
The application of hash chains and
hash structures to cryptography

Thomas Page

Technical Report

RHUL–MA–2009–18

4 August 2009

Department of Mathematics

Royal Holloway, University of London

Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

The application of hash chains and hash
structures to cryptography

Thomas Page

A thesis submitted for the degree of Doctor of Philosophy.

Royal Holloway, University of London

July 27, 2009

Declaration

These doctoral studies were conducted under the supervision of Prof. Keith

Martin and Dr. Siaw-Lynn Ng.

The work presented in this thesis is the result of original research car-

ried out by myself, whilst enrolled in the Department of Mathematics as a

candidate for the degree of Doctor of Philosophy. This work has not been

submitted for any other degree or award in any other university or educa-

tional establishment.

Thomas Page

July 27, 2009

1

Abstract

In this thesis we study how hash chains and other hash structures can be

used in various cryptographic applications. In particular we focus on the

applications of entity authentication, signatures and key establishment.

We study recursive application of hash functions to create hash chains,

hash trees and other hash structures. We collate all these to form a catalogue

of structures that we apply to various cryptographic applications.

We study existing work on authentication and create many entity authen-

tication schemes based on structures from our catalogue.

We present a novel algorithm to find efficient signature schemes from any

given hash structure. We study some suggestions for suitable hash struc-

tures and define a particular scalable hash structure complete with a simple

message to signature map that is the most efficient such scheme of which we

know.

We explore k-time signature schemes and identify two new properties,

which we call perforated and porous.

We look at the application of hash structures to key establishment schemes.

We compare the existing schemes and make improvements on many. We

present a new key establishment scheme, and show a link between certain

k-time signatures and certain key establishment schemes.

We look at the other applications of hash structures, and suggest areas

in which our catalogue could be used for further development.

2

Contents

1 Introduction 12

2 Hash functions 15

2.1 Introduction . 15

2.1.1 Differences in definitions 15

2.1.2 Initial informal definitions and motivation 16

2.1.3 Confusion in the literature 18

2.1.4 Baseline definition of a hash function 19

2.2 Preimage-resistant and second preimage resistant functions . . 20

2.2.1 Motivation and Definitions 20

2.2.2 Adversarial models . 22

2.2.3 Formalisation . 23

2.3 Collision-resistant hash functions 25

2.3.1 A traditional formal definition 25

2.3.2 A working definition 27

2.4 Pseudo-randomness . 29

2.5 Relationships between the definitions 31

2.5.1 Introduction . 31

2.5.2 Second preimage resistance and collision resistance . . 32

2.5.3 Preimage resistance and collision resistance 32

2.5.4 Preimage resistance and second preimage resistance . . 33

2.5.5 The relationships between our hash functions 34

2.6 Parameterising hash functions 34

2.7 The NIST project to create SHA-3 35

3

CONTENTS 4

2.7.1 The properties required of SHA-3 36

2.7.2 Relevance to this thesis 37

2.8 Conclusion . 37

3 Hash structures 38

3.1 Hash chains . 38

3.1.1 Motivation and definition 38

3.1.2 Basic properties of a hash chain 40

3.1.3 Basic applications . 40

3.1.4 Further properties of hash chains 41

3.1.4.1 Preimage resistance 41

3.1.4.2 Second preimage resistance 42

3.1.4.3 Collision resistance 43

3.1.4.4 Pseudo-randomness 43

3.1.4.5 Random mapping properties 43

3.1.5 Infinite-length hash chains 44

3.2 Hash trees . 45

3.2.1 Basic graph theory definitions 45

3.2.2 Definition of a hash tree 47

3.2.3 Merkle trees . 48

3.2.4 Motivation . 49

3.3 Generalising hash function structures 50

3.3.1 Directed acyclic graphs and hash DAGs 50

3.3.2 Vertices with the same set of children 50

3.3.3 A generalised hash DAG 51

3.4 Useful examples of generalised hash DAGs 52

3.4.1 Rainbow chains . 52

3.4.2 Joining hash chains . 53

3.4.3 Hierarchical chain construction 53

3.4.4 A chained pseudo-random number generator 54

3.4.5 Inverted hash trees . 55

3.4.6 Sandwich chain construction 56

3.4.7 General hash chain . 57

CONTENTS 5

3.4.8 Hash chain with breakpoints 58

3.4.9 Comb skipchain construction 58

3.5 Conclusion . 59

4 Entity authentication 60

4.1 Introduction to authentication 60

4.1.1 Types of authentication 61

4.1.2 Public verifiability . 61

4.1.3 Channels . 62

4.1.3.1 Unprotected channel 63

4.1.3.2 Authenticated channel 63

4.1.3.3 Secure channel 63

4.1.3.4 Unprotected publishing 64

4.1.3.5 Authenticated publishing 64

4.1.4 Adversarial models . 65

4.1.5 Entity authentication phases 66

4.1.6 Associated costs . 67

4.2 One-time entity authentication schemes 67

4.2.1 Trivial one-time password entity authentication 68

4.2.2 Basic one-time hash based entity authentication 69

4.2.3 Traditional password entity authentication 70

4.2.4 Basic one-time hash based entity authentication with

public verifiability . 71

4.2.5 Summary of one-time entity authentication schemes . . 73

4.3 Simple ‘unlimited-time’ entity authentication schemes 74

4.3.1 Unlimited-time entity authentication 75

4.3.2 Traditional approaches 75

4.3.2.1 Basic challenge-response scheme 76

4.3.2.2 Authentication with a counter or a time-dependent

variable . 77

4.3.3 Storing one less value 80

4.3.4 Summary of unlimited-time schemes 81

4.4 n-time entity authentication schemes 82

CONTENTS 6

4.4.1 n-time hash chain based schemes 82

4.4.1.1 Hash chain entity authentication 83

4.4.1.2 Hash chain entity authentication with public

verifiability 84

4.4.1.3 Entity authentication with many verifying par-

ties . 85

4.4.1.4 Summary of hash chain based schemes 86

4.4.2 Hash tree and Merkle tree entity authentication schemes 86

4.4.2.1 Merkle tree based entity authentication . . . 87

4.4.2.2 Merkle tree based entity authentication for

many verifying parties 89

4.4.2.3 Merkle tree based challenge-response entity

authentication 91

4.4.3 Hierarchical chain construction scheme 92

4.4.4 Comparison of schemes in this section 95

4.5 Other (mainly n-time) hash-based entity authentication schemes 96

4.5.1 Using weakened hash functions to improve efficiency . . 97

4.5.2 Comb skipchain construction 100

4.5.3 General hash chain . 102

4.5.4 Hash chain with breakpoints 103

4.5.5 Summary of schemes in this section 104

4.6 Conclusions . 105

5 Signatures 106

5.1 Introduction to message authentication 106

5.1.1 Checksums and data integrity schemes 107

5.1.2 Message authentication codes 108

5.1.3 Hash functions and conventional digital signatures . . . 109

5.1.4 Digital signatures based on hash functions 111

5.2 One-time signatures . 113

5.2.1 Simple chain-based schemes 113

5.2.1.1 The Diffie-Lamport one-time signature scheme 113

5.2.1.2 The Winternitz one-time signature scheme . . 114

CONTENTS 7

5.2.1.3 The Diffie-Lamport-Merkle one-time signature

scheme . 116

5.2.2 Vaudenay’s rake . 118

5.2.2.1 Vaudenay’s rake one-time signature scheme . 118

5.2.2.2 Constant sum Vaudenay’s rake one-time sig-

nature schemes 122

5.2.2.3 Vaudenay’s optimal rake one-time signature

scheme . 125

5.2.2.4 Further optimisation 125

5.2.3 Using hash trees and Merkle trees for one-time signa-

ture schemes . 127

5.2.3.1 Reducing public and private key sizes 127

5.2.3.2 Merkle tree based one-time signature schemes 128

5.2.4 Generalised hash DAG one-time signature schemes . . 131

5.2.4.1 Efficient schemes 133

5.3 Finding the largest compatible set of minimal verifiable sets

for a given graph . 135

5.3.1 Introduction . 136

5.3.2 Problem 1 — Finding the set of minimal verifiable sets

from the DAG . 138

5.3.3 Problem 2 — Finding a large compatible set of minimal

verifiable sets from the set of all minimal verifiable sets 142

5.3.3.1 Discussion of Algorithm 9 142

5.3.3.2 Discussion of Algorithm 10 144

5.3.3.3 Discussion of Algorithm 11 145

5.3.3.4 Comparison of algorithms for finding large

compatible sets 145

5.3.4 Results . 147

5.4 Concrete examples of DAGs which facilitate efficient one-time

signature schemes . 152

5.4.1 Bleichenbacher and Maurer’s DAG 152

5.4.2 A one-time signature scheme for multiples of six bits . 155

5.4.3 A one-time signature scheme for multiples of eight bits 158

CONTENTS 8

5.5 k-time signatures . 162

5.5.1 Efficiency of k-time signatures 162

5.5.2 Perforated and porous k-time signature schemes 167

5.5.3 Towards a porous k-time signature scheme 167

5.6 Conclusions . 168

6 Key establishment schemes 170

6.1 Introduction . 170

6.2 Group key predistribution schemes 173

6.2.1 Introduction . 173

6.2.2 Existing hash-based key predistribution schemes 176

6.2.2.1 Inverted hash tree key predistribution schemes

(IHT KPS) 176

6.2.3 Hierarchies and key establishment schemes 179

6.2.3.1 Tree-shaped hierarchy based KPS schemes . . 179

6.2.3.2 General hierarchy-based KPS 182

6.2.3.3 Key predistribution for lattice-shaped hierar-

chies . 183

6.2.3.4 A generalisation to many more hierarchies . . 186

6.2.3.5 Providing key escrow for key predistribution

schemes . 187

6.3 Group key distribution schemes 188

6.3.1 Introduction . 188

6.3.2 Different schemes for different applications 188

6.3.3 Logical key hierarchy 189

6.3.3.1 Using hash structures for a logical key hierarchy190

6.3.3.2 The revocation scheme due to Chang et al. . . 191

6.3.3.3 Key recovery for logical key hierarchies 193

6.4 Group key agreement schemes 196

6.5 Extending the lifetime of a key 196

6.5.1 Introduction . 196

6.5.2 Key refreshment using the session number 198

6.5.3 A hash chain based key refreshment scheme 199

CONTENTS 9

6.5.4 A chained pseudo-random number generator based key

refreshment scheme . 200

6.5.5 Key refreshment with strong forward secrecy 201

6.6 Conclusions . 202

7 Other applications and future work 203

7.1 Micropayment schemes . 203

7.2 Auctions . 205

7.3 Pseudo-random number generation 207

7.4 Information sealing . 208

7.4.1 Time-release cryptography 208

7.4.2 Interval release cryptography 209

7.5 Generating rainbow tables . 209

7.6 Conclusions . 210

8 Conclusions 211

A Algorithms 230

Acknowledgements

There have been many people who have helped and inspired me to complete

this thesis, and I am very grateful for all their support. There are a few who

I would like to thank personally, without each of whom I would never have

finished.

I would like to thank my supervisors Professor Keith Martin and Doctor

Siaw-Lynn Ng for their supervision. I am in awe of the rigour, persistence

and friendliness they both showed, even after our meeting had continued for

over double the allotted time. In particular I would like to thank Keith for

the placement of approximately half of the commas in the following chapters,

and Siaw-Lynn for not making corrections to the other half. I have lost count

of the number of drafts of this thesis that existed, but Keith and Siaw-Lynn

have managed to read and make constructive criticism on all of them.

I would next like to thank my parents. Their advice throughout my time

as a postgraduate has been extremely helpful. Particular thanks to my Dad

for proofreading the whole thesis and to my Mum for her practical suggestions

about the postgraduate process.

Finally I would like to thank my wife Naomi, whose constant encourage-

ment has spurred me on while ‘writing up’. Despite her ambivalence towards

maths, Naomi has been a keen student while I attempted to explain the work

contained in the following pages.

10

Notation

Symbol Meaning

Z The set of integers.

{0, 1}n The set of n-bit strings.

{0, 1}∗ The set of finite bit strings.

{0, 1}∞ The set of infinite bit strings.

|A| The cardinality of set A.

2A The power set of A.

x∗ The set of all items of the form xi.

x >> y The value x is much greater than y.

f(x) := x The function f(x) is defined to be x.

x||y The value x concatenated with the value y.

x⊕ y The bit-wise exclusive-or of x and y.

fn(x) Recursively defined as the function f applied to fn−1(x).

g ◦ f(x) The composition g(f(x)).(
n

r

)
The number of r-element subsets of an n-element set.

P(X) The probability of event X.

A→ B : m A sends the value m to B via an unprotected channel.

A
A−→ B : m A sends the value m to B via an authenticated channel.

A
S−→ B : m A sends the value m to B via a secured channel.

A→ P : m A publishes the value m with no authentication.

A
A−→ P : m A publishes the value m in an authenticated way.

11

Chapter 1

Introduction

This thesis considers and evaluates the ways in which hash chains and other

hash structures may be applied in many different areas of cryptography.

We begin in Chapter 2 by studying various existing definitions relating to

our topic and subsequently develop three working definitions of hash func-

tions. We go on to explore the relationship between hash functions and

pseudo-random functions, present ideas from the NIST SHA-3 project, and

parameterise hash functions by security and output size, for reference later

in the thesis.

Chapter 3 builds on Chapter 2’s foundations by consolidating and cate-

gorising a large number of structures formed from hash functions. We create

the concept of an almost perfect a-ary tree. We choose definitions of hash

trees and Merkle trees which will be useful in later chapters. After briefly

studying the relationship between the properties of a hash function and the

hash chain it forms, we explore the notion of a generalised hash directed

acyclic graph (mentioned in other literature), and expand it into a formal

definition.

Chapter 4 is concerned with how hash structures from Chapter 3 can be

used in entity authentication. We explore this by comparing various existing

one-time, unlimited-time and n-time entity authentication schemes. We iden-

tify two adversaries that we use in evaluating the security of these schemes. In

the course of this investigation we also identify a new property of some entity

12

CHAPTER 1. INTRODUCTION 13

authentication schemes, which we refer to as public verifiability. We develop

several existing entity authentication schemes to provide public verifiabil-

ity. We present an unlimited-time scheme in which the authenticating and

verifying parties have the theoretical minimum storage requirements. Next

we go on to create two entity authentication schemes suitable for use with

many verifying parties, based on hash chains and Merkle trees respectively.

In further consideration of Merkle trees we show a relationship between their

use in an entity authentication scheme and a one-time signature scheme. We

exhibit an entity authentication scheme based on the hierarchical chain con-

struction, and describe its potential use in sensor networks. Furthermore we

suggest similar adaptations of three other hash structures.

In Chapter 5 we look at the topic of signatures, beginning by comparing

one-way trapdoor based signature schemes with hash-based one-time signa-

ture schemes, and evaluating various existing one-time signature schemes.

We prove that any set of Vaudenay’s rake signature patterns with constant

average chain position is a signature scheme and exhibit some properties of

these signature schemes. We also show that the optimal choice of parameters

for a Vaudenay’s rake signature scheme is dependent on more than simply

the size of the signature space required.

We prove that for any signature scheme based on a hash tree there is a

scheme based on a Merkle sub-tree with the same number of signature pat-

terns. We present and evaluate two algorithms — the first of which finds

a large signature scheme based on any given hash structure, and the sec-

ond of which finds the largest such signature scheme. We then use this

second scheme to find graphs admitting particularly efficient one-time signa-

ture schemes. We generalise a signature scheme due to Bleichenbacher and

Maurer and demonstrate that (in the limit) the original scheme is the most

efficient. We then proceed to create two one-time signature schemes, which

are the most efficient for signing blocks of six bits and eight bits respectively.

We identify and define two new properties of k-time signature schemes which

we call porous and perforated, and subsequently suggest a new method for

the construction of porous k-time signature schemes. Finally we explore the

concept of efficiency for k-time signature schemes, and present two distinct

CHAPTER 1. INTRODUCTION 14

but useful definitions.

Chapter 6, on key establishment schemes, begins with a discussion com-

paring many key predistribution schemes (KPSs) and key distribution schemes

(KDSs). From this we generalise some existing KPSs to form a new scheme

which we call the inverted hash tree KPS. We then highlight a similarity in

the way that hash chains are used by Leighton and Micali to make a KPS,

and by Reyzin and Reyzin to make a k-time signature scheme. We present

our own KPS for lattice-shaped hierarchies, and then generalise it to many

more hierarchies. In looking at a key escrow scheme by Joye and Yen we

observe that it can be applied to any set of group keys formed by a KPS.

We develop a KDS due to Chang et al. by facilitating the addition of new

users and reducing the TA’s storage requirements. We exhibit a flaw in a

KDS by Kurnio et al. We note the inconsistencies in the literature over the

definitions of forward and backward secrecy, and propose definitions for the

terms strong forward and strong backward secrecy. We compare several hash-

based key refreshment schemes and then go on to propose a key refreshment

scheme based on the chained pseudo-random number generator, and a simple

extension of it.

In Chapter 7 we make some brief comparative observations about various

hash-based schemes in several other areas of cryptography, including micro-

payments, auctions and pseudo-random number generators. We also mention

hash structure based schemes for interval release cryptography and preimage

computation. We generalise an interval release scheme due to Joye and Yen

to many dimensions.

Chapter 2

Hash functions

2.1 Introduction

In this chapter we will review definitions of hash functions with an ultimate

goal of fixing three definitions of hash functions that we will use in the rest

of this thesis. We discuss the main properties — preimage, second preimage

and collision resistance, as well as the relationship between hash functions

and pseudo-random functions. Finally we comment on the ongoing NIST

project to standardise hash functions for future use.

2.1.1 Differences in definitions

Many definitions of hash functions exist. One aim in this chapter is to explore

current definitions and the reasoning behind them.

Existing definitions differ in three main areas. Firstly definitions differ

over the domain and range of a hash function. Some prefer to err on the side

of theoretical generality by allowing the domain to be any set, and the range

to be any finite set, while others opt for a more practical approach by fixing

the domain and range to be sets of binary strings restricted by their length.

The second variation between definitions is the (often subtle) difference in

concepts of “hard” and “easy”. Original papers on the topic of hash functions

were understandably simplistic in how they defined computational challenges.

As cryptographers have developed notions such as provable security, they

15

CHAPTER 2. HASH FUNCTIONS 16

have also improved and expanded precisely what these properties mean. Even

now that rigorous definitions have been published, many informal definitions

are still used because they are easier to understand and express the essence

of what is required.

It is clear that if a problem is “computationally infeasible” then we should

not be able to use a computer to find a solution; however it is difficult to

come up with an absolute number of operations that the computer should

have to do to find a solution. Unless specified otherwise we will use the

following definitions for computationally infeasible and computationally easy

from [88].

Definition 2.1. A problem is computationally infeasible if the best

known algorithm to solve it requires an unreasonable amount of computa-

tional time.

Definition 2.2. A problem is computationally easy if the best known

algorithm solves it in (expected) polynomial time, and only requires available

resources.

Thirdly, definitions differ over the precise properties that a hash function

needs. Some authors have a specific application in mind and so define a

hash function to have application-specific properties, while other authors

propose a more general notion of a hash function and define variants of it

with extra properties. Exploring the differences in terms of properties will

be the primary focus of this chapter.

2.1.2 Initial informal definitions and motivation

The term “hash function” is due to computer science, and refers to a func-

tion which compresses an arbitrary length input bit string to an output bit

string of fixed finite length [111, 141]. These functions are primarily used to

speed up the process of finding stored data [151]. However the term “hash

function” has since been adopted by cryptographers, and desirable proper-

ties of cryptographic hash functions, such as “one-wayness” and “collision

resistance”, have been identified.

CHAPTER 2. HASH FUNCTIONS 17

When discussing the various definitions used for hash functions in cryp-

tography it will be useful to have fixed informal definitions of several proper-

ties that a general function might have. We emphasise that these properties

could apply to a general function because we have not yet defined what we

mean by a “hash function”.

Definition 2.3. A function f : D → R is preimage resistant if for a given

y ∈ R it is computationally infeasible to find an x ∈ D such that f(x) = y.

Definition 2.4. A function f : D → R is second preimage resistant if

for a given x ∈ D it is computationally infeasible to find x′ ∈ D with x′ 6= x

such that f(x′) = f(x).

Definition 2.5. A function f : D → R is collision resistant if it is com-

putationally infeasible to find x, x′ ∈ D with x′ 6= x such that f(x) = f(x′).

There are some well known upper bounds on the computation required

to exhibit a preimage, second preimage or collision [83]. For a function with

an n-bit range a preimage can be found for a given value by simply guessing

at input values. On average a preimage will be found after trying no more

than half of the input values, which equates to 2n−1 function evaluations.

Finding a second preimage requires approximately the same computation

as finding a preimage, however a finding a collision is typically much easier.

Using the birthday paradox we can see that for a function with an n-bit range

a search of input values will provide a collision in an average of 2n/2 function

evaluations.

The reason for choosing to define these three properties can be justified

by three potential applications of such functions.

• Preimage resistance

If a computer system stores a user’s password, then there is a chance

that a hacker will be able to recover that password. However if the

computer applies a preimage-resistant function f to the password p

before storing it, then a hacker can only recover f(p). The preimage

resistance of f means that from this value the hacker cannot deduce a

valid password.

CHAPTER 2. HASH FUNCTIONS 18

• Second preimage resistance

To justify second preimage resistance, consider a respected software

writer who wants clients to be confident that they have received the

correct program before they run it. The software creator could apply a

second preimage resistant function f to their program file p and publish

the result on their official website. A user can apply f to the program

file p′ that they have obtained, and check that f(p′) = f(p). If the

two values match, they can be confident that they have the original

program because it is computationally infeasible for anyone to make

another program file with the same output under f .

• Collision resistance

Collision resistance is essential for a function f to be used as the com-

pression function in the process of making a digital signature for a mes-

sage m. The process has two steps; compressing the message to f(m),

and then processing f(m) with a signature key to get the signature s.

Typically another person can verify the signature by processing s using

the corresponding verification key, and checking that the result is f(m)

(which they can compute from m). If the hash function f is not colli-

sion resistant, then it may be possible to find two messages which have

the same signature regardless of the private signature key used.

2.1.3 Confusion in the literature

One of the first authors to define a hash function was Merkle [84], who defined

a hash function f to be any function with the following properties:

1. The function f can be applied to an input of any size.

2. The output of f is a bit string of fixed length.

3. The output f(x) is computationally easy to calculate for any x.

4. The function f is preimage resistant (see Definition 2.3).

5. The function f is second preimage resistant (see Definition 2.4).

CHAPTER 2. HASH FUNCTIONS 19

Rabin used the same definition in [114]. This definition is also sometimes

known as a weak hash function [83]. Other authors define hash functions

without preimage resistance or second preimage resistance [127, 131], or with

additional properties such as collision resistance [78], or such that the input

should include a key [134]. Many more authors use the term hash function

without specifying the precise properties they require.

Preneel highlights in his thesis [111] the different terms used for output

of a hash function.

“... the result of a hash function has been given a wide vari-

ety of names in the cryptographic literature: hashcode, hash to-

tal, hash result, imprint, (cryptographic) checksum, compression,

compressed encoding, seal, authenticate, authenticator, authenti-

cation tag, fingerprint, test key, condensation, Message Integrity

Code (MIC), message digest, etc.”

We will refer to the output of a hash function as the “output”, the “hash

value”, or simply the “hash”.

2.1.4 Baseline definition of a hash function

We now propose a baseline definition for a hash function. This definition is

too weak for most cryptographic uses, but is inclusive of any other definition

of a hash function. It is also consistent with many other sources [27, 83, 88,

111].

Definition 2.6. A hash function is a function f : D → R such that:

1. The domain D is a set that may be infinite or finite.

2. The range R is a finite set.

3. The function is computationally easy to evaluate for any given input

x ∈ D.

