B(y)))(g9(a(2)) + g(aly)))

T (o) +aly)) (B(z) + B(y) )(a(z) +aly))

and 7,(0) = 0, then 7, defines a dual hyperoval through 7(z). As in the dual case,

L, +

we normalise 7, by dividing it through with the constant

h(B(z)) + h(6(2))
Bz) + 6(z)

where z, is the element of GF(q) \ {z} such that

g(a(z)) + g(a(zz))
a(z) + a(zy)

=1.

103



Then 77, with

is an o-polynomial.

If we let

f'o= fop,
g = g0¢q,
R = hofBoa™l

then, writing «' for §(z) and z" for a(z),

L:D = [17 O’ 07 f’(ml)’()’ m’]’
M:D = [07 1’07 x’ gl(x)70]7
N, = [0,0,1,0,2", h'(z")].

Since for each m;, ¢ = 1,2,3, the hyperplanes (m;, 7(x)), © € GF(q), form a dual

hyperoval, f’, ¢’ and h' are o-polynomials.

As a corollary to all the above observations, we have

Theorem 5.4.2 Let f, g, f', ¢’ be o-polynomials and let « = g7 ' o ¢’ and 8 =
f'~to f. Then there is a set of ¢ + 3 planes in PG(5, q) satisfying conditions (1) if

and only if there exist o-polynomials h, o, 75 such that

(a) For all z € GF(q), @ 52)
hB@) = 32 glale))

and for all z,y € GF(q), x # v,

(e +y)(ale) + o)) (B) + BW))
hB@) +hBW) = " Fo) 17 0)) (g(e@) + 90®) )

(b) The funtion A’ = ho Boa ! is an o-polynomial; and
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(c) For each z € GF(q),
« . gla(@)) +glaly) |

rT+y
(@) + f))(g(a(@) + g(a(y)) Blx)+Bly.)
(B) + BW) ) (z+y) F@) + Fys)’
. . (gla(z))+g(aly)))
T T (el +aly)
(h(B(x)) + h(Bw)) ) (9(a(@) + g(a(y))  Blx)+ Alz)
(8(z) + BW) ) (a(@) + aly) ) h(B()) + h(B(z))

for all y € GF(q) \ {z}, where y,, z, are elements of GF(q) \ {«} such that
o(a(2) + glaw) _ | sla(@) +oal=) _

T+ Y, © o az) +alz)

O

There is a natural correspondence 1 between the points lying on two planes in £

and the hyperplanes spanned by pairs of planes of &:
point P = m, Ny, AN hyperplane (m,, my).

It is natural to ask if this correspondence extends to a correlation ¥ of the whole
space. Suppose that it does. Then ¥ is represented by a 6 x 6 matrix S over GF(q),
such that if P is a point (po,p1, P2, D3, Pa, Ps) then the corresponding hyperplane
PY is given by

(po, P1, P2, P3, Pa, P5) S.

Since we have the following correspondence,
=1[0,0,0,0,1,0],

)
7T1,7T2> = [07070: 0707 1]7
)=10,0,0,1,0,0],

T Ny = 1 0,0,0,0,0 1,73

m N =(0,1,0,0,0,0

m Nx(0) = (0,0,0,1,0,0 (0)) = [0,0,1,0,0,0],
m,m(0)) = [1,0,0,0,0,0],
(

m,m(0)) =[0,1,0,0,0,0],

T, T

o Nmw(0) =

( )
( )
m Ny = (0,0,1,0,0,0) 2>
( ) <&
(0,0,0,0,1,0) +%»
( )

(
(
(mq, T3
(
(

w3 N7w(0) = (

0,0,0,0,0,1
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the matrix S must be

0
0
0
0

o O O O

Po
0 m

for some po, p1, p2 € GF(q)*.

m Nw(z) = (f(z),=,0,1,0,0)
m N(z) = (0, g(a(x)), a(x),0,1,0)
7r3ﬂ71'( ) (ﬂ( )’O’h(ﬁ( )) anal)

x # 0, we have

(f(x),z,0,1,0,0)S

By considering

0 0 po O
0 0 0 p

0 po 0 0

p2 0 0 0

0 0 0 O

0 0 0 O

s (m,7(2)) = 10,0,1,0,a(z), A(B(x))],
& my,w(2)) = [1,0,0, f(2),0, B(z)],
s (my,m(2)) = 10,1,0,z, g(a(z)), 0],

[Oa Oa P2, Oa POf(iU), plx]’

