On Covers of Point Sets in Finite Geometries

This thesis discusses two substructures in finite geometry.

Firstly we investigate k-arcs in projective planes covering a line. In a finite projective plane, a k-arc \mathcal{K} covers a line l_{∞} disjoint from it if every point on l_{∞} lies on a secant to \mathcal{K} . This concept arises from the problem of trying to ascertain the size of the smallest set of elements for which no linear (n,q,t)-perfect hash family exists. In particular, in PG(2,q), the Desarguesian plane of order q, no linear (q^2,q,k) -perfect hash family exists if there is a k-arc covering a line. We are interested in finding k-arcs covering a given line l_{∞} such that k is small with respect to q. We obtain a lower bound on the size of such k-arcs and prove that there are only 4 cases where this bound is met. These cases are characterised by the property that every point on l_{∞} is covered by exactly one secant to the k-arc. We then consider the generalisation to n-regular k-arcs, where every point on l_{∞} is covered by exactly n secants. We show that n is at most $\frac{k}{2}$ and characterise $\frac{k}{2}$ -regular k-arcs as hyperovals in planes of even order. In planes of odd order, however, there are no $\frac{k}{2}$ -regular k-arcs, but we show that $(\frac{k}{2}-1,\frac{k}{2})$ -regular k-arcs, where half the points on l_{∞} lie on $\frac{k}{2}$ -regular and the other half on $\frac{k}{2}$ secants, are precisely the ovals in the plane. In addition, we present examples and constructions of families of small k-arcs covering a line in PG(2,q).

We consider also the generalisation of k-arcs covering a line to (k, n)-arcs covering an arbitrary set of points in the plane and obtain lower bounds on k. Furthermore, we show that the concept of k-arcs covering a line can be extended to that of sets of points covering a hyperplane in higher dimensional projective spaces and show that, in fact, a k-arc covering a line in PG(2, q) also covers a hyperplane in PG(n, q) for all n > 2.

Secondly we investigate the properties of a certain type of family of planes in PG(5,q) introduced by Yoshiara. This is a family of q+3 planes $\mathcal{E} = \{\pi_0, \ldots, \pi_{q+2}\}$ such that

- (1) the set $\mathcal{O}_i = \{\pi_i \cap \pi_j \mid j \in \{0, \dots, q+2\} \setminus \{i\}\}$ is a hyperoval in π_i for all $i = 0, \dots, q+2$;
- (2) any 3 planes in \mathcal{E} span PG(5, q).

This structure may be used to construct a family of Extended Generalised Quadrangles of order (q+1,q-1). We are interested principally in the combinatorial and geometric properties of \mathcal{E} . We show that the dual of \mathcal{E} also satisfies conditions (1) and (2), and that this leads to new examples. We also present a coordinatisation of \mathcal{E} and prove a necessary and sufficient condition for a set of o-polynomials to determine \mathcal{E} .