We leave open the possibility that D is finite, since for many practical

situations it will be possible to put a limit on the size of the input. Note

CHAPTER 2. HASH FUNCTIONS 20

that we do not require that a hash function compresses (therefore we allow

R = D) and therefore our definition includes one-way permutations, which

are particularly useful for hash chaining (see Chapter 3).

Even amongst the sources we have cited there is discrepancy over whether

D and R must conform to stricter constraints such as being sets of binary

strings, or sets of fixed length binary strings. In [64], condition 1 is that

D is “the set of all binary sequences of some specified minimum length or

greater”. Due to the nature of information, we are tempted to write that D

and R must be finite length bit strings. In fact for most software-based ap-

plications, efficient hash functions should operate on 64-bit blocks (assuming

the processor has a 64-bit architecture), and so D and R should both be of

the form {0, 1, 2, . . . , 264 − 1}∗.
A common practice when using hash functions to validate files is to use

a binary file (i.e. a member of {0, 1}∗ or {0, 1, 2, . . . , 264 − 1}∗ (see above))

as the input, and to output text representing a hexadecimal string of the

form {0, 1, . . . , 9, a, . . . , f}n. Although it is clear that the hexadecimal string

could equally be represented as a member of {0, 1}4n, and indeed the hash

function was probably designed with that in mind, it is not strictly true that

{0, 1, . . . , 9, a, . . . , f}n ⊂ {0, 1}∗, and so we leave R ⊆ D as a suggestion

rather than a strict rule.

2.2 Preimage-resistant and second preimage

resistant functions

2.2.1 Motivation and Definitions

The idea of “one-way functions” originates from Wilkes [153] (page 91), where

it was used in connection with login procedures. The definition of a one-way

function seems to be agreed by the majority of authors (for example [83, 134])

to be the same as a preimage-resistant function (see Definition 2.3).

However it is also widely agreed that a “one-way hash function” is a

hash function (as in Definition 2.6) which is preimage resistant and second

CHAPTER 2. HASH FUNCTIONS 21

preimage resistant [111, 83, 141].

Menezes et al. in [83] (Remark 9.19) acknowledge that this discrepancy

between the definition of one-way in the context of hash functions and one-

way in the context of general functions causes ambiguity.

It should be noted that in [111], Preneel designs his definition of a “one-

way function” to match up with the standard definition of a “one-way hash

function” (i.e. both of them are preimage resistant and second preimage

resistant).

Occasionally a less restrictive and more logical definition of “one-way

hash function” appears, omitting second preimage resistance [88], but this

non-standard use just adds further ambiguity to the term “one-way”, and

so we will try to avoid using the term “one-way” whenever possible. It is

quite conceivable to think of a situation when we require preimage resistance

but not second preimage resistance (for an example see Section 2.1.2), so we

propose to use the term “preimage-resistant hash function” for this.

Definition 2.7. A preimage-resistant hash function f : D → R is a

function with the following properties:

1. The domain D is a set that may be infinite or finite.

2. The range R is a finite set.

3. The function is computationally easy to evaluate for any given input

x ∈ D.

4. The function f is preimage resistant (see Definition 2.3).

As mentioned in Section 2.1.3, a hash function which is both preimage

resistant and second preimage resistant is also known as a “weak hash func-

tion” [83, 127].

CHAPTER 2. HASH FUNCTIONS 22

Definition 2.8. A weak hash function f : D → R is a function with the

following properties:

1. The domain D is a set that may be infinite or finite.

2. The range R is a finite set.

3. The function is computationally easy to evaluate for any given input

x ∈ D.

4. The function f is preimage resistant (see Definition 2.3).

5. f is second preimage resistant (see Definition 2.4).

In other words a weak hash function is a preimage-resistant hash function

that is also second preimage resistant.

2.2.2 Adversarial models

If we want to know whether a cryptographic scheme is secure, we are really

asking whether someone might be able to break it somehow. A traditional

approach to this is to model the scheme as a game which is set for some

adversary. To win the game the adversary must break the scheme with some

non-negligible probability, and we hope that there is no such way to do so.

In some cryptographic schemes there are parameters which the adversary

may or may not know (for example the plaintext in an encryption scheme). In

some security models an adversary may have access to previous data (such

as plaintext/ciphertext pairs), or may be able to create data of their own

before the game begins (for example by persuading the challenger to encrypt

some messages for him). It is important to define exactly what an adversary

must do in order to win the game/break the scheme.

It is sometimes possible to prove the equivalence of the security of a cryp-

tographic scheme and the difficulty of a well known problem in mathematics

(for example the Rabin public-key encryption scheme reduces to the difficulty

of factoring products of two large primes). In this way we can prove that

either our scheme is secure, or the well known problem can be easily solved

(and we hope the former is true).

CHAPTER 2. HASH FUNCTIONS 23

2.2.3 Formalisation

As we just saw, it is important to be precise when stating security properties.

Historically the informal definitions of hash functions have presented prob-

lems for cryptographers trying to prove the security properties of algorithms

that use hash functions.

A property of both preimage-resistant hash functions and weak hash func-

tions is preimage resistance (for a given y ∈ R it is computationally infeasible

to find an x ∈ D such that f(x) = y).

The way that y is chosen from R is very important since, if defined

wrongly, preimage-resistant hash functions would not even exist. As an ex-

ample, if the adversary is allowed to choose their own y then they could first

pick x ∈ D and then chose y = f(x), allowing trivial inversion. In [122] the

authors examine as an example the following definition of preimage resistant

quoted from [83]:

preimage resistance — for essentially all pre-specified outputs, it

is computationally infeasible to find any input which hashes to

that output, i.e., to find any preimage x′ such that h(x′) = y

when given any y for which a corresponding input is not known.

Although one immediately understands the sense of what is meant by this

definition of preimage resistance, it is not clear, even in theory, how to check

if a function exhibits this property. How would one pre-specify the outputs?

Should they be chosen uniformly at random from R, or uniformly at random

from D and then hashed, or is the challenger allowed to pick a particularly

difficult set of outputs?

For the purposes of this thesis we will consider challenge values y to be

chosen uniformly at random in R, but there are other reasonable ways of

chosing y.

Rogaway and Shrimpton [122] considers three challenges which could all

be considered tests of preimage resistance. These challenges are expressed

with keyed hash functions in mind, but for an unkeyed hash function a key

could be introduced as a value appended to the front of the message before

CHAPTER 2. HASH FUNCTIONS 24

hashing. The three challenge settings are with a random key and a random

y, a fixed key and a random y, and with a random key and a fixed y. It

is possible to consider a choice of key as the same as a choice of hash func-

tion from a family of hash functions. Rogaway and Shrimpton applied each

of these settings to the problem of finding a preimage for a hash function

(i.e. preimage resistance as in Definition 2.3) and studied the relationships

between them.

We are interested in the case of a fixed key and random y, since this best

corresponds to most uses of hash functions in practice.

As well as preimage resistance, weak hash functions also raise the problem

of formally defining second preimage resistance. One well-known attempt to

formally define second preimage resistant functions is the universal one-way

hash function (UOWHF) [91].

Essentially, a UOWHF family is such that no adversary is “good” at

finding a second preimage for some challenge value x (which it can choose),

when the hash function is selected uniformly at random from the family.

For the adversary to be “good”, they have to do better on average than an

exhaustive search would manage.

Much more recently Rogaway and Shrimpton gave a rigorous study of

preimage-resistant and second preimage resistant functions (as well as collision-

resistant functions, which we will look at in the next section) [122]. As pre-

viously mentioned, the basic considerations are whether the challenge value

is randomised, and whether the choice of hash function is randomised. For

preimage resistance the challenge is f(x), whereas for second preimage resis-

tance the challenge is x. If both the challenge and the key are fixed then there

exists a trivial algorithm which breaks either property (assuming a solution

exists) — the algorithm that tries the correct value first. This amounts to

six properties for hash functions, which are the first six properties given in

Table 2.1.

The relationship between these properties is discussed in Section 2.5.

CHAPTER 2. HASH FUNCTIONS 25

Name Property Where found
Pre Preimage resistant with random

challenge and random key
ePre Preimage resistant with fixed

challenge and random key
aPre Preimage resistant with random Property 4 in

challenge and fixed key Definition 2.7
Sec Second preimage resistant with random

challenge and random key
eSec Second preimage resistant with fixed UOWHF [91]

challenge and random key
aSec Second preimage resistant with random Property 5 in

challenge and fixed key Definition 2.8
Coll Collision resistant with random key Definition 2.9

(no challenge) in Section 2.3.1

Table 2.1: The seven properties discussed in [122]

2.3 Collision-resistant hash functions

The idea of a “collision-resistant hash function” (CRHF), or “strong hash

function”, has existed for a long time, although precise definitions differ.

Other commonly used names for this type of function include “cryptographic

hash function” [138, 148], and “secure hash function” [134].

2.3.1 A traditional formal definition

One of the definitions was due to Merkle [86], who defined a “strong hash

function” to be any function f with the following properties:

1. The function f can be applied to an argument of any size.

2. The output of f is a bit string of fixed length.

3. The output f(x) is relatively easy to compute for any x.

4. The function f is collision resistant (see Definition 2.5).

CHAPTER 2. HASH FUNCTIONS 26

This definition is also used by Menezes et al. in [83].

However, there are many slightly different definitions. In [26], [127] and

[141], a “collision-resistant” or “strong” hash function f is any function with

the following properties:

1. The function f can be applied to an argument of any size.

2. The output of f is a bit string of fixed length.

3. The output f(x) is relatively easy to compute for any x.

4. The function f is preimage resistant (see Definition 2.3).

5. The function f is collision resistant (see Definition 2.5).

One potential definition of collision resistance is that a function is collision

resistant if there does not exist an adversary which can exhibit a collision

in (on average) less than the time it would take to do an exhaustive search

for one. However if collisions do exist (and they usually will, since typically

|D| > |R|), then under this model no collision-resistant functions exist. This

is because there exist adversary algorithms which try any pair of values as

their first guess, so if the distinct values x and x′ happen to collide then

there exists an adversary algorithm which tries those two values first. This

adversary will succeed in a very short time every time it is run, and so the

function is not collision resistant in the traditional sense.

However, the traditional interpretation of preimage resistance and second

preimage resistance are both fine. In both of these the adversary is supplied

with a randomly chosen challenge value, meaning that any adversary which

simply guesses at values of D in a set order will (on average) do no better

than an exhaustive search for a solution.

This leads us to the idea that we would like to randomise the challenge for

collision resistance in the same way that it is randomised for preimage and

second preimage resistance. Since we have no challenge value (the adversary

can unrestrictedly pick values as potential collisions) the only thing left to

randomise is the choice of hash function.

CHAPTER 2. HASH FUNCTIONS 27

Consequently there seems to be a need to define collision resistance in

terms of collision-resistant hash function families and then, when needed,

a hash function can be chosen from the family. Damg̊ard [25] defined a

“collision-free hash function family”, which is a bit misleading as it does

actually contain collisions; they are just hard to find. We will refer to the

family as a fixed-size collision-resistant hash function family and define it as

follows:

Definition 2.9. A fixed-size collision-resistant hash function family

is a set of hash functions with the following properties:

• There is a probabilistic polynomial-time algorithm which, given a secu-

rity parameter, selects a member of the family uniformly at random.1

• All functions in the family are computationally easy to evaluate.

• The problem of finding x 6= x′ such that f(x) = f(x′) for a given f in

the family is computationally infeasible to solve.

It is important to note that we have a family of hash functions, which

is such that no adversary algorithm can easily find a collision for a hash

function chosen at random from the family.

In Table 2.1 this type of collision resistance is our final property, and

the relationships between fixed-size collision-resistant hash functions and the

other types of hash functions in the table are explored in Section 2.5.

2.3.2 A working definition

In practice a particular hash function (for example SHA-1) is chosen for a

particular application. This is obviously different from the formal definition

above, as there is no family from which SHA-1 is chosen. This discrepancy

between (historical) theory and practice is picked up by Rogaway, and we

will now discuss his simple solution that appears in [121].

1The security parameter is used in [25] to help define what they mean by “computa-
tionally infeasible”.

CHAPTER 2. HASH FUNCTIONS 28

In most traditional security proofs there is a protocol and a cryptographic

primitive which we make some assumption about (for example a hash func-

tion which we assume is collision resistant). The proof typically shows that

if there is an algorithm which breaks the protocol then there also exists an

algorithm that violates the assumption (this would show either the protocol

is secure, or that collision-resistant hash functions do not exist).

As we have already discussed above (in Section 2.3.1) for any given hash

function there does exist an algorithm that finds a collision for it, so it is

not sensible to use this as the assumption. The idea which Rogaway [121]

uses is to restructure the proof of security, and thereby base the security on

a different assumption. Rogaway defines three forms of proof as follows:

1. existential form (C0): If there is an effective algorithm A for attacking

protocol Π then there is an effective algorithm C for finding collisions

in H.

2. code-constructive form (C1): If you know an effective algorithm A for

attacking protocol Π then you know an effective algorithm C for finding

collisions in H.

3. blackbox-constructive form (C2): If you possess effective means A for

attacking protocol Π then you possess effective means C for finding

collisions in H.

These second two forms are much better for collision resistance because

it is generally true (for “good” hash functions) that no one can find an

effective algorithm for producing collisions, and also that no one has the

computational power to find collisions.

We will use Rogaway’s “code-constructive form” for our definition of a

strong hash function.

CHAPTER 2. HASH FUNCTIONS 29

Definition 2.10. A strong hash function f : D → R is a function with

the following properties:

1. The domain D is a set that may be infinite or finite.

2. The range R is a finite set.

3. The function is computationally easy to evaluate for any given input

x ∈ D.

4. The function f is preimage resistant (see Definition 2.3).

5. The function f is second preimage resistant (see Definition 2.4).

6. No one can find an efficient algorithm to find a collision for f .

In other words a strong hash function is a weak hash function with the

addition of Property 6.

Clearly we cannot hope to prove that a function is collision resistant in

this sense without proving that no efficient algorithm exists to find collisions,

but in practice it is a realistic definition.

2.4 Pseudo-randomness

Although many authors do not mention pseudo-randomness in their discus-

sion of hash functions, for some applications it is a required property. Real

life applications of hash functions include pseudo-random number generators

[46], stream cipher keystream generators [8] and encryption key generators

(see Section 6.5). Proofs of security often formally model hash functions as

“random oracles”, which are effectively functions producing random output

[5, 147]. A few authors require pseudo-randomness of output as a property

in their definition of a hash function; for example [78] gives the following

properties that their definition of a hash function f must have:

1. The function f can be applied to an argument of any size.

2. The output of f is a bit string of fixed length.

CHAPTER 2. HASH FUNCTIONS 30

3. The output f(x) is relatively easy to compute for any x.

4. The function f is preimage resistant (see Definition 2.3).

5. The function f is collision resistant (see Definition 2.5).

6. On any input x, the output hashed value f(x) should be computationally

indistinguishable from a uniformly random binary string of the same

length.

It is not clear how the x in Property 6 should be chosen so as to compare

the output to a random string. It is also not clear how to define computation-

ally indistinguishable for a fixed (unkeyed) hash function. This definition is

informal and aims to aid understanding of hash functions, not to be rigorous.

Putting aside rigour for the moment, it seems intuitive that if the out-

put is random then no amount of information about the output gives any

information about the input, and so it would immediately satisfy preimage

resistance. However since we want the hashing process to be deterministic

(f(x) is a fixed value) the idea of pseudo-randomness is appealing.

It is not easy to define what is meant by the output of a hash function

being pseudo-random. With applications such as pseudo-random number

generators it is clear that the aim should be that output values should bear

no correlation to previous output values, but with hash functions there is no

obvious ordering of the output words.

In [98] Okamoto uses the term “correlation-free one-way hash functions”.

In [2] Anderson gives a simplified definition, defining a hash function f as

“correlation free” if the best way to find two distinct values x and x′ such

that f(x) has most of its bits in common with f(x′) is just to guess. He goes

on to give a proof that it is a strictly stronger notion than collision resistance.

The proof has two parts. Clearly if you can easily find collisions then you

can also easily find output values with many bits in common. Secondly, if

you have a hash function f for which it is hard to find collisions, then you

can define a new hash function which is not “correlation free”, but which is

still collision resistant, namely g(x) := x1||f(x2), where x1 is the first k bits

of x and x2 is the rest.

CHAPTER 2. HASH FUNCTIONS 31

Anderson continues in [2] by giving several other potentially desirable

properties which are not implied by this definition of “correlation free”.

These include “complementation freedom” (it is infeasible to find x and x′

such that f(x) is the complement of f(x′)), “addition freedom” (it is infeasi-

ble to find x, x′ and x′′ such that f(x) = f(x′) + f(x′′)) and “multiplication

freedom” (it is infeasible to find x, x′ and x′′ for some set of N such that

f(x) = f(x′)f(x′′) mod N).

However, intuitively pseudo-randomness should include all of these defin-

itions since if the output of a function is pseudo-random then it should not be

feasible to distinguish the output from a uniform random variable (assuming

the input is not repeated). This much stronger notion of pseudo-randomness

is the definition of a “random oracle”.

In [5] a random oracle R is defined as a map from {0, 1}∗ to {0, 1}∞

chosen by selecting each bit of R(x) uniformly and independently, for every x.

Although no protocol actually uses an infinitely long output, this removes

the need to specify how long “sufficiently long” is.

Clearly a fixed hash function can never satisfy this definition, but many

cryptographers model hash functions as random oracles in order to aid proofs

of security [5, 72, 56].

As we have seen, there exist some attempts to define the properties re-

quired for a “pseudo-random hash function”, some practical, and some im-

practical, but we will not try to resolve this complex issue here.

2.5 Relationships between the definitions

2.5.1 Introduction

We have now defined several types of hash functions including preimage-

resistant hash functions (Definition 2.7), weak hash functions (Definition

2.8) and strong hash functions (Definition 2.10), which are all hash func-

tions with different additional properties. We would like to know which of

these properties are the strongest, and which properties are independent of

one another. We will also discuss the work in [122], which explores all the

relationships between the types of hash function given in Table 2.1.

CHAPTER 2. HASH FUNCTIONS 32

2.5.2 Second preimage resistance and collision resis-

tance

One common statement in introductory texts on hash functions is that col-

lision resistance implies second preimage resistance [83, 111]. To understand

this we need to go back to the informal definition of collision resistance (De-

finition 2.5): f is such that it is computationally hard to find x 6= x′ with

f(x) = f(x′).

If a function is not second preimage resistant (aSec in Table 2.1) then for

any given x it is feasible to find x′ 6= x with f(x) = f(x′). Consequently it

is also easy to find a collision (by picking our own value for x), and so this

definition of collision resistance implies second preimage resistance.

Due to technicalities, neither of the formalisations of collision resistance

that we have looked at preserve this implication.

The family of collision-resistant hash functions in Definition 2.9 are col-

lision resistant as a group, whereas for second preimage resistance we want

a specific function to be second preimage resistant. This type of collision

resistance is referred to as Coll in Table 2.1 and [122].

The second formalisation of collision resistance is the one in our definition

of a strong hash function (Definition 2.10), which technically does not imply

second preimage resistance either. Instead it is implied that no one is able to

find a second preimage, but this does not ensure that there does not exist a

program to find one (which is the standard assumption for second preimage

resistance).

However it seems reasonable to assume that in practice any hash function

thought to be collision resistant will also be second preimage resistant.

2.5.3 Preimage resistance and collision resistance

Another well-studied relation is the link between collision resistance and

preimage resistance. It is agreed that preimage resistance (aPre in Table

2.1) is not a stronger condition than collision resistance.

In [128] it is shown that preimage resistance does not necessarily follow

from collision resistance. Whereas in [134], they use the Pre definition of

CHAPTER 2. HASH FUNCTIONS 33

preimage resistance from Table 2.1, and show that Coll implies Pre.

Our statement of collision resistance in the definition of a strong hash

function (Definition 2.10) does not imply preimage resistance for the same

reason that it does not imply second preimage resistance: it is a statement

about the capability of humans and preimage resistance is a statement about

hypothetical algorithms.

In [83] (Note 9.20) it is explained that although there exist pathological

examples of collision-resistant hash functions which are not preimage resis-

tant, for collision-resistant hash functions used in practice it seems reasonable

to assume that they are also preimage resistant.

2.5.4 Preimage resistance and second preimage resis-

tance

The final relationship that we will consider is the one between preimage re-

sistance and second preimage resistance. It is generally agreed that preimage

resistance does not imply second preimage resistance, but we would like to

know if the converse is true.

From [122] we find that under certain conditions second preimage resis-

tance implies preimage resistance. The implication is that if the best adver-

sary (for running time t) has advantage δ when guessing a second preimage

for a randomly chosen challenge x, then the best preimage guessing adversary

(for running time t minus the time to hash c messages) has advantage of at

most cδ + 2m−n, where n is the hash length and m is the maximum input

text length.

For practical hash functions with unlimited input size m this does not

really say anything. However we will often be dealing with applications

where the domain is the same as the range of the hash function, and so this

is a result worth noting.

The relationships between the other properties in Table 2.1 are also ex-

plored in [122], and the full set of cases is given in Table 2.2.

CHAPTER 2. HASH FUNCTIONS 34

Property ⇒ Pre ⇒ ePre ⇒ aPre ⇒ Sec ⇒ eSec ⇒ aSec ⇒ Coll
Pre ✓ ✕ ✕ ✕ ✕ ✕ ✕

ePre ✓ ✓ ✕ ✕ ✕ ✕ ✕

aPre ✓ ✕ ✓ ✕ ✕ ✕ ✕

Sec * ✕ ✕ ✓ ✕ ✕ ✕

eSec * ✕ ✕ ✓ ✓ ✕ ✕

aSec * ✕ * ✓ ✕ ✓ ✕

Coll * ✕ ✕ ✓ ✓ ✕ ✓

Table 2.2: The relationships between the seven properties discussed in [122].
The * symbol indicates that there is an implication under certain conditions.

2.5.5 The relationships between our hash functions

We have defined three types of hash function which we will focus on: preimage-

resistant hash functions (Definition 2.7), weak hash functions (Definition 2.8)

and strong hash functions (Definition 2.10).

Although in the above we have seen that our definitions of preimage resis-

tance, second preimage resistance and collision resistance do not technically

imply each other, it seems that in practice (excluding pathological examples)

collision-resistant functions are also second preimage resistant, and second

preimage resistant functions are also preimage resistant. However even with-

out this unsubstantiated claim, our types of hash function do have an order-

ing. Strong hash functions are a specific type of weak hash function, and

weak hash functions are a specific type of preimage-resistant hash function.

This can be seen by comparing properties of the definitions.

2.6 Parameterising hash functions

Traditionally the security of a hash function is given by the number of bits

that the output has. However for some applications we would like to use a

fast hash function which need not be as secure as the output size suggests.

We therefore suggest two parameters for any hash function: the output

size and the security parameter. The output size is simply the number of

bits that the output of the hash function has.

The security parameter s ∈ [0, 1] relates the output size to the actual

CHAPTER 2. HASH FUNCTIONS 35

security. The simplest way to explain this is with an example. If we have a

0.5-secure 256-bit preimage-resistant hash function then the amount of effort

to find a preimage is approximately 2(256×0.5)−1 = 2128−1 (therefore the same

amount of effort that would be required to find a preimage for a 1-secure

128-bit preimage-resistant hash function). We would typically hope that the

function is faster to evaluate than a 1-secure 256-bit preimage-resistant hash

function.

Definition 2.11. An s-secure l-bit strong hash function (s ∈ [0, 1],

l ∈ Z) is a hash function with an l-bit output such that the amount of effort

to find a preimage or second preimage is 2l·s−1 and the amount of effort to

find a collision is 2(l·s/2).

Whenever we do not specify s for a hash function we assume that it is 1,

and whenever we do not specify l we assume it to be any suitably large value

(such as 128 or 256).

2.7 The NIST project to create SHA-3

We have seen that there is a reasonable amount of confusion in the literature

about exactly what properties a hash function should have. On the whole

we have seen that as definitions get more rigorous, the gap between theory

and practice grows.