( (OZ(.T)),OZ(.T),O,l,O)S = [pOaanap2a(w)a0aplg(a($))]a
(8(z),0,h(B(2)),0,0,1)S = [0, p1,0, pah(B(z)), poB(), 0],
and hence for all z € GF(q)*,
f@) _p2 h(B(z) _p glafz))  po
a(z)  p oz p2 Blx) o
Putting x = 1, we get
Q) _p_y
a(l) po
B
1 P2 ’
g(a(1)) _ po
5(1) P1
We may take py = 1. Then,
000010
000O0TO0T1
g_ 000100
001000
100000
010000
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and for all x € GF(q),

f(z) = a(z)
g(a(z)) = B(z)
h(B(z)) = =

It is easily verified that for all z,y € GF(q),

w(z) N(y) + (r(2), m(y)),

(r(z)N7(y)¥ = ll’ a(z) +o(y) Blz) + L) a(x)H:M’

r+y = z+y T+y
B(z) + B(y) a(r) +aly)  Bz)+ Bly)
ale) M LEEW | gy 222000 BP0 g
:l z+y  Bl)+B(y) am)— =Y,
afz) +aly) 7 afz) +aly)’ a(z) +aly)
B@)+8(y) | gy SBEFBE) Lo\ Tty
)o@ +aly) TP 7o) o) TP o) + o) ]

Similarly, ((w(z), 7(y)))* = 7(z) N 7(y).
Hence we have
Theorem 5.4.3 If the correspondence 1,
point 7, N, PN hyperplane (m,, m,),

extends to a correlation ¥ of PG(5, q), then ¥ is a polarity,

f(z) = a(z)
g(a(z)) = B(z)
h(B(z)) = =

and for any point P(po, p1,p2, P3, P, Ps),

P‘Il = [p4ap5ap3ap2ap01p1]'
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In the next two examples, we deduce some properties of £ from the properties of

the o-polynomials used in the coordinatisation of &£.

Example 5.4.4 We show that if f(z) = g(z) = f'(z) = ¢'(z) = F(z) in Theorem
5.4.2 for some o-polynomial F'(z), then all the hyperovals O; as well as the dual

hyperovals through each plane of £ are regular.

Proof: If f(z) = g(z) = f'(z) = ¢'(z) = F(z) then a(z) = g '¢'(z) = z and
B(z) = f~'f(x) = x. By Theorem 5.4.1, putting y = 0, we have

By Theorem 5.4.1 again, we must have

(o4 v)(ale) + aly) )(B) + A1)
hB@) + B = 5y + 7)) gla(e)) + 9(aly))
that is,
R (z +1)°

F(a:)z + F(y)2 = (F(.T}) T F(y))2 forall z,y # 0, x # y.

This is trivially true for ¢ = 2, so suppose that ¢ = 2", A > 1. Then the above

equation becomes

(2*F(y)” + v*F(2)?) (F(z) + F(y))* = (z + y)*F(2)*F (y)?,
Expanding this equation we have

2 F(y)* + y°F(2)* + 2’y F(2)*F (y)* + 2y’ F (2)* F(y)* = 0,
that is,

22F(y)? (2F(y)* + yF(z)?) + y*F(2)? (yF (2)* + 2F (y)*) = 0.
Factoring, we have
(zF(v)* + yF(2)’) (zF(y) + yF(2))* =0,

that is, for all z, y € GF(q)*, * # vy, either z/y = F(x)?/F(y)? or z/y =
F(x)/F(y).

Let y = 1. Then, for all z € GF(q)*, * # 1, either F(z) = \/z or F(z) = z.
Now, since F' is an o-polynomial, we have F(0) = 0, F(1) = 1. If there is another
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element, say z,, in GF(q)*, z, # 1, such that F(x,) = x,, then the three points on
m, (F(0),0,0,1,0,0), (F(1),1,0,1,0,0) and (F(z,), o, 0,1,0,0) would lie on the
line 9 = x4 = x5 = ¢ + £1 = 0, which contradicts the assumption that F' is an
o-polynomial. Hence for all z # 1, we must have F(z) = \/z, that is, F(z) = %"~

In this case,

h(z) = K(z) = T

- h—1 h—1
2" g2

" SRCEN Y NI

oz 4y T+y
that is, o, (y) = 2,

:\/5+\/§Hx2+y2\/5+\/§:\/9—:+\/§

T+vy Tty T+y

T

that is, 7,(y) = i, so that all the hyperovals O; and dual hyperovals are regular.
O

Example 5.4.5 It can also be shown, in a similar way, that if f(z) = f'(z) = F(z)
for some o-polynomial F(z), and g(z) = ¢'(z) = z2, that is, the hyperoval on m,
and the dual hyperoval through 73 are regular, then all the hyperovals O; and the

dual hyperovals through each plane of £ are regular:

Since f = f', g = ¢’, we have

a(z) = B(z) =z, h(z) =

and by Theorem 5.4.1,

T Y (z +y)? _ Ty
F(z) F(y) (F(z)+F)(«>+y?) F(z)+F(y)’

that is,
rF(y)+yF(x) x+y

F(z)F(y)  F(z)+F(y)
Cross multiplying, we have

zF(y)* =yF(z)’,
that is, for all z, y € GF(q),  # v,

F(z)?
F(y)?’
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Hence, as before, F(z) = h(z) = h'(z) = 22" " if ¢ = 2", and

m2+y2
Tty
Te : THY — z+y soT(y)=y

oh—1

= Tty soo(y) =y"

Oz

oh—1

Hence all the hyperovals O; and the dual hyperovals are regular. O

In the next section we show how the Yoshiara construction using the Veronese map
can be described using the coordinatisation presented in this section. Using this
coordinatisation we are able to show that the dual of the Yoshiara construction

yields a new family of planes satisfying conditions (7).