In recent years, a number of attacks on hash functions have been devised.

In particular there have been attacks on MD5 [146] and SHA-1 [145], hash

functions which have both been in widespread use. Since NIST (the National

Institute of Standards and Technology) was responsible for the standardis-

ation of SHA-1, it took on responsibility for the creation of a replacement

hash function standard.

SHA-2 2 already existed at the time, and consequently NIST suggested

that for certain uses (digital signatures, digital time stamping and other

applications that require collision resistance) SHA-2 should be used as a

2The SHA-2 family of hash functions consists of SHA-224, SHA-256, SHA-384 and
SHA-512, which were standardised as alternatives to SHA-1 [94].

CHAPTER 2. HASH FUNCTIONS 36

replacement for SHA-1 [92]. Many cryptographers have speculated that sim-

ilarities in structure between SHA-1 and SHA-2 may indicate that attacks

on SHA-2 will be found in the next few years [22].

NIST organised two workshops [22, 96] and then used the feedback from

these workshops to create a specification for a new hash function [95]. The

selected hash function family would become known as SHA-3, and is intended

to replace instances of SHA-1 and SHA-2.

2.7.1 The properties required of SHA-3

The NIST call [95] listed the following properties required of any submitted

hash function:

• The hash function should be publicly disclosed and available worldwide

without royalties or intellectual property restrictions.

• The hash function should be suitable for implementation on a wide

range of platforms.

• The hash function must be capable of producing output of length 224,

256, 384 and 512 bits.

NIST also specified that any submitted hash function would be ranked

by the following criteria (listed in order of importance):

1. Security — Any submission must be secure for use in many applica-

tions, including digital signatures, key derivation and pseudo-random

number generation. Additionally the submissions are expected to be

preimage resistant, second preimage resistant and collision resistant.

2. Cost — Submissions should ideally be computationally efficient on a

wide range of platforms. They will also be rated on the amount of

data storage required, and the number of gates required for hardware

implementations.

3. Algorithm and implementation characteristics — Any flexibility al-

lowed by the hash function will be viewed in a positive light. For

CHAPTER 2. HASH FUNCTIONS 37

example it would be good to provide an intuitive way to increase secu-

rity at the cost of greater computational complexity (such as allowing

the number of rounds to be increased). Assuming many algorithms are

presented which are similar in terms of all the previously listed criteria,

then they will be ranked by the relative design simplicity.

2.7.2 Relevance to this thesis

Any hash function satisfying the properties in Section 2.7.1 will be suitable for

use as a preimage-resistant, weak or strong hash function by our definitions

(assuming the definitions of preimage resistant, second preimage resistant

and collision resistant match).

Since this thesis is founded on the assumption of the existence of ‘cryp-

tographically secure’ hash functions, the SHA-3 project is of interest to us.

However the remainder of the work presented here is only dependent on the

properties that a hash function has, not on the specific hash function. Con-

sequently we will look no further at the development of the SHA-3 project

in this thesis.

2.8 Conclusion

For the purposes of this thesis we have chosen to define three types of hash

functions: preimage-resistant hash functions, weak hash functions and strong

hash functions. The formal defining of types of hash functions is a very

complex area of ongoing research, however these three definitions will suffice

for our subsequent discussions.

Chapter 3

Hash structures

In this chapter we will discuss many different methods of combining hash

functions, which will be used in later chapters. The major contribution of

this chapter is to consolidate and categorise all structures formed from hash

functions, and this will serve as an essential reference for later chapters.

We will look at hash chains, hash trees and hash directed acyclic graphs (or

DAGs), before moving on to generalised hash DAGs. We will then identify

a number of specific instances of generalised hash DAGs, including inverted

hash trees.

3.1 Hash chains

We begin this section with an example, motivating the further study of hash

chains. We will then look at some basic properties of hash chains and outline

how these properties make hash chains useful for certain applications. We

end the section by mentioning some further properties of hash chains.

3.1.1 Motivation and definition

As we saw in Chapter 2, a hash function’s range is usually a subset of its

domain. This naturally leads to the idea of applying a hash function to its

own output.

38

CHAPTER 3. HASH STRUCTURES 39

One of the earliest examples of this being used is Lamport’s password

authentication scheme [69], which we discuss in more detail in Chapter 4,

but give a summary now.

We consider the scenario of a user who wants to log on to a computer

remotely, and who has to send the password across an insecure channel. To

prevent an eavesdropper intercepting the password and then using it at a

later time, the user could have a set of passwords {x0, x1, . . . , x1000} stored

on the computer, and once a password is used it becomes invalid.

Alternatively, to minimise the storage requirements for the computer and

the user, the value x0 could be chosen by the user and the other values

are defined as xi = f(xi−1) for some preimage-resistant hash function f .

To initiate the system it is only necessary to store x1000 on the protected

computer. The computer also stores the index of the password that should

be used next (initially 1).

When the user wishes to remotely access the computer for the ith time

they send their username to the computer, which replies with a request for

the ith password. The user enters x0 into the terminal which computes the

value x1000−i by applying the hash function i times to x0. The value x1000−i is

then sent to the computer. The computer checks that applying the function

f to the value received gives the next chained value x1000−i+1 (which the

computer will have stored from the last session). The computer now stores

x1000−i (and i+ 1) and no longer needs to remember x1000−i+1 (or i).

We will refer to this construction of linked hash functions as a hash chain.

Definition 3.1. A hash chain C is a set of values {x0, . . . , xn} for n ∈ Z
such that xi = f(xi−1) for some hash function f , where i ∈ [1, n] and x0 is a

valid input for f .

The length of a hash chain is the number of hash function evaluations

required to create the hash chain. A hash chain with values {x0, . . . , xn} has

length n. Note that this is very similar to the definition of the length of a

path in graph theory.

CHAPTER 3. HASH STRUCTURES 40

3.1.2 Basic properties of a hash chain

It is useful to think of a hash function as a directed link from an input to an

output. A hash chain will look like a line of directed links:

x0 // x1 // x2 // . . . // xn

1. In the definition of a hash function (Definition 2.6) we demand that a

hash function is computationally easy to evaluate for any given input

x ∈ D. This in turn implies that values in a hash chain will be easy to

evaluate for any given input x0 ∈ D.

2. As we noted in the example of Lamport’s password authentication

scheme, a hash chain is very efficient to store; we only require the

input value x0 in order to calculate any other value in the chain.

3. If our hash function’s output is in some sense pseudo-random (see Sec-

tion 2.4) then we can represent a large set of pseudo-random values by

just one value (x0). It should be noted that “pseudo-random” values

generated in this way are not suitable for all situations, as we will see

later in Section 3.4.4.

4. A final trivial property of a hash chain is that any value xi can be

calculated from any value xj if i ≥ j.

3.1.3 Basic applications

The properties from Section 3.1.2 each have an impact on the applications

that may be able to employ hash chains.

The fact that the hash chain is directed makes it suitable for situations

where repeated authentication is required, for example Lamport’s password

authentication scheme [69], which we mentioned in Section 3.1.1. This re-

quires us to use a preimage-resistant hash function, otherwise it becomes

possible to work out future authentication values from previous ones (that is

it becomes possible to work out xi−1 from xi).

CHAPTER 3. HASH STRUCTURES 41

The ease of creation and storage of a hash chain, make it a particularly

suitable tool for platforms with limited memory and processing power.

If the hash function used in our hash chain allows us to generate a large

amount of pseudo-random data then we can conceivably use it for some

cryptographic applications where we might use a shared one-time pad (see for

example [125]). Later, in Section 3.4.4, we will discuss the issues surrounding

this, and a more suitable way of combining hash functions to generate random

numbers.

The property that any xi can be calculated from any xj if i ≥ j makes

some applications more robust. For example, if we have a noisy channel and

are trying to authenticate with Lamport’s password authentication scheme

then the receiver might receive a corrupted password (which it would rightly

disregard). However this value may still have been intercepted (before cor-

ruption) by an eavesdropper, and so the next value from the hash chain

should be sent. The receiver can still authenticate this value by applying the

hash function twice.

3.1.4 Further properties of hash chains

We will now look at preimage resistance, second preimage resistance, collision

resistance and pseudo-randomness in hash chains.

3.1.4.1 Preimage resistance

If there exists an algorithm A which takes as input f(x) (for arbitrary x) and

outputs a preimage x′ in time t then there exists a trivial extension to this

algorithm which finds a preimage for fn in time t · n.

CHAPTER 3. HASH STRUCTURES 42

Algorithm 1:
Description: An algorithm which takes as input fn(x), and

uses a preimage finding algorithm A to find an nth preimage

in time t · n.

Find nth preimage(U)

(1) xn = fn(x)

(2) for i = n to 1 step −1

(3) xi−1 = A(xi)

(4) return x0

This provides an upper bound, but it may be possible to invert fn more

efficiently than this.

As an extreme example, consider a one-way permutation f . For any

permutation f : S → S there exists a period p such that for all i ≥ 0 and

all x ∈ S, f i+p(x) = f i(x). Suppose the period of our function is n. Now

consider the (very long) hash chain {x, . . . , fn−1(x)}. We can find x from

fn−1(x) by simply applying f to it (fn(x) = x), which is much easier than

inverting n− 1 times.

3.1.4.2 Second preimage resistance

If there exists an algorithm B taking as input x, and producing a second

preimage x′ 6= x for f in time t, then the same algorithm will also find a

second preimage for fn in approximately time t (under the assumption that

evaluation of fn can be done as efficiently as evaluation of f). We now

explain this claim.

To find a second preimage of x under fn we use B to find x′ = B(x), a

second preimage for f . We know that x′ 6= x, but also we have that

fn(x) = fn−1(f(x)) = fn−1(f(x′)) = fn(x′),

and so x′ is a second preimage for x under fn.

The most efficient algorithm for finding a second preimage under f may

CHAPTER 3. HASH STRUCTURES 43

not be the most efficient algorithm for finding a second preimage under fn,

but it provides us with an upper bound on the ‘second preimage resistance’

of fn.

In fact it may be easier to find a second preimage for the hash chain as

we can pick any start value not on the chain and hash it repetitively, hoping

to get any of the values on the chain. If we collide with some point on the

chain then we will stay on the chain, and so one of the values we have already

considered will be a second preimage under fn (under the assumption that

we do not coincide with the original hash chain at a point f i(x) until at least

i hash applications).

3.1.4.3 Collision resistance

Finding a collision under chained hash functions is similar to finding a second

preimage. If we know a collision for f then we also know a collision for fn,

but collisions for fn are not necessarily collisions for f , so intuitively finding

a collision for a hash chain should be easier.

3.1.4.4 Pseudo-randomness

As was discussed in Section 2.4, we have not given a precise definition of

what it means for a hash function to be pseudo-random. It seems intuitive

that if we were not ‘expecting’ f(x) then we also will not be ‘expecting’ f 2(x)

or fn(x) but, by considering a one-way permutation again, we can see that

if we have a very long chain with n equal to the period of our hash function

then we may not be able to guess anything about f(x) from x, but we will

know the value of fn(x) for any value of x.

3.1.4.5 Random mapping properties

In the above discussion we looked at various properties which we may want fn

to have, and whether properties of f provide these properties. One property

that it is possible to overlook is that hash functions are often designed to

map arbitrary length strings to finite strings, and so fail to be bijective by

design. Consequently it is quite possible that the range of f 2 is smaller than

CHAPTER 3. HASH STRUCTURES 44

the range of f . In fact it is possible (if very unlikely) that for some i the

range of f i is only one value. This would obviously make any hash chains

formed from f useless if they needed to be longer than i values long.

It is also certain that cycles (possibly only cycles of length 1) will exist

in the digraph formed by the application of f to the range of f (every vertex

x has a directed edge leading to vertex f(x)). We do not need to worry if

these cycles are very long compared to the length of the hash chain, but if

the cycle is shorter than the length of the chain then we may get repetition

of values in our hash chain, which would be a problem for many applications

(for example Lamport’s password scheme).

There has been much research looking into properties of chained func-

tions [40, 109, 112]. In [40] Flajolet and Odlyzko prove that for a random

mapping f with range 2l, the size of the image after k applications of f

is approximately (1 − τk) × 2l, where τ0 = 0 and τi+1 = eτi−1. They also

prove that the average cycle length will be approximately
√
π2l/8, with the

expected number of cycles of length r equal to 1/r.

These results show that when working with a hash chain formed from

an l-bit hash function, the resulting security is likely to be less than l bits.

However if 2l is large compared to n then the security will not be drasti-

cally affected. Thus by assuming 2l >> n for the rest of this thesis we can

assume that a hash chain formed with a preimage-resistant hash function f

(respectively second preimage resistant, collision-resistant) will be approxi-

mately preimage resistant (respectively second preimage resistant, collision

resistant) at each step, as well as fn being approximately preimage resistant

(respectively second preimage resistant, collision resistant).

Further study of the properties of random mappings falls outside the

scope of this thesis.

3.1.5 Infinite-length hash chains

While hash chains require very little storage, a disadvantage for many situa-

tions, such as Lamport’s password authentication scheme (see Section 3.1.1),

CHAPTER 3. HASH STRUCTURES 45

is that a hash chain is finite1 and thus any application eventually requires

the hash chain to be replaced by a new chain.

‘Infinite-length hash chains’ [9] (or ‘Chameleon chains’ [32, 33]) use a trap-

door one-way function, such as exponentiation modulo a composite number,

instead of the hash function. This allows traversal in one direction along the

chain by anyone who knows the composite (public key), but only people who

know the factorisation (private key) can easily compute values in the other

direction.

Although this approach may be useful in some applications, we will not

consider it further, as trapdoor one-way functions are significantly slower

than hash functions, and speed is one of the key reasons for using hash

chains.

3.2 Hash trees

We can use the compression property of a hash function to combine two (or

more) input values to produce a single output value. This observation invites

the idea of having values at the nodes of a tree, and hashing along the edges

towards the root. We explain why this might be useful in Section 3.2.4.

3.2.1 Basic graph theory definitions

In this section we define some basic terminology from graph theory.

A graph G is made up of a set of vertices V and edges connecting pairs

of vertices together. The set of edges E is contained in the set of unordered

vertex pairs and an individual edge between vertices v and w is denoted vw

(or equivalently wv).

In our definition we do not allow edges for which both ends are the same

(loops), or two edges which share the same pair of end points. If there is an

edge between two vertices we say the vertices are neighbours. The degree of

a vertex is the number of neighbours it has.

1Hash chains have finite length as the end value must be computed before the rest of
the values can be used.

CHAPTER 3. HASH STRUCTURES 46

A path is a list of vertices P = v0, . . . , vn such that no vertex appears

more than once on the list, and such that any two consecutive vertices on

the list are neighbours. The length of a path containing n + 1 vertices is n

(the number of edges between consecutive vertices on the path). If there is

a path with start vertex v and end vertex w, then we say that v and w are

connected. If there is no path starting at v and ending at w then we say they

are disconnected. A graph is connected if all vertices are pairwise connected.

A cycle is a path (with 3 or more vertices) whose last vertex is a neighbour

of the first. The length of a cycle containing n vertices is n (the number of

edges traversed when following the cycle).

A tree is a connected graph with no cycles. A leaf of the tree is any vertex

with degree one. A rooted tree is a tree with one special vertex labelled as

the root vertex. A leaf of a rooted tree is any vertex with degree one, with

the possible exception of the root, which is never a leaf.

The parent of a vertex v in a rooted tree is the neighbouring vertex on

the unique path from v to the root. The root has no parent. Vertex v is the

child of another vertex w if w is the parent of v. The leaves of a rooted tree

have no children. A vertex in a rooted tree may have several children, but

will have exactly one parent (with the exception of the root).

The siblings of a vertex v in a rooted tree are the other children of the

parent of v. Obviously the root has no siblings. Note that it is not necessary

that the siblings of a leaf are also leaves. We define the sibling set of a path P
to be the set of all vertices that have a sibling in P .

If a path exists from the root to a vertex w through a vertex v then we

say that w is a descendant of v, and that v is an ancestor of w.

In a rooted tree, the height h(v) of a vertex v ∈ V is the length of the

(unique) path connecting it to the root. The height of a rooted tree is the

maximum height of a vertex in it.

A binary tree is a rooted tree such that any vertex has at most two

children. An a-ary tree is a rooted tree such that any vertex has at most

a children.

Note that a 1-ary tree is a path, and a 2-ary tree is a binary tree.

A proper a-ary tree is a tree where all vertices have either 0 or a children.

CHAPTER 3. HASH STRUCTURES 47

A perfect a-ary tree is a proper a-ary tree such that the height of all leaves

is the same.

We will introduce a new definition of our own that will be useful later.

Definition 3.2. An almost perfect a-ary tree is an a-ary tree with the

following two properties.

• Any vertex that is not the root or a leaf has exactly a− 1 siblings.

• The difference in height between any two leaves is at most 1.

Note that any perfect tree is also almost perfect.

3.2.2 Definition of a hash tree

Definition 3.3. A hash tree is a rooted tree on an ordered vertex set V ,

with a value xv associated with each vertex v ∈ V , computed using a hash

function f . The value associated with each vertex depends on its position in

the tree, and is given by:

xv =

{
f(xc0|| . . . ||xcr−1) if v has r > 0 children (c0, . . . , cr−1)

Any valid input if v is a leaf.

In other words, to make a hash tree from a rooted tree we choose values

for each leaf, and for every vertex v with children w0, . . . , wd−1 we set xv =

f(xw0|| . . . ||xwd−1
). It is important that the vertices have some fixed ordering,

otherwise changing the order of the children will alter the value xv. An

example of a hash tree is given in Figure 3.1 to help illustrate some of the

terminology.

We name hash trees by the underlying tree type; for example, a binary

hash tree is a hash tree on a binary tree.

CHAPTER 3. HASH STRUCTURES 48

x0 = f(x1||x2)

x1 = f(x3||x4)

44jjjjjjjjjjjjjjjj
x2 = f(x5||x6)

jjTTTTTTTTTTTTTTTT

x3

88qqqqqqqqqqq
x4

ffNNNNNNNNNNN
x5

88qqqqqqqqqqq
x6

ffNNNNNNNNNNN

Figure 3.1: A perfect binary hash tree with height 2.

3.2.3 Merkle trees

In this section we look at a particular type of hash tree which we will refer

to as a Merkle tree.

Definition 3.4. A Merkle tree is a hash tree where every leaf has no

sibling.

Many authors use the term Merkle tree to refer to any hash tree, but

in this thesis it refers to the class of hash trees in Definition 3.4. We note

that a Merkle tree as we have defined it here corresponds more closely to the

construction given by Merkle in [85], than our definition of a hash tree.

Although Merkle trees are clearly a type of hash tree, it can be useful to

think of a Merkle tree as being formed by taking any hash tree, and hashing

the leaf values before using them in the hash tree.

The reason for the preliminary hashing in a Merkle Tree is usually to

ensure that the data going into the tree is of a sensible size. If each of the

leaves represents a whole file of data, then it makes sense to hash the file

before trying to do anything more complicated with it. As we will see later

(Section 5.2.3.2), it is sometimes also useful to have the leaves of the hash

tree ‘protected’ by an extra hash.

We will name types of Merkle Trees by the underlying hash tree. For

example the Merkle tree in Figure 3.2 is a perfect binary Merkle tree, be-

cause it is the extension of a perfect binary hash tree (see Figure 3.1) to a

Merkle tree. We will refer to the height of a Merkle tree as the height of

the underlying hash tree. Consequently the Merkle tree in Figure 3.2 has

height 2, even though it can also be seen as a hash tree with height 3.

CHAPTER 3. HASH STRUCTURES 49

x0 = f(x1||x2)

x1 = f(x3||x4)

55kkkkkkkkkkkkkkk
x2 = f(x5||x6)

iiSSSSSSSSSSSSSSS

x3 = f(x7)

99ttttttttt
x4 = f(x8)

eeJJJJJJJJJ

x5 = f(x9)

99ttttttttt
x6 = f(x10)

eeKKKKKKKKKK

x7

OO

x8

OO

x9

OO

x10

OO

Figure 3.2: A perfect binary Merkle tree with height 2.

3.2.4 Motivation

To understand our motivation for the use of hash trees, consider how they

can be used to help with version management of computer files. This scheme

is based on Merkle’s original use of a hash tree to verify the public keys of

instances of a one-time signature scheme [85].

A set of files are grouped into folders, and the folders may also be grouped

into other folders, in such a way that everything is ultimately contained in a

top level folder. The folders form a rooted tree structure with the root vertex

represented by the top level folder, and the leaves represented by the files.

A hash tree is then formed from the rooted tree, using the hash of each

file as the value at each leaf, and calculating the values at the other vertices

from the leaves.

The root value is published in some respected location, and then all users

can check that they have the same set of files in folders as they are intended

to have (for example for a program to execute correctly). If a user has a

corrupted file then the value they obtain at the root of their hash tree will be

different from the published value, and they will know they need to replace at

least one file. If some of the other values are published then a user can narrow

down further which file is corrupted, and so will have to obtain replacements

for fewer files.

It is of course possible to publish the hash of each file, but this may not

be appropriate if we want to minimise the amount of published data, or if

CHAPTER 3. HASH STRUCTURES 50

obtaining published data is costly for the user.

We will explore further this scheme in Section 5.1.1, including how this

scheme is particularly useful when we consider version management.

3.3 Generalising hash function structures

3.3.1 Directed acyclic graphs and hash DAGs

Hash chains and hash trees can both be generalised by a structure we will

call a “hash DAG”, based on a directed acyclic graph.

Definition 3.5. A directed acyclic graph (DAG) is a graph in which

every edge has a direction associated with it, and which contains no cycle

conforming to the directions of the edges.

A source of a DAG is a vertex which no edge leads to.

A sink of a DAG is a vertex from which no edge leaves.

It can easily be proved that every (finite) DAG contains at least one

source and one sink.

To maintain consistency with hash trees, we define a vertex v to be a

child of a vertex w if there is a directed edge from v to w, and w to be a

parent of v if v is a child of w.

Definition 3.6. A hash DAG is a DAG on an ordered vertex set V , with

a value xv associated with each vertex v ∈ V , computed using a hash func-

tion f . The value associated with each vertex depends on its position in the

tree and is given by:

xv =

{
f(xc0|| . . . ||xcr−1) if v has r > 0 children {c0, . . . , cr−1}
Any valid input if v has no children.

3.3.2 Vertices with the same set of children

If two vertices in a hash DAG have the same set of children then they will also

have the same value. In many applications we will wish to ensure that the

CHAPTER 3. HASH STRUCTURES 51

values at all vertices are different (or at least that they are not predictably

the same value).

There are a number of ways to approach this issue, the simplest of which

is to treat all vertices which share the same set of children in an identical

way. If we wish vertices to have different values then we should simply design

the directed acyclic graph so that they do not share all the same children.

An alternative method is to use an input variable yv for each vertex v

(except the leaves). By this we mean hashing the concatenation of the values

at the child vertices with a (parent) vertex dependent input value.

There are different ways to define the input variables, such as generating

them at random.

In the next section we will look at generalised hash DAGs, which is inclu-

sive of input variable schemes. The remainder of the hash structures in this

chapter are types of generalised hash DAG.

3.3.3 A generalised hash DAG

The next structure generalises a hash DAG by allowing a choice of hash

function for each parent vertex. This allows vertices that share the same

set of children to have values that cannot easily be derived from each other.

Although this structure has been used in the literature (for example [10]),

we believe this to be the first formal definition.

Definition 3.7. A generalised hash DAG is a DAG on an ordered vertex

set V , with a value xv associated with each vertex v ∈ V , computed using a

family of hash functions f∗. The value associated with each vertex depends

on its position in the tree and is given by:

xv =

{
fv(xc0|| . . . ||xcr−1) if v has r > 0 children {c0, . . . , cr−1}
Any valid input if v has no children.

An example of a generalised hash DAG is given in Figure 3.3.

It is important also to note that the generalised hash DAG is a very gen-

eral and unwieldy structure. We will prefer to use more restrictive structures

whenever possible.

CHAPTER 3. HASH STRUCTURES 52

x0 = f0(x1||x2||x3)

x1 = f1(x4||x5)

44jjjjjjjjjjjjjjjjj
x2 = f2(x4||x5)

OO

x3 = f3(x4||x5)

jjTTTTTTTTTTTTTTTTT

x4

OO 55 22eeeeeeeeeeeeeeeee x5

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

ii OO�
�
�

Figure 3.3: An example of a generalised hash DAG. Note that by suitably
defining the functions f1, f2 and f3, we can ensure x1, x2 and x3 are inde-
pendent random variables.

3.4 Useful examples of generalised hash DAGs

We now examine some useful examples of generalised hash DAGs. In partic-

ular we look at rainbow chains, hierarchical chain constructions, chained

pseudo-random number generators, inverted hash trees, sandwich chains,

general hash chains and comb skipchain constructions.

3.4.1 Rainbow chains

Using a different hash function for each link of a hash chain generates a

rainbow chain.

Definition 3.8. A rainbow chain C is a hash chain which uses a (po-

tentially) different hash function for each link. That is xi = fi−1(xi−1) for

i ∈ [1, n], and x0 is any valid input.

Figure 3.4 provides an example of a rainbow chain. The term ‘rainbow

chain’ is due to Oechslin [97], and comes from the idea of associating each of

the functions with a colour.

x0
f0 // x1

f1 // x2
f2 //___ . . . fn−1 ///o/o/o xn

Figure 3.4: A rainbow chain of length n.

Rainbow chains have the obvious drawback compared to hash chains that

the construction requires knowledge of several hash functions (or a family of

CHAPTER 3. HASH STRUCTURES 53

hash functions). However the major advantage when using rainbow chains is

the prevention of small cycles.

3.4.2 Joining hash chains

Another useful construction is the idea of using the values of one hash chain

to seed other hash chains.

We first consider a simple case with just one new hash chain seeded from

value xi of the original chain (see Figure 3.5). It is clear that the new chain

cannot use the same hash function as the original hash chain, otherwise we

will end up with the second value of the new chain being xi+1, the third value

being xi+2, and so on. Consequently we use different hash functions for the

additional chains.

x0
f // . . . f // xi

f //

f ′

""DD
DD

DD
DD

xi+1
f // . . . f // xn

yi+1
f ′ // . . . f ′ // yn

Figure 3.5: A hash chain seeded from another hash chain.

3.4.3 Hierarchical chain construction

Another construction which uses hash chains to seed new hash chains is the

hierarchical chain construction from [76].

Definition 3.9. A hierarchical chain construction with dimension d is a

set of hash chains C0,∅, C1,{a0}, . . . , Cd,{a0,...,ad−1}, with ai ∈ {0, . . . , ni} where ni

is the length of all chains in dimension i. The chain C0,∅ is seeded from some

chosen value, and all the other chains are defined inductively from it. The

chain Cl,{a0,...,al−1} is seeded with the (al−1)
th value of the chain Cal−1,{a0,...,al−2}.

We give an example of a hierarchical chain construction in Figure 3.6. In

this example the initial seed value is x0,0,0, and xi,j,k is defined by

xi,j,k = fk
2 (f j

1 (f i
0(x0,0,0))).

CHAPTER 3. HASH STRUCTURES 54

To help reinforce our naming scheme, we give some examples of named

hash chains below.

Hash chain name Set of vertices contained in the hash chain

C0,∅ {x0,0,0, x1,0,0, x2,0,0, x3,0,0}
C1,{3} {x3,0,0, x3,1,0, x3,2,0}
C2,{3,1} {x3,1,0, x3,1,1, x3,1,2, x3,1,3, x3,1,4}

We give an application of a hierarchical chain construction in Section 4.4.3.

x0,0,0
f0 //

f1xx
f2

���
�
�

x1,0,0 //

xx ���
�
�

x2,0,0 //

xx ���
�
�

x3,0,0

{{ ���
�
�

x0,1,0

{{ ���
�
�

x0,0,1

���
�
�

x1,1,0

xx ���
�
�

x1,0,1

���
�
�

x2,1,0

xx ���
�
�

x2,0,1

���
�
�

x3,1,0

xx ���
�
�

x3,0,1

���
�
�

x0,2,0

���
�
�

x0,1,1

���
�
�

x1,2,0

���
�
�

x0,0,2

���
�
�

x1,1,1

���
�
�

x2,2,0

���
�
�

x1,0,2

���
�
�

x2,1,1

���
�
�

x3,2,0

���
�
�

x2,0,2

���
�
�

x3,1,1

���
�
�

x3,0,2

���
�
�

x0,2,1

���
�
�

x0,1,2

���
�
�

x1,2,1

���
�
�

x0,0,3

���
�
�

x1,1,2

���
�
�

x2,2,1

���
�
�

x1,0,3

���
�
�

x2,1,2

���
�
�

x3,2,1

���
�
�

x2,0,3

���
�
�

x3,1,2

���
�
�

x3,0,3

���
�
�

x0,2,2

���
�
�

x0,1,3

���
�
�

x1,2,2

���
�
�

x0,0,4 x1,1,3

���
�
�

x2,2,2

���
�
�

x1,0,4 x2,1,3

���
�
�

x3,2,2

���
�
�

x2,0,4 x3,1,3

���
�
�

x3,0,4

x0,2,3

���
�
�

x0,1,4 x1,2,3

���
�
�

x1,1,4 x2,2,3

���
�
�

x2,1,4 x3,2,3

���
�
�

x3,1,4

x0,2,4 x1,2,4 x2,2,4 x3,2,4

Figure 3.6: A hierarchical chain construction in 3 dimensions and lengths
{n0, n1, n2} = {3, 2, 4}.

3.4.4 A chained pseudo-random number generator

A particularly useful example of the hierarchical chain construction is the

following construction, which is similar to the construction of the key stream

generators in many stream ciphers. The generator is seeded with an initial

state, and then the key stream is produced by applying two functions, an

update function and output function. We refer to this construction as a

chained pseudo-random number generator (Figure 3.7).

CHAPTER 3. HASH STRUCTURES 55

Definition 3.10. A chained pseudo-random number generator is a

hierarchical chain construction in 2 dimensions with lengths {n, 1}.

The values at the ends of the secondary chains can be used as pseudo-

random numbers, and are all generated from a single seed.

x0
f //

g

��

x1
f //

g

��

x2
f //

g

��

· · ·

y0 y1 y2 · · ·

Figure 3.7: A chained pseudo-random number generator seeded by x0, using
hash functions f and g.

3.4.5 Inverted hash trees

Definition 3.11. An inverted hash tree is a rooted tree on an ordered

vertex set V , with a value xv associated with each vertex v ∈ V, computed

using a family of hash functions f∗. The value associated with each vertex

depends on its position in the tree, and is given by:

xv =

{
fv(xp) if v has a parent p;

Any valid input if v is the root.

Inverted hash trees exist for all types of trees, and so it may be useful to

consider the same trees we looked at in Section 3.2.1. For example, Figure 3.8

shows a perfect binary inverted hash tree.

x0

vvllllllllllllll

((
x1 = f0(x0)

zzvvv
vv

vv
vv

$$

x2 = f1(x0)

zzvvv
vv

vv
vv

$$
x3 = f0(x1) x4 = f1(x1) x5 = f0(x2) x6 = f1(x2)

Figure 3.8: A perfect binary inverted hash tree with height 2.

CHAPTER 3. HASH STRUCTURES 56

One type of tree which will be of particular interest when considering

inverted hash trees is the tree of depth one. This is used in [70] as part of a

key establishment scheme. The authors refer to the tree as a star-like tree.

An example is shown in Figure 3.9 to illustrate this name.

x1 = f0(x0)

x7 = f6(x0) x2 = f1(x0)

x0

OO

hhRRRRRRRRRRR

66lllllllllll

��		
		

		
		

		

��5
55

55
55

55
5

rreeeeeeeeeeeeeeee
,,YYYYYYYYYYYYYYYY

x6 = f5(x0) x3 = f2(x0)

x5 = f4(x0) x4 = f3(x0)

Figure 3.9: A star-like inverted hash tree with seven leaves.

It can also be seen that a hierarchical chain construction is in fact an

inverted hash tree with one main branch, sub-branches from that, and so on.

3.4.6 Sandwich chain construction

Another idea to connect hash trees together is the sandwich chain construc-

tion from [55]. Here we can imagine a main hash chain C = {x0,0, . . . , xn+1,0}
with secondary hash chains Cxi

seeded from each value xi,0 of the main chain.

The secondary chains use a different hash function from the main chain’s

hash function, instead being selected from a family of hash functions g∗. The

secondary chains are tied together at the end by a connected set of values

{x−1,r, x0,r, . . . , xn,r}. Figure 3.10 may help when trying to envisage this, and

a more rigorous definition follows.

Definition 3.12. A sandwich chain of length n and depth r, is a set of

values {xi,j} defined as follows.

CHAPTER 3. HASH STRUCTURES 57

xi,j =


Any valid input if i = 0, j = 0 or i = −1, j = r

f(xi−1,j) if j = 0, i ∈ [1, n+ 1]

gxi+1,0
(xi,j−1) if j ∈ [1, r − 1], i ∈ [0, n]

f(xi−1,j||xi,j−1||xi+1,0) if j = r, i ∈ [0, n]

We will see an example of an application of a sandwich chain in Sec-

tion 4.5.1.

x0,0
f //

gx1,0

���
�
�

x1,0
f //

rr

zz

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��gx2,0

���
�
�

. . . f //

ss

{{

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

xn,0

gxn+1,0

���
�
�

ss

{{

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

f // xn+1,0

rr

zz

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

x0,1

gx1,0
���
�
�

x1,1

gx2,0
���
�
�

. . . xn,1

gxn+1,0
���
�
�

...
gx1,0

���
�
�

...
gx2,0

���
�
�

. . .
...

gxn+1,0

���
�
�

x0,r−1

��

x1,r−1

��

. . . xn,r−1

��
x−1,r // x0,r // x1,r // . . . // xn,r

Figure 3.10: A sandwich chain.

3.4.7 General hash chain

In [16], Bradford and Gavrylyako create a general hash chain. They ob-

serve that each value in the chain could be dependent on any number of its

predecessors, and a chain would still be created.

Definition 3.13. A general hash chain of length n and depth d is a set

of values {x0, . . . , xn} such that xi = f(xi−d||xi−d+1|| . . . ||xi−1) for i ∈ [d, n]

and x0, . . . , xd−1 are valid inputs for f , for some hash function f .

We will see an application of the general hash chain in Section 4.5.3.

CHAPTER 3. HASH STRUCTURES 58

3.4.8 Hash chain with breakpoints

In [42], Goyal creates a structure based on a hash chain. They define every

dth chain value to be dependent on an additional value, as well as the previous

chain value.

Definition 3.14. A hash chain with breakpoints of length rd with break-

points distance d apart, is a set of values s ∪ {x0, . . . , xrd} ∪ {b0, . . . , br}
computed using a family of hash functions f∗, such that:

s = Any valid input;

bi = fi(s);

xi =


f0(s||b0) if i = 0;

f0(xi−1||bi/d) if i is divisible by d;

f0(xi−1) otherwise.

We will see an application of this construction in Section 4.5.4.

3.4.9 Comb skipchain construction

Our final hash structure in this chapter is the comb skipchain construction

from [55]. The construction is a combination of a hash chain and a one-time

signature scheme.

Definition 3.15. A digital signature is a data string which associates a

message (in digital form) with some originating entity.

A digital signature generation algorithm (signature generation al-

gorithm, or signing algorithm) is a method for producing a digital signature.

A digital signature verification algorithm (or verification algorithm)

is a method for verifying that a digital signature is authentic (i.e. was indeed

created by the specified entity). A digital signature scheme consists of a

signature generation algorithm and an associated verification algorithm.

A one-time signature scheme is a signature scheme that can sign at

most one message without risk of forgery.

We will discuss one-time signature schemes more in Section 5.2.

CHAPTER 3. HASH STRUCTURES 59

Definition 3.16. A comb skipchain construction is a one-time signature

scheme with a single public key p0, together with a hash chain seeded from p0.

A comb skipchain construction is shown in Figure 3.11. We will see a use

of the comb skipchain in Section 4.5.2.

One-time
signature
scheme

// x0 // x1 // · · · // xn

Figure 3.11: A comb skipchain construction.

3.5 Conclusion

In this chapter we defined a number of structures which will be used in later

chapters. These included hash chains, hash trees, hash DAGs, generalised

hash DAGs, hierarchical chain constructions, inverted hash trees and sand-

wich chains. We believe this chapter to be the first such catalogue in the

literature, and it will prove very useful in later chapters.

Chapter 4

Entity authentication

In this chapter and the next we investigate how the hash structures from

Chapter 3 can be used to study issues of authentication, and compare these

to solutions based on other cryptographic primitives.

In Section 4.1 we begin by giving a brief overview of authentication, and

then focus on entity authentication. In Section 4.2 we look at hash based

one-time entity authentication schemes. We study unlimited-time entity au-

thentication schemes in Section 4.3, which are initialised over an expensive

secure channel. In Section 4.4 we then study a large number of n-time entity

authentication schemes, based on hash structures, and which do not require a

secure channel. In Section 4.5 we present an assortment of ideas that improve

on the schemes in the earlier sections. Finally in Section 4.6 we compare the

schemes from this chapter.

4.1 Introduction to authentication

In this section we briefly distinguish between message and entity authenti-

cation, before introducing the notions of channels and adversaries. We also

define a property of an entity authentication scheme which we have not seen

defined elsewhere. We end the section by identifying the costs that will be

used to assess the schemes in the rest of the chapter.

We note that there exists a large amount of research into the field of

authentication [15, 28, 31, 83].

60

CHAPTER 4. ENTITY AUTHENTICATION 61

4.1.1 Types of authentication

We now summarise the types of authentication as described by Menezes et

al. in [83].

Authentication can be divided into two types, entity authentication and

message authentication. The aim of message authentication is to provide

assurance that a message has not been tampered with (either accidentally

or maliciously) and to provide evidence of the origin of that message. A

recipient has assurance of the data origin of a message if they are sure of

the source it. Message authentication includes a data integrity check, as

authenticating the origin of a message without being sure of its contents is

nonsensical.

Entity authentication provides evidence of the identity of a person (or

another entity such as a computer or computer program). This proof of

identity normally requires a freshness mechanism, such as a time stamp, as

entity authentication is used to demonstrate that an entity is present at a

particular point in time [65, 66].

The aim of this chapter is to consider the application of the hash struc-

tures from Chapter 3 to entity authentication. In Chapter 5 we will consider

the application of the same set of hash structures to message authentication

(and in particular to signatures).

4.1.2 Public verifiability

The following property of an entity authentication scheme does not appear

to have been defined elsewhere. We will later exhibit some schemes that have

this property.

Definition 4.1. An entity authentication scheme has public verifiability

if the verifier can later prove to any third party that the authentication was

valid.

Public verifiability of an entity authentication scheme is similar to non-

repudiation of a message authentication scheme. If a message authentication

scheme has non-repudiation, then it is possible for anyone to identify the

CHAPTER 4. ENTITY AUTHENTICATION 62

author. Therefore it is possible to prove to any third party that the message

authentication is valid.

A real-world example that requires public verifiability is a long-distance

race, where each participant is required to pass through a series of check-

points. If the participants authenticate to the checkpoint officials using a

scheme with public verifiability then, once the race is over, the officials can

prove to the race judge (or anyone else) the identities of the participants that

they met. If the officials also authenticate to the participants using the same

scheme then the participants can also prove that they went through each

checkpoint.

4.1.3 Channels

During an entity authentication attempt, an authenticator A aims to con-

vince a verifier B of their identity. For some systems we may wish to have

a party T who is trusted by all the other parties.

They will be communicating with each other through channels with dif-

ferent properties, where by a channel we mean any method of communicating

between two entities, such as a telephone wire, an optic cable or electromag-

netic waves. When information is made public we denote it as being sent to

some public location P .

In the schemes in this chapter we will make use of the following types of

channel (summarised in Table 4.1).

Description Notation used
A uses an unprotected channel A→ B : m

A uses an authenticated channel A
A−→ B : m

A uses a secured channel A
S−→ B : m

A publishes m with no authentication A→ P : m

A publishes m in an authenticated way A
A−→ P : m

Table 4.1: Notation for different methods of passing information.

CHAPTER 4. ENTITY AUTHENTICATION 63

4.1.3.1 Unprotected channel

The simplest way in which A can send a messagem to B is via an unprotected

channel. We represent this communication as A→ B : m.

4.1.3.2 Authenticated channel

In order to provide authentication most protocols require an initial authen-

tication process upon which later authentications can be based. Typically

this initial process is costly, slow or inconvenient, and so using it each time

authentication is required is not feasible. We write A
A−→ B : m to mean that

A sent m to B and B has assurance of the data origin1 and freshness2 on

this channel. We refer to this channel as an authenticated channel.

4.1.3.3 Secure channel

We will describe a channel as a secure channel if it is an authenticated

channel, with the additional property that messages sent through it maintain

confidentiality.

We remark that a channel that is protected against eavesdroppers, but

which is not also an authenticated channel, is open to certain attacks. As an

example consider a bank which encrypts payment instructions in the form

Ek(a), Ek(b), Ek(c) where a and b are the account numbers which are to be

debited and credited, and c is a number representing the amount of money

to be transferred. The bank is using a confidential channel because any

eavesdropper who does not know k cannot work out a, b or c. However if an

adversary deposits a cheque for a small amount addressed to them, and then

changes the bank’s message from Ek(a), Ek(b), Ek(c) to Ek(a), Ek(b), r, with

r chosen at random, then they have a good chance of increasing the amount

their account receives (as it is likely that E−1
k (r) is quite large).

1As mentioned in 4.1.1 we need assurance of data integrity to have assurance of data
origin. Here we use data integrity to include reordering and deletion of parts of the
message.

2We need freshness here as we will be using this channel for initialisation. We will always
wish to avoid an attack in which an adversary can reuse an old initialisation message, along
with the recorded authentication values. See [66] for a more detailed discussion.

CHAPTER 4. ENTITY AUTHENTICATION 64

If the channel was a true secure channel, the bank would notice that

either the data origin or the message integrity have been violated, and so

would not process the message in the usual way.

We assume that use of a secure channel is relatively expensive and so will

usually only be used for initial key agreements. To show that a channel is

secure we write A
S−→ B : m.

4.1.3.4 Unprotected publishing

If an entity A wishes to send a value to a large number of users, as in the

case of broadcast, then they can publish it, which we denote by A→ P : m.

We will assume that there is an agreed means of retrieval of a message sent

in this way. We assume that the ‘cost’ of publishing is about the same as

sending the message over an unprotected channel.

Although we have not differentiated here between publishing a message

and broadcasting it, the two have slightly different properties. If a message

is broadcast then typically only those users ‘listening’ at the time will receive

it. If a message is published then no user receives it immediately; instead

they must retrieve the message from a published location.

4.1.3.5 Authenticated publishing

In most cases the sender A of a published message m will want to allow

recipients to be able to verify the origin of m. We will assume that they can

guarantee that the data will be quickly available to anyone that wants it.3

This type of authenticated publishing will be denoted as A
A−→ P : m. We

will make the reasonable assumption that authenticated publishing is more

‘costly’ than publishing.

3We note that for some applications this could be very costly.

CHAPTER 4. ENTITY AUTHENTICATION 65

4.1.4 Adversarial models

With respect to entity authentication, the main aim of an adversary E is to

persuade the verifier B that they (E) are an authorised entity (for exam-

ple A).

An adversary may be satisfied if they can simply prevent two entities A

and B from carrying out entity authentication successfully, and depending on

the adversary’s capabilities this may be very easy. One attack which may be

possible, depending on B’s capabilities, is a denial of service (DoS) attack,

whereby the adversary sends so many false messages to B that either A’s

messages do not get received or B is so busy processing spoof messages that

B takes a prohibitively long time to process A’s request. Denial of service

attacks fall outside the scope of this research.

We will look at two types of adversary:

Definition 4.2. An active adversary EA can eavesdrop on unprotected

and authenticated channels, and can send messages on unprotected channels.

A special type of active adversary is the record and replay adversary that

records a message sent along an unprotected channel and replays it at a later

time.

Definition 4.3. A man-in-the-middle adversary EM intercepts all mes-

sages along all channels. It can edit, block or create new messages along

unprotected channels. It can block messages along authenticated and secure

channels. It cannot read messages that are sent along secure channels, but

it can read all other messages.

A man-in-the-middle adversary is always able to attack a system by not

passing any communications between the authenticating and verifying par-

ties. We assume that the man-in-the-middle adversary has a secondary objec-

tive to avoid being discovered. If the adversary fails to pass any information

along the channels to which they have gained access then the authenticating

parties may resort to setting up new channels to use, which might not benefit

the adversary.

CHAPTER 4. ENTITY AUTHENTICATION 66

We do not consider attacks in which a man-in-the-middle adversary edits

messages on authenticated channels (or secure channels), as these changes

would be detected by the receiver, and the spoof messages would be rejected.

Two other common types of attack are as follows (the adversaries capable

of performing each attack are given in brackets).

• Record and replay (EA and EM): The adversary records an authen-

tication message from one session, and replays it to the verifier during

a later session.

• Intercept and replay (EM): The adversary intercepts an authenti-

cation message from one session, preventing the verifier receiving it.

They then use the message to falsely authenticate to the verifier during

a later session.

We note that for both attacks there is no dependence on the presence of

the authenticator.

4.1.5 Entity authentication phases

The use of hash functions and one-way functions to build password based

entity authentication schemes was first proposed in the 1970s [36, 69, 153].

In the next section we will examine how hash functions, and in particular

hash structures, can be applied to entity authentication.

All our schemes can be viewed as a combination of at most three phases.

Firstly, the initialisation phase allows entities to create and share secret

information and commitments. During the entity authentication phase the

verifier validates the identity of the authenticator. Finally, some schemes

have an additional phase in which the verifier proves to a third party that

they have had contact from the authenticator.

CHAPTER 4. ENTITY AUTHENTICATION 67

4.1.6 Associated costs

Each of the schemes that we look at in this chapter has associated costs. We

will now briefly discuss some of these.

1. Complexity - Possibly the most obvious cost associated with any pro-

tocol is the amount of computation needed. In many authentication

protocols this is best approximated by the amount of computation re-

quired to perform modular exponentiation. Since we are interested

in light-weight hash-based schemes where we hash short ‘messages’, a

more appropriate measure of computational complexity is the number

of hash function evaluations required per phase of the entity authenti-

cation protocol.

2. Communication cost - Another cost is the number of values that need to

be sent during each phase. We will mostly be interested in the number

of values sent during the entity authentication phase.

3. Channel type - As discussed in Section 4.1.3, different types of commu-

nication channel have different associated costs.

4. Security - Although security is often thought of as a property of the

scheme, it can also be seen as cost. Some schemes may be very efficient

in terms of complexity and communication costs, but these may come

at the expense of weaker security.

4.2 One-time entity authentication schemes

In this section we present several one-time entity authentication schemes.

They can be used only once before they become vulnerable to record and

replay adversaries. If we are not worried about record and replay adversaries

then they can be used many times.

Definition 4.4. A one-time entity authentication scheme is an entity au-

thentication scheme which can only be securely used once before another

initialisation phase must be executed.

CHAPTER 4. ENTITY AUTHENTICATION 68

All of the schemes in this section can be applied to the scenario of an

entity A using a password to log onto a computer network. One potential

problem with password dependent schemes is that, if A is a human, then

A will tend to choose passwords fairly predictably. For the purposes of this

chapter we will assume passwords and other secrets to be chosen in a secure

manner, for example by a pseudo-random number generator.

In the rest of this section we present four schemes which are all ‘one-time’.

We end the section by comparing the schemes and exploring the strengths

and weaknesses of each.