5.5 A new family of £

In this section we present a new family of ¢+3 planes satisfying conditions (}) which
is the dual of the Yoshiara construction in Example 5.1.1. Firstly, we describe the
Yoshiara construction £(O*) using the coordinatisation presented in the previous

section.
Let O* be the dual hyperoval
{[1,¢,6(t)] |t € GF(q)} U {[0,0,1],[0,1,0]}.
The Veronese map ¢ is defined as
¢ : (zo,z1,20) — (23,22, 22, ToT1, T1T2, ToT2).
The points on the lines of O* are mapped to points in PG(5, q) as follows:
(a) The points on the line [0, 0, 1] are mapped under ¢ to points on the conic C;
on my:

(0,1,0) = (0,1,0,0,0,0),
(1,0,0) = (1,0,0,0,0,0),
1
(1,2,0) (1,x2,0,x,0,0):(E,x,0,1,0,0>,a:;éo.

The nucleus N; of C; is (0,0,0,1,0,0). The o-polynomial f for O; = C;U{N;}
is hence f(z) = 1.

Z
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(b) The points on the line [1,0, 0] are mapped under ¢ to points on the conic C,
on my:
(0,0,1) ~ (0,0,1,0,0,0),
(0,1,0) ~ (0,1,0,0,0,0),
0,1,2) — wﬂw{&@m:<Q%wﬁJﬂg,x#Q
The nucleus N, of Cs is (0,0, 0,0, 1,0). The o-polynomial g for Oy = CoU{ N>}
1

is hence g(z) = -.

T

(c) Similarly, the points on the line [0, 1, 0] are mapped under ¢ to points on the
conic C3 on m3:
(0,0,1) — (0,0,1,0,0,0),
(1,0,0) — (1,0,0,0,0,0),
(r,0,1) — (2%,0,1,0,0,z) = (:UO 001),:1:#0.
0

The nucleus N3 of C3 is (0,
is hence h(z) = 1.

0,0,0,0,1). The o-polynomial h for O3 = C3U{ N3}

For t € GF(q)*, the points on the line [1,¢,§(¢)] that are mapped under ¢ to points

of 71, mo, w3 are as follows:

A, = (f(z),2,0,1,0,0),
B, = (0,9(a(2)),a(2),0,1,0),
Cr = (B(2),0,Rr(5(x)),0,0,1).
It follows that the line [1,¢,6(t)], t € GF(q)*, is mapped under ¢ to the plane 7(3),

and the permutations «, ( are

1 . ~
a@):xé(%)’ z € GF(q)*, a(0)=0,
8@)=5 (), 2 € GFla), O)=0
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Hence the set of ¢ + 3 planes in £(O*) is {m, m, w3, m(x) | x € GF(q)}.
Recall also that the o-polynomial o, for the (regular) hyperoval O(z) on 7 (z),
x # 0, is given by

. 9(a@)) +9(aly)) | (f(2)+F(y))(g(a(z)) + g(a(y)))
o Tty (B(z) +By))(z+y) ’

that is,
1 1 1,1 1 1
20()+10()  (E+3) (2960) +99G))
Tty (62 +6() (= +v)
Lastly, 7(0) is the nucleus of the Veronese surface with the hyperoval O(0) given

Op

by the o-polynomial oy,

that is, oo(z) = 67*(x). Hence O(0) is projectively equivalent to O*, as already
noted in Example 5.1.1.
Now, for the smallest case ¢ = 2 the correspondence 1 between the points lying

on two planes in £(O*) and the hyperplanes spanned by pairs of planes of £(O*)
described in Theorem 5.4.3 extends to a null polarity of PG(5,2), represented by

the matrix
000010
000O0O0OT1
000100
S =
001000
1 00000
010000

However, for ¢ > 2, since f # «, by Theorem 5.4.3, the correspondence 9 does not
extend to a correlation of PG(5,q). In fact, as mentioned before, we shall show

below that the Yoshiara construction £(O*) is not self-dual in general.
Before that we quote a few results on hyperovals in PG(2,q), g even, from [15].

As mentioned in Section 5.4, every hyperoval in PG(2,q), g even, can be written

in the form

{(F(z),2,1) |z € GF(q)} U{(1,0,0),(0,1,0)},
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where F' is an o-polynomial. We adopt the notation in [15] and denote such a
hyperoval D(F'). In particular, if F(z) = z" for some integer r, we write D(F') =
D(r), and if D(r) and D(m) are projectively equivalent we write D(r) ~ D(m).
Similarly, we write D'(F') and D'(r) for dual hyperovals.