4.2.1 Trivial one-time password entity authentication

Our first example is a very simple authentication scheme based on the idea

of a password. In the trivial one-time password entity authentication scheme,

the authenticator creates a shared secret value with the verifier. As proof of

identity, the authenticator reveals the secret value. Authentication based on

passwords that are only used once is a well known principle in cryptography

[28, 83]. We include this scheme as it forms a benchmark against which

other entity authentication schemes can be compared. The trivial one-time

password entity authentication scheme also emphasises how powerful a secure

channel can be.

Entity Authentication Scheme 4.1: The trivial one-time password entity

authentication scheme.

Initialisation

• A chooses a value x at random.4

• A
S−→ B : x

Entity authentication

• A→ B : x

• B verifies that A has sent the correct value.

4We note that when choosing secret values randomly they should be chosen uniformly
from a suitably large set - for example the set of bit strings of length 256.

CHAPTER 4. ENTITY AUTHENTICATION 69

Security

• If the authentication phase is allowed to be used more than once with-

out first rerunning the initialisation phase then an active adversary can

perform a record and replay attack.

• A man-in-the-middle adversary can perform an intercept and replay

attack to masquerade as A.

Since only A and B know the password x, B can be sure that A is the

sender.

4.2.2 Basic one-time hash based entity authentication

We now look at how we can use hash functions to improve on Entity Au-

thentication Scheme 4.1.

The basic one-time hash based entity authentication scheme has an ad-

vantage over Entity Authentication Scheme 4.1. The initialisation phase does

not require setting up a shared secret, and therefore only needs an authenti-

cated channel, not a secure channel.

Another advantage of this scheme over Scheme 4.1 is that even if an

adversary obtains access to the hard drive of B’s computer (and learns f(x))

then they still cannot falsely authenticate A to B. The storage of the hash

of passwords for this reason is a well established practice [83, 89].

Entity Authentication Scheme 4.2: The basic one-time hash based en-

tity authentication scheme.

Initialisation

• A picks a value x at random, and computes the hash of it using a

preimage-resistant hash function f (which is specified as a system pa-

rameter).

• A
A−→ B : f(x)

CHAPTER 4. ENTITY AUTHENTICATION 70

Entity authentication

• A→ B : x

• B hashes x and checks it is the same as the value A originally sent.

Security

• If the authentication phase is allowed to be used more than once with-

out first rerunning the initialisation phase then an active adversary can

perform a record and replay attack.

• A man-in-the-middle adversary can perform an intercept and replay

attack to pose as A.

This scheme avoids using a secure channel because it does not matter

who knows f(x). It is only important that A is the only entity that knows x.

4.2.3 Traditional password entity authentication

The traditional password entity authentication scheme (Scheme 4.3) is used

by many applications in computer networks. In the initialisation phase A

passes f(x) to B using a secure channel (for example typing it into B’s com-

puter). This makes no obvious gain in security over Scheme 4.2, as one of

our assumptions is that it is difficult to find x from f(x).

Entity Authentication Scheme 4.3: The traditional password entity au-

thentication scheme.

Initialisation

• A picks a value x at random.

• A
S−→ B : f(x)

Entity authentication

• A→ B : x

• B hashes x and verifies it is the same as the value A sent in the initial-

isation phase.

CHAPTER 4. ENTITY AUTHENTICATION 71

Security

• If the authentication phase is allowed to be used more than once with-

out first rerunning the initialisation phase then an active adversary can

perform a record and replay attack.

• A man-in-the-middle adversary can perform an intercept and replay

attack to pose as A.

Just as for the previous schemes, a record and replay adversary can

record x when it is sent over the unprotected channel and replay it to B

in an attempt to impersonate A. This attack will fail as long as each value x

is only used once. However since Scheme 4.3 is often used for many ses-

sions without reinitialisation; this constitutes a break of the scheme under

the assumption of the existence of an active adversary.

Despite this weakness, this scheme is widely adopted. One possible ex-

planation that this scheme is used in practice more often than Scheme 4.2

is that the use of a secure channel for initialisation gives a false sense of

protection.

4.2.4 Basic one-time hash based entity authentication

with public verifiability

We now present an extension of Scheme 4.2, which adds public verifiability

(see Section 4.1.2) at the expense of authentically publishing the initialisation

value. This idea forms the basis of Entity Authentication Scheme 4.10 which

we will look at later.

Entity Authentication Scheme 4.4: The basic one-time entity authenti-

cation scheme with public verifiability.

Initialisation

• A creates a random key x and computes the hash f(x).

• A
A−→ P : (f(x);A,B)

CHAPTER 4. ENTITY AUTHENTICATION 72

Entity authentication

• A→ B : x

• B hashes x and checks it against the value received during the initiali-

sation phase.

Proof of authentication

• B proves to some third entity C that A was authenticated by:

B → C : x.

• C can check against the authenticated public value f(x), which was set

up in the initialisation stage.

B has now proved communication with A to C. There are two potential

attacks which are relevant to the proof of authentication stage.

1. B may wish to fool C into thinking they know x before A has revealed

it. This is clearly flawed, as B would have to compute a preimage

of f(x).

2. An adversary may wish to prevent B from communicating x to C.

A man-in-the-middle adversary is able to do this but, as discussed in

Section 4.1.4, this may result in the adversary being detected.

The remaining security analysis is identical to Entity Authentication

Scheme 4.2.

This scheme can only be used once before another initialisation phase is

required. If it is used multiple times then, like all the previous schemes, this

scheme could be broken by a record and replay attack.

This scheme can be used for any application where A wishes to pass au-

thority to B at a later date. Also A does not have to trust C with x. A

hypothetical situation is if A is a well respected entity, paying for a service

that B is providing, and C is A’s bank. A publishes (f(x);A,B) as a commit-

ment to pay B on completion of a service. If necessary B can check with C

CHAPTER 4. ENTITY AUTHENTICATION 73

that A has the funds to pay for the service. Once B has provided the service,

A will send them x, which B can present to C to receive payment.

We note that in this example there is no guarantee that A will provide

B with x at the appropriate time, or even that A knows a preimage of f(x).

Instead this scheme relies on A being well respected, and we assume that if

A did not behave fairly then with time they would lose the respect attributed

to them. Schemes which do not depend on this kind of assumption are outside

the scope of this research, but are studied in more detail in [37, 101, 137].

4.2.5 Summary of one-time entity authentication schemes

The elementary one-time entity authentication schemes that we have dis-

cussed in this section are summarised in Table 4.2 in terms of:

• Complexity — The number of hash function evaluations required by A

in the initialisation phase (Init), and by A and B respectively in the

entity authentication phase (Auth).

• Comm. Cost — The communication cost in number of cryptographic

values sent by A during the initialisation phase (Init), and the entity

authentication phase (Auth). We assume all cryptographic values to

have the same number of bits as the output of the hash function used

in the scheme.

• Init. Channel — The (most expensive) type of channel used during the

initialisation phase: secure channel (S), authenticated channel (A) or

authenticated publishing (AP).

• Security EA — The number of times the scheme can be used securely

in the presence of an active adversary.

• Security EM — The capability of a man-in-the-middle adversary to

attack the scheme: EM can successfully pose as A for the duration of

the scheme by intercepting one message (✓); EM can successfully pose

as A n times by intercepting one message (n✓); EM cannot pose as A

(✕).

CHAPTER 4. ENTITY AUTHENTICATION 74

• Public Verif. — Whether the scheme has public verifiability or not.

Scheme Complexity Comm. Cost Init. Security Public
Init Auth Init Auth Channel EA EM Verif.

4.1 0 0, 0 1 1 S 1 ✓

4.2 1 0, 1 1 1 A 1 ✓

4.3 1 0, 1 1 1 S 1 ✓

4.4 1 0, 1 3 1 AP 1 ✓ ✓

Table 4.2: Summary of the one-time entity authentication schemes.

From Table 4.2 we can see that the scheme with the least computational

complexity is Scheme 4.1. The other schemes all require the same effort.

Scheme 4.4 is very similar to Scheme 4.2, the main performance differences

being that Scheme 4.4 provides public verifiability but requires three times

as much communication during the initialisation phase, as well as access to

public storage space.

Schemes 4.2 and 4.4 do not require a secure channel, and so are cheaper

to set up than the other schemes.

All the schemes in this section are limited by the fact that they can only

be used once before a reinitialisation must take place.

4.3 Simple ‘unlimited-time’ entity authenti-

cation schemes

We begin this section by giving a definition of ‘unlimited-time’ entity au-

thentication schemes. In Section 4.3.2.1 we look at unlimited-time challenge-

response entity authentication schemes. In Section 4.3.2.2 we look at how

unlimited-time schemes can be made using clocks or counters. We then

present a novel scheme with minimal storage requirements for both parties.

Finally we compare the schemes in this section.

CHAPTER 4. ENTITY AUTHENTICATION 75

4.3.1 Unlimited-time entity authentication

In the remainder of this chapter we look at schemes that can be used mul-

tiple times for each initialisation. We distinguish between two types of such

scheme: unlimited-time entity authentication schemes and n-time entity au-

thentication schemes.

Definition 4.5. An unlimited-time entity authentication scheme is an

entity authentication scheme that can be used an unlimited number of times,

until the secret values expire due to vulnerability to brute force attack.

In Section 4.4 we will look at ‘n-time’ entity authentication schemes,

which can be used several times, but which are likely to need re-initialising

within the lifetime of the scheme.

Definition 4.6. An n-time entity authentication scheme is an entity au-

thentication scheme that can be used a finite number of times before it must

be reinitialised.

By ‘unlimited-time’ entity authentication schemes we refer to entity au-

thentication schemes which, for all practical purposes, can be used as many

times as is required without repeating the initialisation phase. In theory they

can be broken by brute force if left long enough without re-initialising, as an

adversary could guess the values transferred in the initialisation phase.

An n-time entity authentication scheme may be secure for something in

the region of 210 authentications, depending on the parameters used. This

compares to an unlimited-time entity authentication scheme, which may be

secure for something more like 240 authentications, again depending on how

the scheme is set up and used.

We can convert our trivial one-time password entity authentication scheme

(Scheme 4.1) into an unlimited-time scheme by including a proof of freshness.

We now give two simple ways in which this could be done.

4.3.2 Traditional approaches

In this section we look at two traditional approaches to unlimited-time entity

authentication which are both in widespread use. Challenge-response oper-

CHAPTER 4. ENTITY AUTHENTICATION 76

ations and timestamps both allow repeated authentication and have been

examined in the literature [65, 66].

Throughout this section we apply a strong hash function f to the concate-

nation of a key k with a message m. There exist attacks on this construction

if the underlying hash function has particular structural properties (for ex-

ample if the Merkle-Damg̊ard construction is used [84]). These attacks led

to the creation of other constructions such as HMAC [4] and these should

be considered for any practical implementations. However it is beyond the

scope of this thesis to consider the structural design of hash functions, so we

simply assume that our hash function is not vulnerable to these attacks.

4.3.2.1 Basic challenge-response scheme

Challenge-response forms the basis of many authentication protocols [129,

160]. In one example of this type of scheme, A and B initially establish a

shared key x. Later B sends a random challenge text to A, who hashes the

challenge text with the key and sends it back to B. The challenge text is a

proof of freshness.

Entity Authentication Scheme 4.5: The basic challenge-response scheme.

Initialisation

• The entity A creates a random key x.

• A
S−→ B : x

Entity authentication

• B creates a random message m. This message should be chosen from a

suitable large set in a way that ensures messages are not reused. The

potential shortcomings of choosing messages that are too predictable

or that could be reused is discussed in detail in [41].

• B → A : m

• A hashes m together with the key x and sends it back: A → B :

f(x||m).

CHAPTER 4. ENTITY AUTHENTICATION 77

The authentication can be repeated an unlimited number of times, which

is a substantial improvement on all of the schemes in Section 4.2. It is not

vulnerable to record and replay attacks, since B will choose a different m

each time, and we assume that finding f(x||m) for a new message m is a

hard problem without knowledge of the key x, even after observing several

authentication phases.

Even a man-in-the-middle adversary EM cannot find the key x, so the only

way the adversary can create f(x||m) is by passing the challenge message m

to A and pretending to be B. However, if A wishes to authenticate and

sends f(x||m) to EM , then the man-in-the-middle adversary has done nothing

more than passing the messages on. Since we gave the adversary power to

intercept and edit unprotected messages as they wish, this does not show a

weakness in the scheme. Rather, it illustrates that the existence of a man-

in-the-middle adversary is a very strong assumption.

A disadvantage of this scheme is that the entity authentication stage

requires two messages to be sent (all previous schemes only require one).

However this scheme easily makes up for this drawback with the increase

in security compared with previous schemes. The amount of computation

required per authentication is approximately the same as for Scheme 4.2.

A bigger disadvantage of this scheme compared to Schemes 4.1, 4.2 and 4.4

is the reliance on a secure channel for the initialisation phase. For many

applications we would prefer to initialise with an authenticated channel as it

is far less expensive to set up.

4.3.2.2 Authentication with a counter or a time-dependent vari-

able

Another well studied proof of freshness is to use a timestamp. We look at

two very similar schemes which use a counter and a time-dependent variable

respectively. If A and B have a synchronised counter then this can be con-

sidered as a logical clock [67]. Both entities set their counter value t to zero

during the initialisation phase.

CHAPTER 4. ENTITY AUTHENTICATION 78

Entity Authentication Scheme 4.6: The basic counter based entity au-

thentication scheme.

Initialisation

• The entity A creates a random key x.

• A
S−→ B : x.

• A and B both create a counter t, which they initialise to 0.

Entity authentication

• A hashes the key with the current counter value t.

• A→ B : (f(x||t), t).

• If the received value t is less than B’s counter then B rejects the authen-

tication attempt. If t is at least as large as B’s counter then B continues

to the next step.

• B hashes t with the shared secret key x. B accepts A’s proof of identity

if the computed value matches the value received from A.

• A sets their counter to be t+ 1.

• If the authentication was successful then B sets their counter to be t+1.

The analysis of Scheme 4.6 is very similar to that of Scheme 4.7, which

is based on a time-dependent variable.

Entity Authentication Scheme 4.7: The basic time-dependent variable

entity authentication scheme.

Initialisation

• The entity A creates a random key x.

• A
S−→ B : x.

CHAPTER 4. ENTITY AUTHENTICATION 79

Entity authentication

• A hashes the key with a time-dependent variable t.

• A→ B : f(x||t).5

• B finds the time-dependent variable for when A sent their authentica-

tion message, and hashes it with the shared secret key x. B accepts

A’s proof of identity if the computed value matches the value received

from A.

In Schemes 4.6 and 4.7, if the adversary can influence the counters or

clocks then the adversary might hope that A would no longer be able to

authenticate to B. Neither scheme has specific protection against this type

of attack.

In Scheme 4.6, if A’s counter gets ahead of B’s counter then the scheme

still functions well, so a successful desynchronising attack by an adversary

must get B’s counter ahead of A’s. One way to do this is for the adversary

to somehow authenticate to B, without A knowing.

Any implementation of Scheme 4.7 must address the following three is-

sues, which do not affect Scheme 4.6.

• A and B must have synchronised clocks.

• The clocks may run at different speeds.

• There may be delays between the messages being sent and received.

Despite these problems, both schemes are suitable for many applications

and feature in relevant ISO standards [57].

5This step could be replaced with A → B : (f(x||t); t) as long as B is satisfied with the
time-dependent variable being one of a set of values [30, 62]. This relaxes the necessity
for accurately synchronised clocks. For example, if A uses the current time to the nearest
thousandth of a second then B will probably be satisfied with a variety of different values
of t, but will not want to have to try them all to see which one A used.

CHAPTER 4. ENTITY AUTHENTICATION 80

4.3.3 Storing one less value

Scheme 4.7 is very simple and it is quick to compute each authentication

value (only one hash evaluation). It requires storage of at most three values

for each entity: x, t and the value f(x||t) at the time it is used.

In this section we present an unlimited-time entity authentication scheme

based on the chained pseudo-random number generator (see Figure 4.1),

which only requires the storage of at most two values. These two values are

xt and yt (as it is used). Note that t does not need to be stored.

Entity Authentication Scheme 4.8: The minimum storage unlimited-

time entity authentication scheme.

Initialisation

• The entity A creates a random key x0.

• A
S−→ B : x0.

Entity authentication number t

• A and B both share the secret value xt from the last session (or x0 if

they have only performed the initialisation phase).

• A→ B : g(xt).

• B checks the received value against xt.

• A and B replace their secret stored value xt with xt+1 = f(xt).

This scheme requires the knowledge of two hash functions, which we de-

note f and g. They could be based on the same hash function h, for example

if we define f and g as follows:

f(∗) = h(0||∗);

g(∗) = h(1||∗).

This scheme is identical in analysis to Scheme 4.7, except that it only

requires the storage of at most two values. In particular it can be seen that

CHAPTER 4. ENTITY AUTHENTICATION 81

x0
f //

g

��

x1
f //

g

��

x2
f //

g

��

· · ·

y0 y1 y2 · · ·

Figure 4.1: A chained pseudo-random number generator using hash functions
f and g. For the tth authentication A and B can compute the authentication
value from the stored value xt−1.

the scheme may suffer if it is likely an authentication attempt may go missing.

The scheme can be extended to provide protection against this by B checking

ahead upon failed authentications to see if they have been sent a value for a

future session. Each additional authentication value they check against will

provide more resistance against lost messages, but also reduces the security

of the scheme as it is easier to guess one of the valid authentication values.

It can be seen that two values is the minimum storage possible in a envi-

ronment where we are concerned by the possibility of an active adversary EA.

If A and B only ever have one stored value, then it must be the value that

is sent by A to B during the authentication stage. EA can obtain this value,

and then knows as least as much information as A. Consequently EA will be

able to compute subsequent authentication values and masquerade as A to B.

4.3.4 Summary of unlimited-time schemes

In this section we have seen some schemes which can be used to authenticate

an unlimited number of times once the initialisation phase has been per-

formed. This is a significant improvement over the schemes we looked at in

Section 4.2, which required reinitialisation each time an entity authentication

was required.

All the unlimited-time schemes in this section suffer from the drawback

that they require the use of a secure channel during the initialisation phase.

In the next section we will focus on schemes that can provide several

authentications per initialisation, and which only require an authenticated

channel to perform the initialisation.

CHAPTER 4. ENTITY AUTHENTICATION 82

Scheme Complexity Comm. Cost Init. Security Public Notes
Init Auth Init Auth Channel EA EM Verif.

4.5 0 1, 1 1 1, 1 S ∞ ✕

4.6 0 1, 1 1 2, 0 S ∞ 1✓

4.7 0 1, 1 1 1, 0 S ∞ ✕ A
4.8 0 2, 2 1 1, 0 S ∞ 1✓ B

Table 4.3: Summary of the one-time entity authentication schemes. For an
explanation of the values and column headings, see Section 4.2.5.
Notes
A: There is the possibility that a man-in-the-middle adversary could perform
an intercept and replay attack before the time-dependent value expires. This
attack would be of the 1✓ form. This scheme also requires the existence of
synchronised clocks.
B: Whereas the other schemes in this section require the storage of at least 3
values, Scheme 4.8 only requires the storage of 2 values.

Table 4.3 gives a summary of the unlimited-time entity authentication

schemes presented in this section.

4.4 n-time entity authentication schemes

In this section we look at n-time entity authentication schemes based on

structures given in Chapter 3. We have already defined n-time entity authen-

tication schemes in Definition 4.6. We begin by looking at hash chain based

entity authentication schemes, then move on to hash tree based schemes, and

finally schemes based on the hierarchical chain construction.

4.4.1 n-time hash chain based schemes

All the previously discussed schemes are either limited to one use, or they

rely on a secure channel in the initialisation phase. In this section we show

how hash chains can be used to create n-time authentication schemes which

do not rely on secure channels.

CHAPTER 4. ENTITY AUTHENTICATION 83

4.4.1.1 Hash chain entity authentication

The first scheme we look at is the hash chain entity authentication scheme

due to Lamport [69]. Many variations of this are used in the literature, but

they all use essentially the same idea as Scheme 4.9 [7, 44, 47, 48, 49, 52, 54,

71, 105].

Entity Authentication Scheme 4.9: The hash chain entity authentica-

tion scheme due to Lamport [69].

Initialisation

• A creates a key x, and uses it to seed a hash chain of length n.

• A
A−→ B : fn(x).

• B stores the next session number i (initially i = 1).

Entity authentication number i

• A announces that they intend to authenticate to B.

• B sends A the session number i.

• A→ B : fn−i(x).

• B checks that the hash of fn−i(x) is equal to the previously received

authentication value fn−i+1(x).

• B stores fn−i(x) for use in the next authentication.

Entity A can authenticate themselves to B a total of n times before a

new hash chain must be initialised.

In Scheme 4.2 a man-in-the-middle adversary could completely break the

scheme by stealing A’s authentication value. The same can be done here,

but the adversary will only break the scheme for that authentication attempt.

For subsequent authentications the adversary must repeat the process.

CHAPTER 4. ENTITY AUTHENTICATION 84

4.4.1.2 Hash chain entity authentication with public verifiability

In the same way that we added public verifiability to Scheme 4.2, we can add

it to the hash chain entity authentication scheme (Scheme 4.9).

Entity Authentication Scheme 4.10: The hash chain entity authentica-

tion with public verifiability.

Initialisation

• A creates a key x, and uses it to seed a hash chain of length n.

• A
A−→ P : (fn(x);A,B).

Entity authentication number i

• A→ B : fn−i(x).

• B checks that the hash of fn−i(x) is equal to the previously received

authentication value fn−i+1(x).

• B stores fn−i+1(x) for use during the next authentication.

Proof of authentication number i

• B → C : fn−i(x), i.

• C checks that the ith hash of fn−i(x) is equal to the published value fn(x).

Note that C could store values that B sends to them, and then hash just

the number of times needed to check against the previous value they received.

It is not necessary for B to send C every authentication value. If B needs

to give a proof of authentication to a different entity C ′ then they can easily

repeat the proof of authentication phase with C ′.

This scheme is vulnerable to loss of synchronisation in a very similar way

to Scheme 4.8 and a potential solution is discussed in Section 4.3.3.

CHAPTER 4. ENTITY AUTHENTICATION 85

4.4.1.3 Entity authentication with many verifying parties

All the schemes we have looked at so far are limited in that they can only

cater for one verifying party. The most obvious way to adapt the earlier

schemes to many verifying parties is to initialise a separate instance of the

scheme with each verifier. We would like to reduce the number of times the

initialisation phase has to be run because it uses an expensive authenticated

(or secure) channel.

We observe that Scheme 4.9 can be adapted to facilitate many verifiers.

We change the initialisation phase so that the hash chain’s end value is

published over an authenticated channel.

Entity Authentication Scheme 4.11: Hash chain entity authentication

scheme for many verifiers.

Initialisation

• A creates a key x, and uses it to seed a hash chain of length n.

• A
A−→ P : fn(x).

Entity authentication number i

We will refer to the verifying entity for this session as Bi.

• A→ Bi : fn−i(x).

• A publishes the hash chain value and the verifier’s identity: A → P :

(fn−i(x), Bi).

• Bi checks that the ith hash of fn−i(x) is equal to the public value fn(x).

• Bi checks that the published value is the first time fn−i(x) has been

published, and that it is published along with their identity.

Scheme 4.11 requires one access to an authenticated channel for the ini-

tialisation, and can provide many entity authentications to different verifying

entities. This is clearly an improvement on running a separate initialisation

phase for each verifier.

CHAPTER 4. ENTITY AUTHENTICATION 86

The scheme is secure against an active adversary since there is no way

for the adversary to use information obtained from previous session to im-

personate A.

The scheme is not secure against a man-in-the-middle adversary. If the

adversary blocks the publication of (fn−i(x), Bi) then they can authenticate

to a party of their choice B∗ by using fn−i(x) and publishing an edited version

of A’s message: (fn−i(x), B∗).

A disadvantage of the above scheme is that it is session-based. That is,

A must wait until Bi is satisfied with the ith authentication before they can

begin authenticating to Bi+1. If session (i+1) starts before session i finishes

then it is possible for the authentication value from session i+ 1 to be used

to compute the authentication value for session i.

4.4.1.4 Summary of hash chain based schemes

In this section we saw how hash chains could be used as an efficient improve-

ment on both the one-time schemes of Section 4.2 that require re-initialisation

before every session, and the unlimited-time schemes of Section 4.3 that re-

quire a secure channel to set up.

We presented Entity Authentication Scheme 4.11, which is an extension

of Scheme 4.9 to facilitate many verifiers. Although Scheme 4.11 is suitable

to authenticate to many verifiers, it is limited by being session-based.

4.4.2 Hash tree and Merkle tree entity authentication

schemes

We saw in the last section that we could use hash chains to facilitate many

authentications for each initialisation phase. We can create a scheme with

similar properties by using a Merkle tree (see Section 3.2.3).

Merkle trees also facilitate new schemes that were not possible with hash

chains. In this section we will first look at the Merkle tree based entity au-

thentication scheme, which in itself provides no advantages over Scheme 4.9,

but which can be adapted to form two more attractive schemes.

CHAPTER 4. ENTITY AUTHENTICATION 87

The first is a new scheme designed for many verifying parties. This scheme

improves on Scheme 4.11 as it is not session-based. The second is a challenge-

response scheme which does not use a secure channel, and which provides

more protection against a man-in-the-middle adversary than any previous

such scheme.

4.4.2.1 Merkle tree based entity authentication

We can use a Merkle tree to form a simple entity authentication scheme

which performs similarly to the hash chain based Scheme 4.9.

This scheme is in fact worse than the hash chain entity authentication

scheme in terms of computational complexity and communication costs. The

scheme makes an appearance here because it can easily be adapted to make

a scheme suitable for authenticating to many people, and also a challenge-

response scheme. Both of these schemes have properties that are arguably

more elegantly provided by the Merkle tree than any other type of hash

structure.

Entity Authentication Scheme 4.12: The n-time Merkle tree based en-

tity authentication scheme. For a small example of this scheme see Figure 4.2.

Initialisation

• A generates a Merkle tree of height h from a large set of randomly cho-

sen values (one for each leaf).6 The values at each vertex are calculated

as the hash of their children (see Section 3.2 for more details).

• A sends the root value xr to B: A
A−→ B : xr.

Entity authentication

• A picks a leaf l whose value xl has not been used before.

• A creates the sibling set Xl (see Section 3.2.1) of the path from l to the

root.

6Note that this large set of values can be generated from a single master key MK. We
create the ith random value as f(MK||i). In this way A’s storage requirement can be
greatly reduced.

CHAPTER 4. ENTITY AUTHENTICATION 88

• A→ B : (xl, Xl; l).

• B computes, in turn, each value along the path from the leaf to the

root.

• B checks that the received values are valid by comparing the computed

root value with A’s authenticated root value xr received during the

initialisation phase.

• B also stores the leaf l in a list of used leaves and checks the list to

ensure this leaf has not been used before. Storing the whole list can be

avoided if there is a prearranged order in which the leaves will be used.

xr

x2

66nnnnnnnnnnnnnnn ◦

hhQQQQQQQQQQQQQQQ

◦

>>|||||||| ◦

``BBBBBBBB
◦

>>}}}}}}}}
x1

``BBBBBBBB

◦

OO

◦

OO

xl

OO

◦

OO

Figure 4.2: The Merkle tree based entity authentication scheme. The value
at the chosen leaf is marked xl and the vertices whose values are in Xl are
marked x1 and x2. When B receives xl and Xl, they can check the values are
authentic by hashing them together and comparing with the root value xr.
For the example above they compute f(x2||f(f(xl)||x1)), which should be
equal to xr.

A sends out the value at leaf l, and all the values of the siblings of vertices

on the path from l to the root r. From this, B can check that everything

hashes correctly to give the root (public key) value. A must also send out

some information as to which leaf has been provided. The ordering of the

values in Xl can be prearranged.

A Merkle tree is preferable to any other type of hash tree in this appli-

cation as it avoids sending information about other leaves in Xl. If we do

CHAPTER 4. ENTITY AUTHENTICATION 89

not use a Merkle tree then there exists a leaf l with a sibling s. The authen-

tication values for leaf l will be completely revealed by the authentication

values for any leaf that is a descendant of s. Consequently, if A used a leaf

descended from s before l then they would not later be able to use leaf l

securely. This situation is completely avoided if we restrict the scheme to

Merkle trees.

An entity using Scheme 4.12 can authenticate to a verifying party once

for each leaf in their Merkle tree. By varying the in-degree of the vertices

in the tree it is possible to trade-off computational complexity with the size

of the authentication message. Using a binary Merkle tree will minimise

the amount of communication, whereas using a Merkle tree of height 1 will

minimise the computation during both the initialisation and authentication

phases.

This scheme has the same security against active and man-in-the-middle

adversaries as the hash chain entity authentication scheme (Entity Authen-

tication Scheme 4.9). However this scheme requires many values for each

authentication (whereas the hash chain entity authentication scheme only

requires one). This scheme also requires more hash evaluations to verify

each authentication value than the hash chain entity authentication scheme.

4.4.2.2 Merkle tree based entity authentication for many verifying

parties

As mentioned earlier, Entity Authentication Scheme 4.12 is not quite as

useful as Scheme 4.9. However with some minor changes it can be adapted

to provide entity authentication to a large number of verifiers.

Scheme 4.11 is based on hash chains and was designed for many verifiers.

However, due to the nature of hash chains, it was not possible to authenticate

to different entities at the same time using this scheme. In this section we

present a scheme using Merkle trees to overcome this problem.

CHAPTER 4. ENTITY AUTHENTICATION 90

Entity Authentication Scheme 4.13: The Merkle tree based entity au-

thentication for many verifying parties.

Initialisation

• A generates a Merkle tree of height h as in Scheme 4.12.

• A publishes the root value xr: A
A−→ P : xr.

Entity authentication number i

We will refer to the verifying entity for this authentication as Bi.

• A performs the Entity Authentication phase of Scheme 4.12 with Bi.

• A publishes the leaf used, the leaf value xl and the verifier’s identity:

A
A−→ P : (l, xl, Bi). We assume that the server on which the data is

published stores entries with the approximate time and date that they

were published.

• Bi can check the received values as in Scheme 4.12.

• Bi should check that the leaf has not already been used by searching

the published list. The verifier can also check the time that the value

was published to ensure that it has not been used to authenticate to

them before.7

A must use a weak hash function f (Definition 2.8). This will avoid a

verifier being able to attack the scheme by finding a second preimage of a

received authentication set.

A must publish each leaf value when they use it, along with the identity of

the person it was used to authenticate to. This prevents an active adversary

replaying an authentication set that has already been used, or passing off A’s

authentication as their own.

7If this was not the case it could lead to an attack in which an active adversary authen-
ticates to Bi immediately after A has authenticated to them, using exactly the same values
that A used, except that the adversary does not publish anything. Assuming Bi does not
keep records of the values used to authenticate to them, then they will accept it as if it
were a completely new authentication.

CHAPTER 4. ENTITY AUTHENTICATION 91

Anyone authenticating A must check the given leaf value against the

published list of expired leaf values. It is not necessary for A to publish the

values Xl during the entity authentication phase, as the second preimage

resistance of f prevents anyone from finding an alternative authentication

set with a different leaf value.

A man-in-the-middle adversary can attack this scheme by stealing the

authentication values for a particular leaf and blocking the publishing step.

They can then provide the values they received when they wish to pose as A,

and publish the appropriate values.

Scheme 4.13 is more suitable than Scheme 4.11 for use with multiple users,

as the authentication values can be revealed in any order without affecting

the security of each other. Scheme 4.11 is based on hash chains and requires

each entity authentication to be completed before the next can be started.

We note that if the number of leaves is significantly smaller than the range

of f , then the leaf values can be chosen at random without replacement. This

allows the publishing step in the entity authentication phase to be replaced

by A
A−→ P : (xl, Bi), as the leaf value can serve as an index.

4.4.2.3 Merkle tree based challenge-response entity authentica-

tion

In Section 4.3.2.1 we saw how challenge-response schemes can be used to

strengthen authentication against some man-in-the-middle adversary attacks.

Our first challenge-response scheme (Scheme 4.5) was dependent on access

to a secure channel for the initialisation phase.

We can use the Merkle tree to make a challenge-response authentication

scheme. This scheme is not prone to record and replay attacks, as the verifier

picks the leaf value they want A to provide at random from the unused leaves

(in the same way as the verifier picks a random challenge message m in

Scheme 4.5). Our tree must have a large number of leaves to keep the set

of unused leaves big enough that the challenge is a meaningful obstacle to a

man-in-the-middle adversary.

A needs to send much more data than for either of the basic challenge-

CHAPTER 4. ENTITY AUTHENTICATION 92

response scheme (Scheme 4.5) or the time-dependent variable scheme (Scheme

4.7), but this scheme has the huge advantage that A and B do not need to

use a secure channel.

Entity Authentication Scheme 4.14: The Merkle tree based challenge-

response entity authentication scheme.

Initialisation

• A follows the initialisation phase of Entity Authentication Scheme 4.12.

Entity authentication

• B chooses a leaf l at random from the set of unused leaves and sends

it to A: B → A : l.

• A follows the entity authentication phase of Entity Authentication

Scheme 4.12 with leaf l.

This allows B to choose which leaf should be provided, so it is B’s re-

sponsibility to pick a leaf that has not been asked for before (for example by

storing the list of leaves they have already asked for).

If an adversary can pose as B to A then they can obtain many authen-

tication values. If they subsequently pose as A to B then there is a chance

that B will choose a leaf that they know the correct authentication value for.

This chance can be reduced by using a large number of leaves.

4.4.3 Hierarchical chain construction scheme

An issue with the hash chain and Merkle tree based schemes described above

is the amount of computation needed for the initialisation phase. All of these

schemes require A to compute the root value before any entity authentication

can take place.

We consider the application of a sensor network (for example see [76,

107, 159]), for which the initialisation phase for each sensor is performed

by a central computer before the sensors are distributed. We assume that

the sensors are required to authenticate to an entity B using a light-weight

CHAPTER 4. ENTITY AUTHENTICATION 93

hash based entity authentication scheme such as one of the schemes in this

chapter. In this application the central computer may need to repeat the

initialisation phase a large number of times, so it will be advantageous to use

an entity authentication scheme with a quick initialisation phase.

It may suffice in this case to deploy a scheme that does not check for a

man-in-the-middle adversary during every session.

By using a hierarchical chain construction, we can maintain n-time en-

tity authentication while substantially reducing the number of hashes in the

initialisation phase.

In Scheme 4.15 we describe the two dimensional hierarchical chain con-

struction based entity authentication scheme was suggested in [76]. It allows

a much smaller initialisation time than the n-time schemes we have seen so

far. To provide for n authentication instances, only approximately
√
n hash

applications need to be done to compute the initialisation value from the

chain’s seed. This compares favourably with Scheme 4.9, which is based on

a hash chain, for which a hash application needs to be done for each authen-

tication instance required. It also compares favourably with Schemes 4.12,

4.13 and 4.14 based on a Merkle tree, for which approximately two hash

applications need to be done for each authentication instance required.

The decrease in initialisation time comes at the cost of a compromise in

security. However, for some applications such as sensor networks, this may

be an acceptable compromise.

Entity Authentication Scheme 4.15: The two dimensional hierarchical

chain construction based entity authentication scheme from [76]. An example

is depicted in Figure 4.3.

Initialisation

• A creates a two dimensional hierarchical chain construction (see Sec-

tion 3.4.3, Definition 3.9) with chain lengths {n,m} using a randomly

chosen seed x0,0. A need not compute all the values in the construction

now, only those necessary to find xn,m.

• A
A−→ B : xn,m.

CHAPTER 4. ENTITY AUTHENTICATION 94

Entity authentication number i

• For the ith instance of entity authentication, A finds the unique values

α and β satisfying i = αm+ β and β ∈ [0,m− 1].

• If β ∈ [0,m− 2] then A sends the next value in the current sub-chain:

A→ B : x(n−α),(m−β−1).

• B can verify the value by hashing and checking against the previously

received value. B stores this value for the next authentication phase.

• If β = m− 1 then A sends the final value in the current sub-chain, and

begins the next sub-chain: A → B :
(
x(n−α),0, x(n−α−1),m

)
. Note that

A must have computed the values in the new sub-chain by this point.

• B can verify the first value x(n−α),0 by hashing and comparing with

the previously received value x(n−α),1. B can also check this value by

hashing and checking against the value x(n−α+1),0. By doing this B can

convince themselves that this whole sub-chain was authentic.

• Note that B cannot check x(n−α−1),m yet, but must wait until x(n−α−1),0

is released, and then check the whole sub-chain.

x0,0 //

��

x1,0 //

��

x2,0 //

��

x3,0

��
x0,1

��

x1,1

��

x2,1

��

x3,1

��
x0,2

��

x1,2

��

x2,2

��

x3,2

��
x0,3

��

x1,3

��

x2,3

��

x3,3

��
x0,4 x1,4 x2,4 x3,4

Figure 4.3: A hierarchical chain construction in 2 dimensions with chain
lengths {n,m} = {3, 4}.

This scheme works in a similar way to using many short hash chains.

There is opportunity for an extra check that the seeds of the chains (xi,0)

CHAPTER 4. ENTITY AUTHENTICATION 95

also form a hash chain, but the only way to know that a given leaf value xi,m

of a sub-chain is part of the hierarchical chain construction is to wait until

the value xi,0 is revealed.

This scheme is protected against attack by an active adversary as B can

validate each authentication value with the previous one, and the authenti-

cation value changes each time.

A man-in-the-middle adversary EM can only attack one step at a time

with an intercept and replay attack. However if EM attacks the scheme when

β = 0 then they can substitute x(n−α),m for the end value of a sub-chain of

their own. This attack would be imperceptible for the whole length of that

sub-chain. Only when B asks for the base value of the spoof sub-chain, and

finds that it does not hash to give x(n−α+1),0, will it become apparent that

the adversary is not A. This attack also prevents A from using their own

sub-chain to prove their identity, so A must sacrifice it and move onto the

next sub-chain.

The scheme as it stands is vulnerable to denial of service attacks and mes-

sage loss. Extensions to this scheme that address these issues are presented

in the original paper.

The d-dimensional hierarchical chain construction can also be extended

to an entity authentication scheme [76]. The analysis of this scheme is very

similar to the analysis of Entity Authentication Scheme 4.15.

4.4.4 Comparison of schemes in this section

A summary of the n-time entity authentication schemes from this section is

given in Table 4.4. Here we use the value 1∗ to denote a value that is 1 during

the majority of sessions, but which occasionally has a different value.

CHAPTER 4. ENTITY AUTHENTICATION 96

Scheme Complexity Comm. Cost Init. Security Notes
Init Auth Init Auth Ch. EA EM

4.9 n 0, 1 1 1, 0 A n 1✓

4.10 n 0, 1 3 1, 0 AP n 1✓ A
4.11 n 0, i 1 3, 0 AP n 1✓ B
4.12 O(dn) 0, O(logd n) 1 O(logd n), 0 A n 1✓

4.13 O(dn) 0, O(logd n) 1 O(logd n), 0 AP n 1✓ B
4.14 O(dn) 0, O(logd n) 1 O(logd n), 1 A n ✕

4.15 2
√
n 0, 1∗ 1 1∗, 0 A n

√
n✓ C

Table 4.4: Summary of the n-time entity authentication schemes from this
section. For an explanation of the values and column headings, see Sec-
tion 4.2.5.
Notes
A: This scheme has public verifiability.
B: These schemes can be used to authenticate to many verifiers.
C: Occasionally A sends two values during the authentication phase. When
this happens, B must perform two hash evaluations. During the authentica-
tion phase A must perform approximately (n−

√
n) hash evaluations to find

the values that were not calculated in the initialisation phase. Each value
must be found before the session in which it is needed.

4.5 Other (mainly n-time) hash-based entity

authentication schemes

In this section we look at some other schemes from the literature. We be-

gin by looking at weakened hash functions and suggest an extension of the

sandwich chain to an entity authentication scheme. We then explore the

comb skipchain construction, which offers unlimited-time entity authentica-

tion without requiring access to a secure channel. We finish by looking at

entity authentication schemes based on the general hash chain and on a hash

chain with breakpoints.

CHAPTER 4. ENTITY AUTHENTICATION 97

4.5.1 Using weakened hash functions to improve effi-

ciency

In this section we will use two types of hash functions. The first is a 1-secure

l-bit strong hash function for l suitably large (for example 128 or 256). This

is the type of hash function that we have dealt with for much of this thesis.

The second function is an (1 − ε)-secure l′-bit hash function, for ε ≈ 0 and

l′ < l (for example, l′ could be 32 or 64). We will refer to the latter as a

weakened hash function.

For the purposes of this section we assume that there may exist a weak-

ened hash function that is faster than a standard hash function. This as-

sumption is intuitive, but we do not have a concrete example of a weakened

hash function that proves the point. There has been little research published

on the subject of weakened hash functions and, as we saw in Section 2.7,

there has been a certain amount of trouble creating ‘full size’ hash functions

with predictable security.

Scheme 4.16 is based on a set of weakened hash chains that are tied

together at both ends by stronger commitments to form a sandwich chain [55].

Each weakened hash chain can be used for entity authentication in the same

way that the hash chain is used in Scheme 4.9. However each weakened hash

chain is only secure for a time t, after which we assume an adversary can

find arbitrary preimages. When a weakened hash chain expires, or when it

is exhausted, the strong commitments are used to allow the authenticator to

start using the next weakened hash chain.

An example sandwich chain is shown in Figure 4.4 and the full definition

is given in Section 3.4.6.

CHAPTER 4. ENTITY AUTHENTICATION 98

x0,0
f //

gx1,0

���
�
�

x1,0
f //

rr

zz

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��gx2,0

���
�
�

. . . f //

ss

{{

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

xs,0

gxs+1,0

���
�
�

ss

{{

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

f // xs+1,0

rr

zz

��

����
��
��
��
��
��
��
��
��
��
��
��
��
��
��

x0,1

gx1,0
���
�
�

x1,1

gx2,0
���
�
�

. . . xs,1

gxs+1,0
���
�
�

...
gx1,0

���
�
�

...
gx2,0

���
�
�

. . .
...

gxs+1,0

���
�
�

x0,r−1

��

x1,r−1

��

. . . xs,r−1

��
x−1,r // x0,r // x1,r // . . . // xs,r

Figure 4.4: A sandwich chain of length s and depth r. Hash function f is a
strong hash function (Definition 2.10), whereas gi,j is a weakened hash func-
tion. The values in boxes are full sized cryptographic values (e.g. 256 bits)
and the other values are the output of a weakened hash function, which may
be shorter (e.g. 32 bits). The weakened hash function for each vertical chain
is chosen by the value at the top of the next chain.

Entity Authentication Scheme 4.16: A sandwich chain based entity au-

thentication scheme. We will use the notation from the sandwich chain in

Figure 4.4 for this description.

Initialisation

• A creates a sandwich chain of length s and depth r, seeded from two

randomly chosen values x0,0 and x−1,r.

• A
A−→ B : (xs+1,0, xs,r).

Entity authentication

• Suppose that the most recent sandwich chain value that B has received

is xi,j, where j > 0. Hence for this purpose the value of interest that

B received during the initialisation phase is xs,r and not xs+1,0.

• If time t has not passed since A sent xi,r, and j ≥ 2, then A sends the

next value in the current weakened hash chain: A→ B : xi,j−1.

CHAPTER 4. ENTITY AUTHENTICATION 99

• In this case B checks the weakened hash gxi+1,0
(xi,j−1) against xi,j to

validate A’s claim.

• If time t has passed since A sent xi,r, or j = 1, then A sends the last

value of the current weakened hash chain xi,0, and the first value of the

next xi−1,r: A→ B : (xi,0, xi−1,r).

• In this case B can validate A’s claim by checking both values are as

they should be. The first value xi,0 can be hashed and B should find

that f(xi,0) = xi+1,0.
8 The second value xi−1,r can be checked using the

equality xi,r = f(xi−1,r||xi,r−1||xi+1,0).

Given that a fast weakened hash function exists, Scheme 4.16 potentially

requires less computation during both the initialisation phase and the entity

authentication phase than any other n-time entity authentication scheme in

this chapter.

Due to the nature of the values in the sandwich chain, an active adver-

sary EA cannot imitate A without computing the preimage of a hash digest.

This value may be the output of a weakened hash function, and so EA’s task

is vastly easier than for a preimage-resistant hash function. However, we

have assumed the fastest that EA can find such a preimage is in time t, by

which time A and B have moved on to using a new weakened hash function.

Since the weakened hash function for sub-chain i is selected by the value

xi+1,0, it is impossible for EA to begin attacking the chain before xi+1,0 is

released. If the weakened hash function was chosen in a predictable manner

(for example by using the sub-chain index i) then EA could begin attacking

the sub-chain before it came into use (for example by compiling rainbow

tables [97] for it).

A man-in-the-middle adversary cannot change any of the values that A

sends, as they are all linked to values which B has already received. They

can however intercept an authentication message that A sends and use it

instead.

8Note that B could also check xi,0 against the rest of the weakened hash chain. However
A might have sent xi,0 precisely because the weakened hash chain has become compro-
mised.

CHAPTER 4. ENTITY AUTHENTICATION 100

4.5.2 Comb skipchain construction

The comb skipchain construction (Definition 3.16) is equivalent to seeding

a hash chain with the public key of a one-time signature scheme (see De-

finition 3.15). The signature from the one-time signature scheme is used

(when appropriate) to authenticate another comb skipchain end value (see

Figure 4.6). This idea was presented by Hu et al. in [55], which extends work

from [53]. In [43] a similar method of joining one-time signature schemes to

hash chains is suggested, but it is less suited to entity authentication.

The comb skipchain can be used to authenticate an unlimited number of

times from one initialisation. In addition it does not require a secure channel.

It is the first scheme that we have discussed with both of these properties.

One-time
signature
scheme

// x0 // x1 // · · · // xn

Figure 4.5: A comb skipchain construction.

One-time
signature
scheme s0

// x0,0 // x0,1 // · · · // x0,n

One-time
signature
scheme s1

// x1,0 // x1,1 // · · · // x1,n

s0(x1,n)

jj

One-time
signature
scheme s2

// x2,0 // x2,1 // · · · // x2,n

s1(x2,n)

jj

Figure 4.6: A figure showing how three comb skipchain constructions are
tied together to make one long chain. The advantage over using hash chains
is that the one-time signature can be used to verify the last value in the
next chain, no matter what that value is. Thus more comb skipchains can
be generated as and when they are needed, without the need for another
initialisation phase.

CHAPTER 4. ENTITY AUTHENTICATION 101

Entity Authentication Scheme 4.17: The comb skipchain entity authen-

tication scheme. This description is based on the comb skipchain construc-

tions in Figure 4.6.

Initialisation

• A forms a comb skipchain seeded from a one-time signature scheme s0

and a hash chain {p0, x0,0, . . . , x0,n} of length n + 1 seeded from its

public key p0.

• A sends the end value x0,n to B using an authenticated channel A
A−→

B : x0,n.

Entity authentication

• If the last value that A sent to B was xi,j, with j ∈ [1, n], then

A sends xi,j−1 to B: A→ B : xi,j−1.

• If the last value that A sent to B was xi,0 then A sends the value pi

to B: A→ B : pi.

• In either of these cases B can verify A’s identity by hashing the value

just received to check that the result is the same as the previous value

received.

• If the last value that A sent to B was pi then A creates a new one-time

signature scheme si+1 and uses it to seed a new comb skipchain.

• A creates a signature on the end value from the new chain using the

one-time signature scheme that seeded the previous chain. A sends this

value and its signature to B: A→ B : (xi+1,n, si(xi+1,n)).

• B can verify the signature against the public key value pi, and accepts

A and the value xi+1,n as authentic if successful.