Result 5.5.1 In PG(2,q), q even, ¢ > 2, D(r) is a hyperoval if and only if
(a) (rg—-1)=1,

(b) (r—1,g-1)=1,

(¢) [(x+1)" +1]/z is a permutation of GF(q). O

From Table 8.3 of [15], there are five known infinite classes of hyperovals in
PG(2,q), g = 2", of the form D(k):

(a) D(2),

(b) D(2"), (n,h) =1,

(c) D(6), h odd,

(d) D(30 +4), o = 20+1/2 h odd,

(e) D(o + A), o = 2(-*1)/2 | 0dd, and

,\:{ m  ifh=4m —1,
23mFLif b = 4m + 1.
Result 5.5.2 If D(r) is a hyperoval in PG(2, q), g even, then
D(r) ~ D(r1) ~ D(rs) ~ D(rs),

where

(a) rrpy=1(mod¢g—1)and 1 <r; < ¢g—1;

(b) (r—1)(rs—1)=1(modg—1)and 1 <7 <q—1,

(c) r+r3=gq. O
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Now let O* = D'(k) be a dual hyperoval in PG(2,q), g even. We consider the
Yoshiara construction £(O*) = £(k) using the Veronese map and the dual hyper-
oval D'(k)

{[0,1,0],[0,0, 1]} U {[L,%,#"] | t € GF(q)} .

From above,
E(k) = {m1,ma, m3, () | z € GF(q)},

where the o-polynomials f, g, h for the hyperovals
Oi={mnNm;|j#i}U{mnNn(z) |z € GF(q)},

1 =1, 2, 3 respectively, are

and the o-polynomials o, for the hyperovals

O(z) = {n(z) N7 [ e Ek) \ {m(z)}}

.x’}—*l—i_yk{l (_ i)(’“ —)

are given by

Oy -
T+y (Lk )
In particular, the hyperoval O(0) is given by
1 1
0o * — — —
T T’

that is, oo(z) = x¥. When there is no danger of ambiguity we shall call these

hyperovals the hyperovals associated with £(k).

Recall from above that the permutations o and [ are

and their inverses are given by

a”
pHe) =
As for the o-polynomials for the dual hyperovals associated with £(k), we have
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(a) On 7y, the dual hyperoval

Ol2 = {<7T2,7T1>, <72,7T3>’ <7T2,7T(33)> | S GF(Q)}

has o-polynomial

(b) On w3, the dual hyperoval
Oy = {(m3, m), (w3, 72), (73, w(2)) | © € GF(q)}
has o-polynomial

¢'(z) = ga(z) = g(z*!) = z@ DG,

(c) On my, the dual hyperoval

011 = {(7r1,7r2>, <7T1,71'3>, <7T1,7T(:13)> | S GF(Q)}

has o-polynomial

1 k(g—2) k

W(2) = hBa\(z) = h (25°7) = h (:1: = ) _ o

(d) On 7(z), the o-polynomial for the dual hyperoval

O'(z) = {(n(z), ) | w € E(k) \ {m(z)}}

is given by
Tz = %1 k—1 = 1 1 ’
k1 4y (a:_k + y_k) (k=1 + yh-1)
that is,

Te - W'—)fﬂy,

Note that the multiplicative inverses of k and k — 1 exist in GF(q)* because by
Result 5.5.1, (k,¢g—1)=1and (k—1,¢—1) = 1.
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Let k; = 1/k. Then, by Result 5.5.2(a), the dual hyperoval D'(k;) is projectively
equivalent to D'(k), so that the dual hyperoval O, = D'(k;) defined by f' is
equivalent to D'(k).

Now, for all  # 0,

_ xq(k71)72(k71)

E=1)=2(:71)  gince 29 = ¢

= ;U(
= g D .21 gince g7 =1

= mqik,

so the hyperoval O} = D’'(q — k) defined by ¢' is projectively equivalent to D’(k)
by Result 5.5.2(c).

Let ks = k/(k — 1). Then, since
(k —1)(ka—1)=(k—1) (% — 1) = 1(mod ¢ — 1),
by Result 5.5.2(b), the hyperoval O] = D'(ks) defined by h' is projectively equi-

valent to D'(k).

Lastly, let k3 = (¢ — 2)/(k — 1). Then, since

-2
k(g = 2)(k—1) = =7 (@ 2)(k—1) =1(mod ¢ - 1)
by Result 5.5.2(a), the hyperoval O'(z) = D'(k;) defined by 7, is projectively

equivalent to O} and hence equivalent to D'(k).

Let £'(k) denote the dual of £(k), so that the hyperovals associated with £'(k) are
given by f', ¢, b’ and 7., while the dual hyperovals associated with £'(k) are given
by f, g, h and o,. By Theorem 5.3.2 and the above observations, we have

Theorem 5.5.3 The set of ¢ + 3 planes £'(k) satisfies conditions () and all the
g + 3 hyperovals associated with it are projectively equivalent to D(k). a

Hence we have

Corollary 5.5.4 In PG(2,q), ¢ > 8, if D(k) is not a regular hyperoval, then £'(k)
is a set of ¢+ 3 planes satisfying conditions (1) which is not constructed from either

the Veronese map or the Klein map.
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Proof: From Example 5.1.1, if £'(k) is constructed from the Veronese map, then at
least g+ 2 of the hyperovals associated with £'(k) must be regular. From Example
5.1.2, if £'(k) is constructed from the Klein map, then at least two of the hyperovals
associated with &'(k) must be regular. However, since D(k) is not regular, none
of the hyperovals associated with £'(k) is regular. Hence &£'(k) is not constructed

from the Veronese map or the Klein map. O

Therefore we have shown that if D(k) is not a regular hyperoval, the dual £'(k) of
the Yoshiara construction £ (k) is a new family of ¢+ 3 planes satisfying conditions

(t). As a corollary of Theorem 5.5.3, we have also

Corollary 5.5.5 The EGQ resulting from £’(k) is an extension of the dual of the
Tits quadrangle Ty (O), where O = D(k). a

Corollary 5.5.6 The set of ¢+ 3 planes £(O*) constructed by Yoshiara using the

Veronese map is not self-dual in general. |

Both the Yoshiara and the Thas constructions (Examples 5.1.1 and 5.1.2) admit
a point of projection P,. We show here that the new family of ¢ + 3 planes &'(k)
also admits such a point by showing that there is a hyperplane not containing any
of the points of the hyperovals associated with £(k). Hence in the dual, there is a
point not contained in any of the hyperplanes spanned by pairs of planes of £'(k).

We require a few more results from [15] and [16] on quadrics and the Veronese

surface V.

Result 5.5.7 A quadric Q(F) of PG(2,q) is a set of points (xg, 21, z5) satisfying

the homogeneous quadratic F' over GF(q), where
F(z _ 2 2 2
0,21, .’L'2) = QgoTy + a1y + Q2275 + Qo911 “+ a192129 + QAp2X9T2.

The quadrics of PG(2, q) belong to 4 orbits under the projective group PGL(3,q).
They are

(a) a repeated line, with canonical form F = z3;
(b) a pair of distinct lines, with canonical form F = zyx;
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(c) a single point, with canonical form F = 22 + ax,x; + bz? irreducible;
(d) a conic with g + 1 points, with canonical form F = z3 + z,2». O
Result 5.5.8 The quadrics of PG(2, q) are mapped under ¢ onto all hyperplane

sections of the Veronese surface Vs in PG(5,q). Specifically, the quadric Q(F) is
mapped to the intersection of the hyperplane

agoTo + a11%1 + G22T2 + a1L3 + a12Z4 + G225 = 0
with V3. O
Using these results, we show that a singular quadric with only one rational point

P on PG(2,q) is mapped under ¢ to a hyperplane section of V; which contains a
point of the hyperovals associated with £(k) only if P lies on D'(k) in PG(2,q).

Lemma 5.5.9 Let Q(F) be a singular quadric with only one rational point P =
(po, p1,p2) on PG(2,q). If P does not lie on D'(k) then Q(F) is mapped to a

hyperplane section of V4 which does not contain any point of O, where

6= ( UOo@ | a-) \{0(0)},

zEGF(q)* i=1

that is, O consists of all the points of the hyperovals associated with & (k) not lying
on 7(0).

Proof: Let F(.’IZ‘Q, Xy, CEg) = aoowg + allx% + a2za:§ “+ ap1ToT1 + a12X1T2 + Qg2 ToLa.
Suppose that the image of Q(F') under ¢ contains a point
R = (ro,r1,72,73,74,75)
in O. Then,
agoTo + a1171 + Q2272 + G173 + G1274 + ag2rs = 0.

Since R is a point of a hyperoval on £(k) \ {n(0)}, R belongs to V4 and has a
preimage ¢ *(R) = (Ry, Ry, Ry) lying on D'(k) in PG(2,q). So

(Rg,R%,Rg,RoRl,R1R2,R0R2) = (7“0,7°1,T2,7‘3,T4,7"5)
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and F(Ry, R1, Ry) = 0. However, Q(F) has only one rational point P in PG(2,q),
so P = ¢ }(R), which contradicts the assumption that P does not lie on D(k). So
the intersection of the image of Q(F') with V5 does not contain a point of O. 0O

We show next that such a hyperplane section does not contain a point of the

hyperoval O(0) on 7(0).