This scheme is secure against active adversaries and may only be attacked

one value at a time by man-in-the-middle adversaries using an intercept and

replay attack.

CHAPTER 4. ENTITY AUTHENTICATION 102

A typical one-time signature scheme requires more computation than a

hash chain, so this approach will not be suited to the most light-weight of

applications. However, without access to a secure channel and with only one

use of an authenticated channel, it can provide unlimited entity authentica-

tions.

4.5.3 General hash chain

One as yet unconsidered problem with the hash chain based entity authenti-

cation scheme (Scheme 4.9) arises if an adversary somehow manages to get

hold of the ith authentication value xi while the authenticating parties are

only up to the jth authentication value xj (j < i).

The adversary would be able to generate all authentication values between

xi and xj from xi, and therefore could impersonate A several times. This

is addressed by Bradford and Gavrylyako using general hash chains (see

Section 3.4.7) [16].

x0 99x1
##

99x2 //
##

99x3 //
""

99x4 //
""

99· · · //
""

99· · · //
##

· · · // xn

Figure 4.7: A general hash chain of length n and depth 3. The first three
values {x0, x1, x2} are the seeds. All the remaining values are generated from
these three values using the equation xi = f(xi−3||xi−2||xi−1).

Entity Authentication Scheme 4.18: The general hash chain entity au-

thentication scheme from [16] with a general hash chain of length n and

depth d. See Figure 4.7 for an example of a general hash chain.

Initialisation

• A picks d random values {x0, . . . , xd−1}, and uses them to seed a general

hash chain of length n and depth d.

• A sends a list of values to B: A
A−→ B : {xn, xn−1, . . . , xn−d+1}.

• B stores the next session number i (initially i = 1).

CHAPTER 4. ENTITY AUTHENTICATION 103

Entity authentication number i

• A announces they intend to authenticate to B.

• B sends A the session number i.

• A→ B : xn−i.

• B checks that xn−i = f(xn−i−d||xn−i−d+1|| . . . ||xn−i−1) using the previ-

ously received authentication values.

A general hash chain of length n and depth d only allows n − d + 1 au-

thentications, because d of the values are used during the initialisation phase.

Note that if d = 1, we have exactly the same scheme as Entity Authentication

Scheme 4.9.

The only difference in the security analysis between this scheme and

Scheme 4.9 is that if an adversary gets hold of an authentication value xi

before it has been used, that adversary cannot generate any other authenti-

cation values from the stolen value. In contrast, if an adversary obtains an

authentication value xi in Scheme 4.9 then they can generate all authenti-

cation values xj with j > i. With Scheme 4.18, an adversary has to steal

d consecutive values before they can begin generating other authentication

values.

4.5.4 Hash chain with breakpoints

Another construction which deals with the issue of an adversary who has

discovered a hash chain value ahead of time is a scheme due to Goyal [42].

The idea is to have the hash chain generated from two sources, so that if

an adversary gets hold of an authentication value before it is used then it

only reveals a few other values. The hash chain with breakpoints is defined

in Section 3.4.8 and an example is shown in Figure 4.8. We give an entity

authentication scheme based on this in Scheme 4.19.

CHAPTER 4. ENTITY AUTHENTICATION 104

s // x0 // x1 // · · · // xd // xd+1 // · · · // x2d // · · · // xrd

b0

OO

b1

OO

b2

OO

· · · br

OO

s

mmZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

iiTTTTTTTTTTTT

;;xxxxx

33ggggggggggggggggg

Figure 4.8: Hash chain with break points distance d apart seed s (from [42]).

Entity Authentication Scheme 4.19: Entity authentication based on a

hash chain with breakpoints distance d apart.

Initialisation

• A chooses a seed s at random and generates a hash chain of length rd

with breakpoints distance d apart.

• A sends the end value to B: A
A−→ B : xrd.

Entity authentication number i

• If i is not divisible by d then A sends the next value of the chain A→
B : xrd−i.

• If i is divisible by d then A sends the next authentication value and the

corresponding breakpoint value: A→ B : (xrd−i, br−i/d).

• B can verify whatever they are sent by hashing to compare with the

previous authentication value.

If a value is stolen by an adversary before it has been used then it only

reveals a few values after it, the breakpoints prevent all the other values

being derived from it. If, instead, an adversary somehow steals a breakpoint

value then they obtain no authentication values.

4.5.5 Summary of schemes in this section

In Table 4.5 we provide a comparison of the schemes we have looked at in

this section. Here we use the value 1∗ to denote a value that is 1 during the

majority of sessions, but which occasionally has a different value.

CHAPTER 4. ENTITY AUTHENTICATION 105

Scheme Complexity Comm. Cost Init. Security Notes
Init Auth Init Auth Channel EA EM

4.16 O(n) 0, 1∗ 2 1∗, 0 A n 1✓ A
4.17 s+O(n) 0, 1∗ 1 1∗, 0 A ∞ 1✓ B
4.18 n 0, 1 d 1, 0 A n 1✓ C
4.19 O(n) 0, 1 1 1∗, 0 A n 1✓ D

Table 4.5: Summary of the entity authentication schemes in Section 4.5. For
an explanation of the values and column headings see Section 4.2.5.
Notes
A: It is possible that short digest hash functions may require less computation
than the hash functions used in other schemes. Occasionally A will send two
values to B, and when this happens B may have to perform O(

√
n) hash

evaluations.
B: We assume we are using the one-time signature scheme from Section 5.4.3,
and that our cryptographic values have b bits. The value s can be computed
as (b

0.32
− 1). Every n sessions A sends about 6b

8
values, and B must perform

approximately s
2

hash evaluations to verify.
C: If somehow an adversary gets hold of an authentication value before it
has been used, they cannot use it to generate other values in the chain (as
they would be able to in Scheme 4.9). An adversary must steal d consecutive
values before this attack can be used.
D: If somehow an adversary gets hold of an authentication value early on in
the chain, they can only discover at most d authentication values. If the same
thing happened in Scheme 4.9 then potentially all the authentication values
would be compromised. Every d sessions A must send two values to B.

4.6 Conclusions

In this chapter we investigated the application of hash structures from Chap-

ter 3 to entity authentication. We presented the notion of public verifiability,

and showed that some existing schemes are publicly verifiable. We presented

an entity authentication scheme based on the chained pseudo-random num-

ber generator which has the minimum storage requirements possible of an

entity authentication scheme secure against eavesdroppers. We presented a

Merkle tree based entity authentication scheme suitable for use with many

verifiers. We compared these with other existing hash-based schemes from

the literature.

Chapter 5

Signatures

In the previous chapter we studied the applications of hash functions and

hash structures to entity authentication. In this chapter we continue our

investigation by looking at the applications of hash structures to message

authentication, and in particular, signatures.

We begin the chapter with a brief introduction to message authentication.

We then continue by studying some existing one-time signature schemes,

and look at how one-time signature schemes can be formed on generalised

hash DAGs. We present an algorithm which finds signature schemes for

any given generalised hash DAG. We then present some concrete examples

of one-time signature schemes based on generalised hash DAGs, including

two new examples which are more efficient than any other usable schemes

that we know of. Finally, we look at k-time signature schemes and address

the issue of creating a suitable efficiency measure. We present the notions of

‘perforated’ and ‘porous’ k-time signature schemes, and look at some schemes

that illustrate these definitions.

5.1 Introduction to message authentication

We start this section by looking at message integrity and message authen-

tication codes. We look at how hash structures are used in data integrity

schemes. We give some important definitions relating to signatures and in-

troduce the notion of a one-time signature.

106

CHAPTER 5. SIGNATURES 107

5.1.1 Checksums and data integrity schemes

A very simple form of message authentication is authentication with a check-

sum. A checksum is a hash function (Definition 2.6) used to detect accidental

corruption of data. The exact choice of hash function will be application de-

pendent (for example see [149] for an analysis of the choice of hash function

used to compute ISBN-10 checksums).

Although checksums can be used to detect accidental changes to a mes-

sage, they do not give much protection against active adversaries. There is

no requirement for a checksum to be second preimage resistant, and so it may

be easy for the adversary to find another message with the same checksum.

The following scheme is very suitable for large file systems, or for version

management of large projects. It is most well suited for environments where

only a few files (or only a few parts of files) change at once. It is used in

many peer to peer file sharing applications [3, 73, 140, 152].

Data Integrity Scheme 5.1: A data integrity scheme for a file system con-

taining files {m0, . . . ,mn−1}, using a weak hash function f (Definition 2.8).

This scheme can also be used to provide data integrity for a large file split

into n sections {m0, . . . ,mn−1}.
Initialisation

• The file manager A computes and stores the hash of each file {f(m0),

. . . , f(mn−1)}.

• A creates a hash tree seeded by the hashes of each file and stores all the

intermediate values. Note that if we consider the hash tree together

with the original files then we have a Merkle tree (Definition 3.4).

• A
A−→ P : xr, where xr is the root value of the hash tree.

Update

• When a file mi is changed, A computes the hash of the new file.

• A only needs to perform a hash for each vertex on the path from the

affected leaf to the root, as the rest of the hash tree values have not

changed.

CHAPTER 5. SIGNATURES 108

• A can perform multiple updates at once by recomputing all affected

hash tree values.

Choosing the shape of the Merkle tree is an application dependent prob-

lem. If some files are very related, and are likely to be changed at the same

time, then it would be sensible to place them on leaves that are siblings of

each other.

5.1.2 Message authentication codes

The simplest form of message authentication secure against an active adver-

sary is a ‘message authentication code’ (or ‘MAC’). Communicating parties

share a secret key x and append to a message m the message authentication

code MAC (x,m).

It is beyond the scope of this document to discuss MACs in detail, but

there are many relationships between MACs and hash functions. For a more

detailed discussion of MACs, see [83] Section 9.5.

Message Authentication Scheme 5.2: Message authentication using a

message authentication code.

Initialisation

• A chooses a secret key x and shares it with the authorised recipient B:

A
S−→ B : x.

Message authentication

• If A wishes to send an authenticated message m over an unprotected

channel then A generates a MAC for the message MAC (x,m).

• A sends the message and the MAC to B: A→ B : (m, MAC (x,m)).

• B uses the message m and the secret key x to generate the MAC.

Assuming that it is the same value they received from A, they accept

the message as authentic.

CHAPTER 5. SIGNATURES 109

An active adversary cannot change the message m without also changing

the MAC; otherwise the recipient B will discover that the message has been

altered. The adversary cannot generate a MAC for any new message without

knowledge of the key x.

Although message authentication codes are robust, efficient and fairly

straightforward, relying on a MAC for message authentication has three ma-

jor limitations:

1. The message can only be authenticated by a party who knows the secret

key.

2. Any party who knows the secret key can forge a MAC. This is not an

issue for applications where the recipients have no reason to imperson-

ate the sender. However in some applications it may be necessary to

guard against this, or provide the capacity to change which users have

access to the secret key.

3. Scheme 5.2 requires a secure channel for initialisation. In the next

section we will look at signatures, which in general do not have this

constraint.

5.1.3 Hash functions and conventional digital signa-

tures

The aim of a digital signature scheme is to facilitate the binding of a message

with the originating entity. A digital signature indicates that the signer

‘agrees’ with the contents of the message.

CHAPTER 5. SIGNATURES 110

Menezes et al. give the following definitions [83]:

Definition 5.1. A digital signature is a data string which associates a

message (in digital form) with some originating entity.

A digital signature generation algorithm (signature generation al-

gorithm, or signing algorithm) is a method for producing a digital signature.

A digital signature verification algorithm (or verification algorithm)

is a method for verifying that a digital signature is authentic (i.e. was indeed

created by the specified entity). A digital signature scheme consists of a

signature generation algorithm and an associated verification algorithm.

Although we have used a definition of a digital signature scheme which

contains two algorithms, there is a third which is also sometimes included.

Before any messages can be signed, a ‘key generation’ algorithm must be run

by each entity to generate a private and public key pair (ks, kp). The public

key kp is sent or made available to anyone who may be required to validate

a signed message.

The size of a signature scheme is the order of the image of the signature

generation algorithm.

We note that some signature schemes allow message recovery from the

signature itself, whereas others form a separate signature which should be

sent along with the original message. Some of our schemes can be used with

message recovery, but we will only be considering the appended signature

model, as this is by far the most common in practice.

The signing algorithm maps messages from a (potentially unbounded) set

M to a finite set S. Most schemes use a signing algorithm consisting of a

strong hash function f (see Definition 2.10) to map M onto a finite set R,

followed by a mathematical algorithm s : R×K → S taking the output of f

and the private key ks as inputs.

The hash function f must also be second preimage resistant otherwise

the scheme will be susceptible to an obvious forgery. An adversary can take

a valid message signature pair and create a new one using the same signature

by appending it to a second preimage of the message.

The hash function must be collision resistant if it is to resist an attack

CHAPTER 5. SIGNATURES 111

in which the adversary can get the signer to sign a message. In this attack,

the adversary finds a collision m, m′ under the hash function, asks for the

signature for m, and then appends it to m′.

An advantage of using a hash function as the first part of the signing

algorithm is that it allows us to extend a signature scheme that can sign

messages from a finite set to a signature scheme that can cope with any

message. Another related reason is that for very long messages, reducing the

message size using a hash function is much more efficient than applying a

(slower) mathematical algorithm to the whole message. The mathematical

algorithm should also be resistant to a ‘lucky adversary’ who guesses the

output correctly, by making sure that the output space is reasonably large

(128- or 256-bit strings are commonly used).

The verification algorithm usually works by inverting the mathematical

algorithm used in the signing phase using the public key and comparing the

result with the hash of the message (computed from the received message).

If the two are the same then the signature is accepted as valid.

For the rest of this chapter we will mainly focus on the mathematical

function s, rather than the strong hash function f . Consequently we will

treat the message m and the hash f(m) as ‘equivalent’, and may use the

term ‘message’ when we actually mean f(m).

5.1.4 Digital signatures based on hash functions

Many digital signature schemes are based on one-way trapdoor functions,

which are functions that are always easy to compute in one direction, but only

easy to compute in the opposite direction with some additional information

(in this case the private key). In practice, for most trapdoor functions there

is no proof of the absolute hardness of computation in the reverse direction.

Instead the reverse computation is shown to be as difficult as some underlying

mathematical problem. Table 5.1 summarises some existing trapdoor related

signature schemes.

However, signature schemes can be based on hash functions instead of

trapdoor functions. Many such signature schemes are one-time signature

CHAPTER 5. SIGNATURES 112

Signature scheme Underlying mathematical problem
Full domain hash [6] The RSA problem

DSA [93] Discrete logarithm problem
ECDSA [155] Elliptic curve discrete logarithm problem

ElGamal signature scheme Discrete logarithm problem
Rabin signature scheme Large integer factorisation problem

Table 5.1: Some existing trapdoor related signature schemes and their un-
derlying mathematical problems.

schemes (see Definition 3.15), that is signature schemes which can sign at

most one message without risk of forgery. In compensation for this obvious

drawback, it is usual for one-time signature schemes to be more computation-

ally efficient than ‘many-time’ trapdoor-based signature schemes (although

this is not necessarily the case). Some one-time signature schemes are not

primarily based on hash functions, but as they are also generally less efficient

we will not consider them further.

Another benefit of only using hash functions is less dependence on spe-

cific mathematical problems. For example, if an efficient solution to the dis-

crete logarithm problem is found then DSA signatures will become insecure,

whereas if a signature scheme solely based on SHA-256 is broken then it may

be possible to continue using the scheme by deploying another hash func-

tion instead. If quantum computing becomes more practical then all of the

mathematical problems in Table 5.1 may become feasible to solve [113, 126].

A third advantage of one-time signatures over deterministic one-way trap-

door based signatures is that the latter are subject to attacks based on re-

peated signature use. One-time signatures are not vulnerable to such attacks

because the signature for a particular message changes each time the scheme

is reinitialised, which is once per message.

Some signature schemes can be used at most k times before a forgery

is possible, and we will refer to these as k-time signature schemes. There

are also schemes for combining several one-time signature schemes under one

public key to make k-time signature schemes, or schemes which can be used

indefinitely. We will look at these in Section 5.5.

CHAPTER 5. SIGNATURES 113

5.2 One-time signatures

We begin this section by looking at some one-time signature schemes based

on hash functions and hash chains. Next we consider the Vaudenay’s rake

one-time signature scheme, which generalises all the previous schemes. After

this we consider the improvements that can be made to these schemes by

using hash trees and Merkle trees. Finally we generalise from hash trees to

generalised hash DAGs, and look at some important results on the efficiency

of one-time signature schemes due to Bleichenbacher and Maurer [11].

5.2.1 Simple chain-based schemes

In this section we will look at three simple hash-based and hash chain based

one-time signature schemes. We start by looking at arguably the most sim-

ple example of a one-time signature scheme, the Diffie-Lamport one-time

signature scheme. Next we study the Winternitz one-time signature scheme,

which generalises the Diffie-Lamport scheme by using hash chains instead of

hash functions. Finally we examine the Diffie-Lamport-Merkle one-time sig-

nature scheme, which uses an improvement suggested by Merkle to improve

the efficiency of the original Diffie-Lamport scheme.

5.2.1.1 The Diffie-Lamport one-time signature scheme

The first published one-time signature scheme based on hash functions was

due to Rabin in 1978 [114]. It is rather inefficient and so we will instead look

at Lamport’s similar scheme from 1979 [68], which is slightly more efficient

and much more straightforward.

The scheme uses a preimage-resistant hash function f . It is important

that an adversary cannot find a preimage, as this would allow them to forge

a signature on an unsigned message.

CHAPTER 5. SIGNATURES 114

Signature Scheme 5.3: The Diffie-Lamport scheme for signing messages

with n-bit hash outputs.

Key Generation Algorithm

• Signer A picks {x0, . . . , x2n−1} uniformly at random from {0, 1}n.

• Signer A computes {y0, . . . , y2n−1} by yi = f(xi).

• The set {y0, . . . , y2n−1} is published as A’s public key.

Signature Generation Algorithm

• To sign a hash value m, A releases as the signature the following set of

private key values:

{s0, . . . , sn−1} = {x2i+mi
: i ∈ [0, n− 1],mi is the ith bit of m}.

Verification Algorithm

• The verifier can check the signature {s0, . . . , sn−1} by checking that for

each bit of the message mi the following equality holds:

f(si) = y2i+mi
.

If an adversary is to change any bit of the message and preserve the

signature then they must find the private key value for the corresponding

bit. This is equivalent to finding a preimage of the hash function for that

public key value and so the scheme is secure.

However, if A signs two messages using the same private key then there

is a good chance that the adversary will be able to use the two signatures to

forge a third signature. We give an example of this in Figure 5.1.

5.2.1.2 The Winternitz one-time signature scheme

Shortly after Lamport published the Diffie-Lamport scheme, Winternitz sug-

gested a generalisation of it. His idea appears in Merkle’s paper [85].

CHAPTER 5. SIGNATURES 115

y0 y1 y2 y3 y4 y5

First signature:

m = 011 x0

OO

x1

OO

x2

OO

x3

OO

x4

OO

x5

OO

y0 y1 y2 y3 y4 y5

Second signature:

m = 101 x0

OO

x1

OO

x2

OO

x3

OO

x4

OO

x5

OO

y0 y1 y2 y3 y4 y5

Forged signature:

m = 001 x0

OO

x1

OO

x2

OO

x3

OO

x4

OO

x5

OO

Figure 5.1: TOP and MIDDLE: A Diffie-Lamport one-time signature scheme
is used to reveal two signatures (the signatures for the messages 011 and 101).
BOTTOM: An adversary could use these two signatures to forge others (for
example the signature for the message 001).

Instead of representing the message in binary, Winternitz suggested rep-

resenting it in another base (say base r). We now consider a message m from

a message space of n digit numbers in base r. We still use public and private

keys consisting of 2n values, but now we define the public key values as the

end values of hash chains seeded with xi: yi = f r−1(xi). The scheme is based

on the use of a preimage-resistant hash function f (see Definition 2.7).

Signature Scheme 5.4: The Winternitz scheme for signing messages with

n digit hash outputs in base r.

Key Generation Algorithm

• Signer A picks {x0, . . . , x2n−1} uniformly at random from {0, 1}n.

• Signer A computes {y0, . . . , y2n−1} as yi = f r−1(xi).

• The set {y0, . . . , y2n−1} is published as A’s public key.

CHAPTER 5. SIGNATURES 116

Signature Generation Algorithm

• Signer A computes s2i = f r−mi−1(x2i) and s2i+1 = fmi(x2i+1) for each

digit mi of the message.

• The signature is the set of values {s0, . . . , s2n−1}.

Verification Algorithm

• The verifier can check y2i = fmi(s2i) and y2i+1 = f r−mi−1(s2i+1) for

each digit mi of the message.

If we set r to 2 then the Winternitz scheme becomes the Diffie-Lamport

scheme (Scheme 5.3), except that one of the two signature values for each

digit of m is equivalent to a value in the public key for that digit and so does

not need releasing.

If an adversary wishes to create a forgery on a message that was not

signed then they must change at least one digit of the message and find

a valid signature for that digit. Without loss of generality, we consider a

forgery for the ith digit mi. If the adversary increases the digit then they

will have to find a preimage for s2i = f r−mi−1(x2i). If they decrease the digit

then they will have to find a preimage for s2i+1 = fmi(x2i+1). We assume

that this is hard for a preimage-resistant hash function, so the Winternitz

scheme is secure.

5.2.1.3 The Diffie-Lamport-Merkle one-time signature scheme

In [84] Merkle suggested an improvement to Scheme 5.3 which was based

around only signing the ‘one’ bits of the message. This means that only one

secret key value is needed for each bit of the message. However, in order to

avoid forgeries which simply replace 1’s in the message with 0’s, it is necessary

to append to the message a count of the zeros. This means that the private

and public keys need to be n + dlog2(n + 1)e values long (compared to 2n

values in the original Diffie-Lamport scheme).

CHAPTER 5. SIGNATURES 117

Signature Scheme 5.5: The Diffie-Lamport-Merkle scheme for n-bit mes-

sages. An example of the values used in this scheme when n = 7 is given in

Figure 5.2.

Key Generation Algorithm

• SignerA picks {x0, . . . , xn+dlog2(n+1)e−1} uniformly at random from {0, 1}n.

• Signer A computes {y0, . . . , yn+dlog2(n+1)e−1} by yi = f(xi).

• The set {y0, . . . , yn+dlog2(n+1)e−1} is published as A’s public key.

Signature Generation Algorithm

• Signer A definesm′ as the concatenation ofm, the message to be signed,

with a dlog2(n+ 1)e-bit count of the number of ‘zero’ bits in m.

• A releases as the signature the following set of private key values:

{xi : m′
i = 1, where m′

i is the ith bit of m′}.

Verification Algorithm

• The verifier computes m′ from m, as described in the signature gener-

ation algorithm.

• The verifier then checks that for all ‘one’ bits of m′ they have been

provided with a valid preimage for the corresponding public key value.

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9

x0

OO

x1

OO

x2

OO

x3

OO

x4

OO

x5

OO

x6

OO

x7

OO

x8

OO

x9

OO

Figure 5.2: The Diffie-Lamport-Merkle one-time signature scheme for 7-bit
messages. The values corresponding to the signature for the message m =
1001010 are highlighted with boxes. Note that 1001010 has four zeros, and
the binary representation of four is 100, so m′ = 1001010100, as defined in
Signature Scheme 5.5.

CHAPTER 5. SIGNATURES 118

If an adversary wants to make a forgery from an existing signature then

they must (at least) either change a 0 to a 1 or (if no 0’s have been changed

to 1’s) a 1 to a 0. If they try to change a 0 to a 1 then they must find a

preimage of the hash function at the public key value corresponding to the

changed bit. If they only change 1’s to 0’s then the adversary increases the

number of 0’s in the message, and so at least one 0 will change to a 1 in the

count of the number of zeros field. This will require finding a preimage of the

hash function for the corresponding public key value. Since it is assumed to

be infeasible to find a preimage of the hash function, the scheme is considered

secure.