Let (7, s,1) be a point of PG(2, ¢) not on any of the lines of D'(k). Then we have
r#0, s#0, r+ sz +z*#0 for all z € GF(q). (%)

In order to establish the equation of a singular quadric on (r, s, 1) having only that

one rational point, we perform the following transformations:

Let 2 + Az + p be an irreducible quadratic over GF(g). Then the quadric Q(F),
with

F(xg,x1,22) = xﬁ + Aoz + pas

has only one rational point (0,0,1) on PG(2,q) which lie on a line of D'(k). The

matrix
1 20
Arp=10 p 0
0 00
is associated with Q(F') in that
Zo
(xo, 21,22)Ar | z1 | = F(o, 1, 22).
T2

Now, to find the equation of a singular quadric of the same type on (r,s,1) we use

the involution S,
1 00

S=1010
r s 1
where (0,0,1)S = (r,s,1). Suppose the quadric Q(G) is a singular quadric with

only one rational point (r, s, 1), then Q(G) has a matrix Ag associated with it such
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that

To
(o, z1,29)Ac | 21 | = G(zo, 21, 2).
T2
So
r
(r,s,1)Ag | s | =G(r,s,1) =0,
1
that is,
0
(0,0,1)SAcST | 0 | =0.
1
Hence we have
Aec = SApST
100 1 20 10 »r
= 0 10 0 0 01 s
r s 1 0 00 0 01
1 A 0 10 r

= 0 1 0 01 s
r Ar+us 0 0 01
1 A r+ As

=10 © ps ;
r AT+ us 1%+ Ars + ps?

and G(zo, T1, T2) = T2+ px? + (12 + Ars + ps®) o2 + Axoxy + A\rz1 32 + Aswoxa. It is
straightforward to verify that Q(G) is indeed a singular quadric having only one
rational point (r,s,1). Under ¢, Q(G) is mapped to the intersection of V3 with
the hyperplane #:

To + pry + (r2 + Ars + usz) Ty + AT3 + A\rzy + Aszs = 0.

Since (r, s,t) does not lie on any line of D’'(k), by Lemma 5.5.9 H does not contain
any of the image of the points on D'(k). It remains to be shown that H does not
contain any point of the hyperoval O(0) on 7(0):

0(0) = {(0,0,0,1,0,0),(0,0,0,0,0,1)}U {(0,0,0,2,1,2%) | = € GF(q)} .
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Now, H meets 7(0) in the line z3 + ray + sxs = 0. Since by (%), r #0, s # 0, H
does not contain the points (0, 0,0, 1,0,0), (0,0,0,0,1,0) and (0,0,0,0,0,1). As
for the remaining points, H contains (0, 0,0, z, 1, :c%) if and only if 2+7+szk =0.
Suppose that H does contain a point (0,0, 0,%,, 1, t;) of O(0) for some t, € GF(q),
then

to+ 17+ sté = 0.

1
Let t = t%. Then t, = t* and
t"+r+st=0,
which contradicts (x). Hence # does not contain any point of the hyperplane on
7(0).

This proves that there is a hyperplane in PG(5, ¢) which does not contain any
point of the hyperovals associated with £(k). We therefore conclude that a point

of projection exists for £'(k).
Corollary 5.5.10 The EGQ constructed from £'(k) admits a g-fold quotient. O

In the next section we consider the Thas construction using the Klein map in terms
of the coordinatisation described in Section 5.4, and show that, in contrast to the

Yoshiara construction, the Thas construction is isomorphic to its dual.

5.6 Self-duality of the Thas construction

We examine the Thas construction (Example 5.1.2) and its dual in this section.
To begin with, we present the description of the construction given by Yoshiara in
[23]:

Let K be a (¢ + 1)-arc in PG(3,q), q even, g > 2. Then K can be written in the

form
{(1,t,¢", ") [t € GF(q)} u{(0,0,0,1)}

with ¢ = 2%, (m,h) = 1, 1 < m < h— 1. We use P, to denote the point
(1,¢,¢2",#2"*1) and P, the point (0,0,0,1). Let l;, m; denote the special uni-
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secants through P; such that the sets of lines
L = {li|teGF(q)U{oo}},
M = {my[t e GF(q) U{oo}}

are the systems of generators of a hyperbolic quadric. Then, according to [23], the

lines I, my, t € GF(q) U {cc}, are of the forms

L= {(@,y,2",yt"") |2,y € GF(q)},
my = {(z,xt,y,yt | z,y € GF(q)},

lo = {(0,0,2,y) |2,y € GF(q)},
me = {(0,2,0,y) |2,y € GF(q)}-

The Klein map 6 is given by

1 = (lo1, Loz, los, li2, 31, los)

where l;; = z;y; — z;¥:, and (2o, Z1, %2, 23), (Yo, Y1, Y2, y3) are two distinct points

on [. The Thas construction is as follows:

For each i € GF(q) U {00}, the g + 2 lines corresponding to P,
{PiP; | j € GF(q) U{oo},j # i} U{li, mi},

are mapped under 6 to a hyperoval on a plane II; in PG(5,q). The two sets of
g+ 1 lines £ and M are mapped to points on hyperovals on the planes II(£) and
II(M) respectively. The details are as follows:

(a) Some of the points on II; corresponding to Py, t € GF(q), are:

(PP) = (0,0,1,0tt2’")
= (1,0,¢",¢7,0,62"),
mé = (0,1,t,t,1%0).

(b) Some of the points on I, corresponding to P,, are:

(P Pt)o = (0:0a1707t7t2m)7
. = (0,0,0,0,0,1),
= (0,0,0,0,1,0).

[
%}
[
My
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(c) Some of the points on II(L) corresponding to £ are:

les = (0,0,0,0,0,1),
9 = (1,0, ,¢",0,2").
(d) Some of the points on IT(M) corresponding to M are:
mg, = (0,0,0,0,1,0),
0
t

mé = (0,1,t,t,t%0).

Now, in order to describe
{II, | t € GF(q) U {oo}} U{II(L), II(M)}

in terms of our coordinate system and the o-polynomials of Theorem 5.4.2, we

apply a simple transformation, a projectivity u given by the matrix M,

= o O O O O
o = O O O O
o O = O O O
o O = = O O

o O O O = O
O O O O o =

so that (zg,z1, T2, 3, T4, 5)* = (x5, T4, T3, T2 + T3, 21, Tg). This maps the planes

M, II(M) and II(L) to 7, 7, w3 of our system:
(a) On T4 = my:

(PyP,)? =(0,0,1,0,,t*") % (#*",t,0,1,0,0),

1 =(0,0,0,0,0,1) % (1,0,0,0,0,0),
m?, = (0,0,0,0,1,0) +* (0,1,0,0,0,0),

so f(z) = z*".
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(b) OI] I—I(_/‘\/l)'u = T9:
m? = (0,1,t,¢,4%,0) 5 (0,£%,¢,0,1,0),
mé, =(0,0,0,0,1,0) % (0,1,0,0,0,0),

so g(z) = 2.

(C) OIl H(L)“ = T3:
1 =(1,0,£2" " 0,2 5 (@™7)0,£27,0,0,1),
1%, =(0,0,0,0,0,1) ~* (1,0,0,0,0,0),

so h(z) = 22",

The points on II; that are mapped under x to points on 7y, 7, 73 are
(P.Px)? =(0,0,1,0,¢,#") % (#*",¢,0,1,0,0) = A,
m{ = (0,1,¢,¢,¢>,0) = (0,t*,¢,0,1,0) = By,
0= (1,0,8",¢",0,62"") s #,0,42",0,0,1) = C,.
Since we defined 7(z) = (A, By, Cy), we have II = 7(t), with the permutations
a, B as
alz) = =,
B(z) = .
The hyperoval O(z) on 7(z), x € GF(q), is given by

22 + 42 (332'” + y2m) (22 + 12)
: )
ety T @y ) (@t y)

that is,

Op ' T + y — — (x + y)(2m71)(2h72).

(& +ypm1
Thus, for y # 0,

m__ h__
oaly) = y@"-UE-2)

y2h(2m—1)—2(2m—1)

= y~@" Y gince yzh =y
= y "y gince 'l =1

2h_2m
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Hence, by Result 5.5.2(c), O(z) is projectively equivalent to D(2™).

In accordance with Example 5.1.2, we see that the hyperovals on 7, 73 corres-
ponding to £ and M are indeed regular, while the remaining hyperovals on m; and

m(x), z € GF(q), given by f and o, are isomorphic to D(2™).

The null polarity p defined by the Klein quadric Q is given by the matrix

0 00O0O0T1

0 00O0T1P0

0001O00O0
R =

001000

010000

100000

We show that this polarity exchanges m, w3 while fixing every one of my, 7(t),

t € GF(q). The equations for 7, mo, 73 and m(t) are:

T : Ty =x4 =z5 = 0;
o 33021'3:935:0;
w3 : 1 =x3 =24 = 0;

7l'(t) DTy + t2m.’L’3 + t2m+1335 = O,
T, +txs + t2£134 = 0,

To +txg + tzmx5 = 0.

Now,

m = {(0,1,0,0,0,0),(0,0,1,0,0,0),(0,0,0,0,1,0)),
7% = [0,0,0,0,1,0/N[0,0,0,1,0,0]N[0,1,0,0,0,0] = s,
m = ((1,0,0,0,0,0),(0,0,1,0,0,0),(0,0,0,0,0,1)),
7 = [0,0,0,0,0,1]N0,0,0,1,0,0]N[L,0,0,0,0,0] = ,.

Hence p exchanges 7y and 73.

As for m; and 7 (t), t € GF(q),

m = ((1,0,0,0,0,0),(0,1,0,0,0,0),(0,0,0,1,0,0)),
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™ = 10,0,0,0,0,1]110,0,0,0,1,0]N[0,0,1,0,0,0] = 7,
) = ((t*",t,0,1,0,0),(0,#,¢0,1,0), (", 0,£2",0,0,1)),
()" = [0,0,1,0,¢¢"]N[0,1,0,¢ ¢, 01 N[1,0,0,£",0,¢2"" ] = =(t).

Hence p fixes 7, and 7(t). It is straightforward to verify that indeed, for all m;, 7;

in the set {my, m, 3, 7(t) | t € GF(q)}, m; # mj,

(miNm;)f = (nf,mf).

Hence we conclude that

Theorem 5.6.1 The set of (¢ + 3) planes constructed by Thas using the Klein

map is self-dual. O

5.7 Some open problems

In [20] it was shown that if there is a point P in PG(5, ¢) which is not contained
in any of the hyperplanes (m;,m;), ¢ # j, then, by projecting m; from P onto a
hyperplane ‘H not containing P, the set of planes {ay, ..., a,+2}, where ¢; is the
projection of m;, satisfies only conditions (a) and (b) of (f) in PG(4,¢q). It was
shown that for both of the known constructions (Examples 5.1.1 and 5.1.2), as
well as for the new family presented in Section 5.5, such a point of projection P
exists, but it is not known if this is true in general. In this section we discuss the
possiblities of improving some of our results as well as using them to determine

the existence of such a point.

In Theorem 5.2.1, we showed that if a point of PG(5, ¢) not lying on any plane of
£ is contained in a hyperplane spanned by two planes of £, then it lies in at least
three and at most g + 3 such hyperplanes. The mean and variance of kp over a
fixed hyperplane given in the paragraphs after Theorem 5.2.2 indicate that these
bounds may be best possible. In examining the proof of Theorem 5.2.1, we see
also the difficulty in determining whether hyperplanes not containing either 7 or
7' contains P or not. For example, in the first case of the proof of Theorem 5.2.1, a
hyperplane (7;, m), j, k # 1,2, contains P if and only if the line joining the points
AjARrNRA; and P meets 7' in the point A; A} N RT. This is certainly possible but
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we do not have a proof. The mean and variance of kp calculated over all points
of PG(5,q) not on a plane of £ also do not give an indication as to the existence
of a point of projection. It would seem that the counting methods used in Section

5.2 at best show us that it is not impossible that such a point always exists.

Theorem 5.3.5 shows that if 7 is a plane disjoint from 7y € &, then the lines
(m;, mo) N form a dual hyperoval on 7. Now, it was shown in [6] that in PG(2,q),

+ 2
q even, the number of lines meeting a set of ¢ + 2 points is at least ( 7 ) + %
2

if the points do not form a hyperoval. Dually, the number of points lying on a

+ 2
set of ¢ 4+ 2 lines is (q

) if the lines form a dual hyperoval and at least
2

+ 2
( 1 ) +% if not. Hence the set of hyperplanes (m, m;), 7 =1,...,¢+2, covers
2

the least number of points possible on a plane disjoint to my. This seems to indicate
that the hyperplanes spanned by pairs of planes in £ cover the smallest possible
number of points in PG(5, ¢). It would be interesting if this could be used to decide

whether, in general, there is a point not contained in any of these hyperplanes.

Using the property that the dual of £ also satisfies conditions (f), the question
of whether there exists a point not contained in any hyperplane spanned by two
planes of £ is equivalent to asking if there exists a hyperplane not incident with
a point of O. Hence if O is a 1-blocking set of PG(5,q) (that is, any hyperplane
of PG(5,q) contains a point of O and any line of PG(5,q) contains a point not
in O) then such a point does not exists. The lower bound for a 1-blocking set in
PG(5,q) is ¢ + 1+ /g ([2]) and |O| is certainly greater then this bound, but it is

not clear if it is a 1-blocking set.

The general problem of constructing more families of planes £ in PG(5, q) is still
open. It may be possible to try the known o-polynomials exhaustively using The-
orem 5.4.2. However, one of the difficulties in this lies in the determination of the
algebraic forms of the permutations «, 3, and the o-polynomial h, A/, o, and 7,
given f, f', g and ¢’. For example, it is not clear what the algebraic form of the
inverse of the o-polynomial, say, g(z) = x/® + 236 + 25/6 is. This is required in
order to determine «. Besides, the o-polynomials must be treated individually and

not as a projective equivalance class, as shown in Section 5.5, where the hyperoval
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D(k) appeared in different forms. It is also not obvious that one can always obtain
an explicit formula for o, and 7,. For example, even in the case of the Yoshiara
construction using the Veronese map, it is not at all obvious what the form of the

hyperoval given by

1 1
x&(%)—i—y&(i) =D T w@
Oy — 1 1
Tty 55 T
Yy

8 |
~
—
< |

>
~

8

is, even though we know that it is regular for  # 0. Furthermore, it is not clear
how one can decide whether a set of planes determined by a set of o-polynomials

is isomorphic to a set of planes determined by another set of o-polynomials.

The question of whether the duals of the Yoshiara construction £(O*) yield more
new families of planes satisfying conditions (1) for other dual hyperovals O* whose
o-polynomials are not monomials also remains open. Again, one of the difficulties
lies in the manipulation of the permutations and the o-polynomials. For example,
using the o-polynomial §(z) = 2/ + 23/6 + 25/6 again, we have a(z) = 1/26(1/x)
and it is not clear what the algebraic form of a~! is, which we need in order to
establish A'.

This said, it is of course possible to run exhaustive searches using a computer for
small cases of ¢, and while it may not be possible to determine whether two con-
struction are isomorphic or not, it certainly is possible to determine the existence

of a point of projection in these cases.
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