There is also a fairly straightforward extension of the Winternitz scheme

(Scheme 5.4) to a Winternitz-Merkle scheme. When signing messages with

n digits in base r, the scheme requires n+ dlogr(n(r−1)+1)e hash chains of

length r−1. The first n are used as before to ensure that the signed message

digits cannot be decreased, and the remaining digits are used to sign the

difference between n(r − 1) and the sum of the message digits. The latter

signing ensures that message digits cannot be increased without computing

a preimage of a hash function.

5.2.2 Vaudenay’s rake

In this section we will look at a natural generalisation of the schemes from

the last section, Vaudenay’s rake. We will define some terms that will come

in useful later in the chapter and consider how to find the most efficient one-

time signature scheme on Vaudenay’s rake (which we will call ‘Vaudenay’s

optimal rake one-time signature scheme’).

5.2.2.1 Vaudenay’s rake one-time signature scheme

The Winternitz-Merkle one-time signature scheme is not the most efficient

use of hash chains for signing messages. In [142] Vaudenay proposed a gener-

alisation of the Winternitz scheme and the Winternitz-Merkle scheme, which

we will refer to as ‘Vaudenay’s rake’ and which is in Signature Scheme 5.6.1

1The description of this scheme as a rake is due to Bleichenbacher and Maurer [10].

CHAPTER 5. SIGNATURES 119

Vaudenay also proposed a specific instance of the scheme, which Bleichen-

bacher and Maurer [10] proved was an optimal use of hash chains to produce

signatures, in the sense that for the same size of message space the ‘opti-

mal rake’ scheme typically requires fewer hash chains, and so has a smaller

private and public key. The ‘optimal rake’ scheme is described in detail in

Signature Scheme 5.7.

Definition 5.2. A signature pattern for a one-time signature scheme

based on a set of r hash chains {{x0,0, . . . , x0,l}, . . . , {xr−1,0, . . . , xr−1,l}} is

a set Ui of vertices, such that Ui contains exactly one vertex from each hash

chain.2

We denote the set of signature patterns by U .

We let Ui = {ui,0, . . . , ui,r−1}, such that ui,k is the vertex in signature

pattern Ui that is also in the hash chain {xk,0, . . . , xk,l}.
Therefore, for each Ui there is a set of integers {s0, . . . , sr−1} such that

ui,k = xk,sk
for all k. For convenience we may also refer to {s0, . . . , sr−1} as

the signature pattern.

An example of a signature pattern is given in Figure 5.3.

x0,2 x1,2 x2,2 x3,2

x0,1

OO

x1,1

OO

x2,1

OO

x3,1

OO

x0,0

OO

x1,0

OO

x2,0

OO

x3,0

OO

Figure 5.3: Vaudenay’s rake with 4 chains of length 2. A signature pattern
Ui = {ui,0, ui,1, ui,2, ui,3} = {x0,1, x1,2, x2,0, x3,0} is marked with the boxes.

The signing algorithm for Vaudenay’s rake one-time signature scheme is

made up of three functions. The first, as discussed in Section 5.1.3, is a hash

function f : M→ R. The other two are the signature pattern function and

the evaluation function.

2We will usually wish to consider families of signature patterns, and so use Ui to
represent a signature pattern, as opposed to U .

CHAPTER 5. SIGNATURES 120

Definition 5.3. The Vaudenay’s rake signature pattern function θ :

f(M) → U is a function which takes as input a message m ∈ M, and

outputs a signature pattern Ui ∈ U from the scheme. The function should

be easy to compute and easy for the signer to publish. The function should

also be such that for any two signature patterns Ui and Uj there exist hash

chains {xk,0, . . . , xk,l} and {xk′,0, . . . , xk′,l} such that ui,k is not on the path

from xk,0 to uj,k and uj,k′ is not on the path from xk′,0 to ui,k′ .

The Vaudenay’s rake evaluation function ψ : U ×K → S is a function

which takes a signature pattern and a private key and outputs a signature.

The signature consists of the value at each vertex in the signature pattern.

The Vaudenay’s rake verification function υ : M× S × K → {0, 1}
takes a message, signature and public key and outputs a value indicating

whether the signature is valid for the message and public key. This can

be computed by finding the signature pattern from the message and then

hashing from the values given in the signature to find the end value of each

chain, and then comparing with the public key.

In Figure 5.4 we give an example of Vaudenay’s rake one-time signature

scheme and the corresponding signature pattern function. We note that for

small examples like this it is acceptable to use a look-up table as the signature

pattern function, but for larger message spaces (for example the set of 128-bit

hash values) a look-up table could become unmanageable.

We note that the Winternitz and Winternitz-Merkle schemes are both

based on a set of hash chains where each signature consists of a set of values,

one from each chain. To prevent a forgery, the set of values for any signa-

ture must not be obtainable from the set of values for any other signature.

Vaudenay’s generalisation (Scheme 5.6) also uses a set of hash chains and

each signature consists of a value from each chain with the same property

required to prevent forgeries.

CHAPTER 5. SIGNATURES 121

x0,2 x1,2 x2,2

x0,1

OO

x1,1

OO

x2,1

OO

x0,0

OO

x1,0

OO

x2,0

OO

Hash Values revealed
value as signature
000 x0,0, x1,1, x2,2

001 x0,0, x1,2, x2,1

010 x0,1, x1,0, x2,2

011 x0,1, x1,1, x2,1

100 x0,1, x1,2, x2,0

101 x0,2, x1,0, x2,1

110 x0,2, x1,1, x2,0

Figure 5.4: An example of Vaudenay’s rake one-time signature scheme. On
the left is a set of three hash chains on which the signature scheme is based.
On the right is a look-up table for the signature pattern function of our
signature scheme.

Signature Scheme 5.6: Vaudenay’s rake one-time signature scheme from [142].

Key Generation Algorithm

• Signer A picks r values {x0,0, . . . , xr−1,0} at random. This will be the

private key ks for the scheme.

• A creates r hash chains, each of length l, seeded by {x0,0, . . . , xr−1,0}.

• A publishes the end value of each chain {x0,l, . . . , xr−1,l} as the public

key kp for the scheme.

• It is essential that the signature pattern function θ is known, or can

easily be found, by any potential verifier.

Signature Generation Algorithm

• The signer A applies the signature pattern function θ to the f(m) to

find which signature pattern should be used.

• A computes the value at each vertex indicated by the signature pattern

from the private key values {x0,0, . . . , xr−1,0}.

• A releases the set of all these values {s0, . . . , sr−1} as the signature.

CHAPTER 5. SIGNATURES 122

Verification Algorithm

• The verifier B applies the signature pattern function to the message m

to find the signature pattern for the message.

• For each value si in the signature, B hashes along the chain to find

the chain’s end value xi,l. B then checks that this is the same as the

corresponding value in the public key.

• If all the signature values validate against the public key then B accepts

the signature as authentic.

It is important that A only uses the signature scheme once, as if they

reveal signatures on more than one message it is likely that an adversary

could forge signatures on other messages. We consider the example of Signa-

ture Scheme 5.6 with three chains of length two, and the signature pattern

function given in Figure 5.4. If A signs two messages with hash values 011

and 101, then an eavesdropper can obtain the values x0,1, x1,1, x2,1, x0,2 and

x1,0. Using x2,1 the adversary can compute x2,2 and then will possess all

the values they need to create a forgery on a message with hash value 010

(x0,1, x1,0 and x2,2).

Before we look at the largest Vaudenay’s rake scheme for a given set of

hash chains (which we will call Vaudenay’s optimal rake scheme), we will first

explore a particular family of Vaudenay’s rake one-time signature schemes.

5.2.2.2 Constant sum Vaudenay’s rake one-time signature schemes

In this section we examine a family of Vaudenay’s rake one-time signature

schemes. We look at some research by Bleichenbacher and Maurer [10] who

suggested a method to compute the size of these signature schemes, but did

not give a proof. We present a new method by which the size of the signature

schemes can be computed, and provide a proof of correctness. Finally we give

a result from [10] which shows that this family contains the largest signature

scheme for any given number and length of hash chains.

CHAPTER 5. SIGNATURES 123

We start by presenting the family of signature schemes and, since we

could not find it in the literature, we also provide a proof that these are

indeed signature schemes.

Theorem 5.4. For a set of r hash chains seeded by {x0,0, . . . , xr−1,0} and

each of length l, we can form a signature scheme by including all signature

patterns {x0,s0 , . . . , xr−1,sr−1} satisfying:

r−1∑
i=0

si = k, (5.1)

where k is a constant.

Proof Firstly we note that any set of vertices {x0,s0 , . . . , xr−1,sr−1} is a

signature pattern, because there is exactly one vertex in it from each hash

chain.

For the set of signature patterns to be a signature scheme they must also

satisfy the property that, for any two signature patterns {x0,s0 , . . . , xr−1,sr−1}
and {x0,s′0

, . . . , xr−1,s′r−1
}, there exist hash chains xc,∗ and xc′,∗ such that xc,sc

is not on the path from xc,0 to xc,s′c and xc′,s′
c′

is not on the path from xc′,0 to

xc′,sc′
. This is equivalent to saying that for any two signature patterns there

exist c and c′ such that sc > s′c and s′c′ > sc′ . Since the two ordered sets of

values s∗ and s′∗ are not identical, there must exist c such that, without loss

of generality, sc > s′c. Given this, and that
∑r−1

i=0 si = k =
∑r−1

i=0 s
′
i, there

must also exist c′ such that s′c′ > sc′ .

We will refer to the signature scheme on r hash chains of length l formed

by all signature patterns {x0,s0 , . . . , xr−1,sr−1} satisfying (5.1) as S(r, l, k). We

are mainly interested in the size of S(r, l, k).

In [10] Bleichenbacher and Maurer gave, without proof, an equation to

compute |S(r, l, k)|:

|S(r, l, k)| =

bk/(l+1)c∑
j=0

(−1)j

(
r

j

)(
r + k − j(l + 1)− 1

r − 1

)
. (5.2)

CHAPTER 5. SIGNATURES 124

Since no proof of (5.2) was provided (and since we have not been able to

create a proof ourselves) we present another method to compute |S(r, l, k)|,
for which there is a fairly straightforward proof of correctness.

Theorem 5.5. For a signature scheme S(r, l, k) as described above, the fol-

lowing relations hold:

|S(1, l, k)| =

{
1 if k ∈ [0, l]

0 otherwise.
(5.3)

|S(r, l, k)| =

min(l,k)∑
i=0

|S(r − 1, l, k − i)| if r ≥ 2 (5.4)

Proof In (5.3) we are considering signature schemes with only one hash

chain. We observe that all signature patterns contain only one value {x0,s0},
and that s0 is restricted to values in [0, l]. Consequently if k ∈ [0, l] then

|S(1, l, k)| = 1, otherwise |S(1, l, k)| = 0.

To prove (5.4), we rewrite (5.1) to get:

k = sr−1 +
r−2∑
i=0

si,

and note that we are interested in the number of combinations of values of

s∗ which add to make k. The number of ways to make k − sr−1 with r − 1

chains has already been computed (by induction this is true, as (5.3) implies

it is true for r = 2), and so we can sum the combinations over the different

values of sr−1. Hence,

|S(r, l, k)| =
l∑

sr−1=0

|S(r − 1, l, k − sr−1)|.

However, when sr−1 > k, there are no ways to add non-negative values

and get a negative value. Consequently, we get (5.4):

|S(r, l, k)| =
min(l,k)∑

i=0

|S(r − 1, l, k − i)| if r ≥ 2.

CHAPTER 5. SIGNATURES 125

From (5.3) and (5.4) we can compute |S(r, l, k)| for all r ≥ 1, l ≥ 0 and

k ≥ 0.

In [10] Bleichenbacher and Maurer used the Sperner property from [132]

to show that the signature scheme S(r, l, b rl
2
c) is the largest signature scheme

that can be formed on r chains of length l. We will refer to the fam-

ily S(r, l, b rl
2
c) as Vaudenay’s optimal rake one-time signature scheme.

5.2.2.3 Vaudenay’s optimal rake one-time signature scheme

Signature Scheme 5.7: Given a set of r hash chains of length l, {x0,0, . . . , x0,l},
. . . , {xr−1,0, . . . , xr−1,l}, Vaudenay’s optimal rake one-time signature scheme

is the specific instance of Signature Scheme 5.6 where the set of signature pat-

terns is defined to be every signature pattern of the form {x0,s0 , . . . , xr−1,sr−1}
satisfying:

r−1∑
i=0

si =

⌊
rl

2

⌋
.

Although Signature Scheme 5.7 is the largest signature scheme on a given

set of hash chains, it is not necessarily the best scheme to use in practice. To

use Vaudenay’s rake one-time signature scheme it is also necessary to have an

efficient signature pattern function. There is currently no known ‘efficient’

mapping for Vaudenay’s scheme.3

5.2.2.4 Further optimisation

Using Signature Scheme 5.7 we can, for given r and l, find the largest signa-

ture scheme possible. However, in practice we are more likely to know the

size of our message space and want to know how large r and l must be. One

way to handle this is by trial and improvement; try a pair of values r and l,

find the largest signature scheme, adjust r and l, then repeat.

Even if we find a small pair of values r and l which provide us with a large

enough signature scheme, it is likely that we will get more than one pair. For

example, if we wanted to be able to provide a signature on a message space

3We have seen no signature pattern functions in the literature. The best such function
that we know of is a look-up table.

CHAPTER 5. SIGNATURES 126

of size 50 then we could choose 8 chains of length 1, 5 chains of length 2,

4 chains of length 4, 3 chains of length 8 or 2 chains of length 49. We give

the maximum size of signature scheme for each of these pairs of values in

Table 5.2.

r l b rl
2
c |S(r, l, b rl

2
c)|

8 1 4 70
5 2 5 51
4 4 8 85
3 8 12 61
2 49 49 50

Table 5.2: Some Vaudenay’s optimal rake signature schemes that cater for a
message space of size at least 50.

Choosing the ‘best’ signature scheme to use from this list is an application

dependent problem. For example:

• if we wish to minimise the size of the private and public keys then we

must minimise r, and so S(2, 49, 49) is the best choice;

• if we wish to minimise the storage for the signing party then we should

minimise the number of vertices in the chains, and so S(5, 2, 5) is the

best choice;

• if we wish to minimise the number of hash function calculations that

are needed to compute the values for a signature (or equivalently the

number of hash applications to verify a signature) then we should min-

imise b rl
2
c, and so S(8, 1, 4) is the optimal scheme.

Although it is clear that there cannot be a universal measure of efficiency

suitable for all applications, work has been done to identify reasonable mea-

sures. In Section 5.2.4.1 we will discuss in more detail a measure of efficiency

due to Bleichenbacher and Maurer [11].

CHAPTER 5. SIGNATURES 127

5.2.3 Using hash trees and Merkle trees for one-time

signature schemes

In this section we look at two applications of Merkle trees to one-time sig-

nature schemes. The first is in the reduction of the public key size, at the

expense of more computation during the initialisation and verification phases.

The second application is to use the Merkle tree as the basis of the one-time

signature scheme itself, which can reduce the size of the signature from the

schemes in earlier sections.

5.2.3.1 Reducing public and private key sizes

All of the one-time signature schemes that we have looked at so far require

the signer to store a collection of private keys. It is possible to generate all the

keys from a single master key, which greatly reduces the amount of storage

required for the signer. We can use a pseudo-random number generator

seeded with the master key to generate a set of independent private keys.4

As we discussed in Section 3.3.2, there are many ways of generating in-

dependent values from a master value using a hash function. If we use one

of these with one of the hash-based signature schemes described earlier then

the overall structure formed is an inverted hash tree (see Section 3.4.5).

Similarly, most one-time signature schemes require each user to publish

a collection of public keys. The public key values can be reduced to one

master public value by hashing all the public key values together. If we use

a strong hash function (Definition 2.10) then the verifier can have the same

confidence in the signature by checking the collection of public key values is

correct, as by checking the master public value is correct.

If we use one of the one-time signature schemes described earlier in this

chapter and then hash the public key values to form a master public key, then

the overall structure used is a Merkle tree (see Definition 3.4). In the next

section we will look at other Merkle tree based one-time signature schemes.

4Independent in the sense that no information can be derived about one of the private
keys from any subset of the others. Trivially, the private keys are not independent of the
master key.

CHAPTER 5. SIGNATURES 128

These reductions add extra computation to the signature generation and

verification algorithms, but greatly reduce both the storage requirement for

the private key and the message costs of distributing the public key.

5.2.3.2 Merkle tree based one-time signature schemes

Merkle trees can also be used as the basis of a one-time signature scheme,

in a similar way to a set of hash chains. In Section 5.2.2.1 we gave some

definitions which helped to discuss signature schemes based on hash chains.

We now give some similar definitions for hash trees.

Definition 5.6. A signature pattern for a one-time signature scheme

based on a hash tree is a set of values Ui from the hash tree such that

each path from a leaf to the root contains exactly one value from Ui.

Definition 5.7. A one-time signature scheme based on a hash tree is a

set of signature patterns such that for any two signature patterns Ui and Uj

there exist two paths Pk and Pk′ satisfying the following two conditions:

1. The vertex Ui ∩ Pk is not on the path from Uj ∩ Pk to the root;

2. The vertex Uj ∩ Pk′ is not on the path from Ui ∩ Pk′ to the root.

We note that Definition 5.3 can be applied to hash chains or to hash trees.

As an example, the Merkle tree in Figure 5.5 has a signature pattern

marked on it, and there are a total of 4 such signature patterns which together

form a signature scheme.

◦

◦

66nnnnnnnn •

hhPPPPPPPP

•
>>}}}

◦
``AAA

◦
>>}}}

◦
``AAA

◦
OO

•
OO

◦
OO

◦
OO

Figure 5.5: An example of a signature pattern on a Merkle tree is marked by
the solid circles.

In fact one-time signature schemes can be created on any type of hash

tree, not just Merkle trees. However, if the hash tree is not a Merkle tree

CHAPTER 5. SIGNATURES 129

then some of the leaves can be deleted to form a Merkle tree with one-time

signature schemes of the same size. We now present a construction by which

this can be achieved (Theorem 5.8) and then we give a proof that the Merkle

tree admits a signature scheme of the same size (Theorem 5.9).

Theorem 5.8. For any hash tree on a tree T with leaves L and non-leaves N ,

we can define a subtree M by:

M = N ∪ {v ∈ L : v has no siblings on its left, and no siblings in N}.

The hash tree on M is a Merkle tree.

Proof In Definition 3.4 we define a Merkle tree as a hash tree where

every leaf has no sibling.

It can be seen that any leaf in L that is also in M has no siblings.

There are no leaves in M∩N , as every vertex in N either has children

in N ∩M or a child in L ∩M.

Figure 5.6 gives a hash tree and the Merkle sub-tree formed by the method

in Theorem 5.8. Also shown is a signature pattern on the hash tree, and

the equivalent signature pattern on the Merkle tree formed from the hash

tree. We now give a formal analysis of the equivalence of signature patterns

on hash trees and signature patterns on Merkle sub-trees. This result is

implied for binary hash trees during the study of tree-based digital signatures

by Bleichenbacher and Maurer [12], but we present it here as they did not

explicitly provide it, nor did they imply the result on general hash trees.

◦ ◦

◦
>>}}}

◦
>>}}}

◦
>>}}}

•
``AAA

◦

``AAAAAAAAA
◦

>>}}}
•

``AAA
◦

^^=========

•
>>}}}
•
OO

•

OO

◦
OO

•
>>}}}
•
OO

•
``AAA

•
OO

◦
OO

•
OO

Figure 5.6: An example showing a signature pattern on a hash tree and the
equivalent signature pattern on the corresponding Merkle tree. The signature
patterns are marked by the solid circles.

CHAPTER 5. SIGNATURES 130

Theorem 5.9. For any signature scheme on a hash tree on a tree T there

is an equivalent signature scheme on the Merkle tree on M (as defined in

Theorem 5.8) with the same number of signature patterns.

Proof From each signature pattern Ui in the original signature scheme

we create a signature pattern U ′
i on the Merkle tree by:

U ′
i = Ui ∩M.

To prove the theorem, we first show that U ′
i is a signature pattern and then

that the set of signature patterns form a one-time signature scheme.

We show that U ′
i is a signature pattern. Every leaf in M was also a leaf

in T , as was shown in the proof of Theorem 5.8. Consequently, every path

from a leaf in M to the root of M is also a path from a leaf in T to the root

of T . Every path from a leaf to the root in M must intersect U ′
i at exactly

the same vertex that the path intersected Ui, and no others. Hence U ′
i is a

signature pattern.

We now show that the set of signature patterns U ′
∗ form a one-time sig-

nature scheme. Assume U ′
∗ is not a signature scheme. Hence we can find two

signature patterns U ′
i and U ′

j such that there is no pair of paths satisfying

the three conditions given in Definition 5.7. Without loss of generality we

assume that for every path Pk on M the vertex U ′
i ∩ Pk is on the path from

U ′
j ∩ Pk to the root.

Ui and Uj are signature patterns on T . We note that U ′
i ⊆ Ui, U

′
j ⊆ Uj and

all the paths in M are also in T . Consequently (without loss of generality)

we must have a pair of paths Pk and Pk′ satisfying the three conditions,

with Ui ∩ Pk′ /∈M.

The only vertices in T \M are leaves which have siblings, at least one

of which, v, is in M. Any signature pattern containing Ui ∩ Pk′ must also

contain a vertex on each path from v to the leaves descended from v. One of

these vertices is also in M, and so is also in U ′
i . Hence any path Pk through v

in M does not have U ′
i ∩ Pk on the path from U ′

j ∩ Pk to the root, and we

have a contradiction.

This theorem allows us to restrict further analysis of hash tree based

signature schemes to those based on Merkle trees.

CHAPTER 5. SIGNATURES 131

5.2.4 Generalised hash DAG one-time signature schemes

In [10], Bleichenbacher and Maurer generalise all the previous schemes by

proposing a one-time signature scheme based on a generalised hash DAG.

They also gave the following useful definitions for analysing generalised hash

DAG one-time signature schemes.

Given a DAG G = (V,E), we can define the secret key pattern S(G) ⊂ V

as the set of vertices with in-degree 0, and the public key pattern P (G) ⊂
V as the set of vertices with out-degree 0. The secret key values are the

values associated (by the generalised hash DAG) with the secret key pattern

vertices. Similarly, the public key values are those values at the vertices of

the public key pattern.

Given a set of vertices X ⊂ V , we say that a vertex v ∈ V is computable

from X if either v ∈ X or v has at least one parent, and all its parents are

computable from X. Given two sets X, Y ⊂ V we say Y is computable from

X if all its members are computable from X. We say that a set X is verifiable

(with respect to the public key) if P (G) is computable from X.

Definition 5.10. A minimal verifiable set (or MVS) is a verifiable set X

such that no proper subset of X is verifiable.

A signature pattern for a one-time signature scheme based on a gener-

alised hash DAG is a minimal verifiable set.

We only wish to consider minimal verifiable sets since smaller signature

patterns will equate to lower communication costs in the protocol. The set

of minimal verifiable sets of a graph G is denoted W(G).

Two minimal verifiable setsX, Y ∈ W(G) are compatible if neither is com-

putable from the other. A set of MVSs are compatible if they are compatible

pairwise.

Remark 5.11. A minimal verifiable set intersects every path from S(G)

to P (G).

Definition 5.12. A one-time signature scheme based on a generalised

hash DAG is a compatible set of MVSs.

CHAPTER 5. SIGNATURES 132

We briefly give a few definitions of well studied combinatorial objects that

will be of use to us during the rest of this section.

Definition 5.13. A poset (or partially ordered set) is a set S, together

with a binary comparison operator ≤. For every element a ∈ S we have

a ≤ a. For every pair of distinct elements a, b ∈ S we have exactly one of

a ≤ b, b ≤ a, or a and b are incomparable. Finally if a ≤ b and b ≤ c we

have a ≤ c.

Definition 5.14. In a poset (S,≤) a chain is a subset of S such that for

every pair of elements a, b ∈ S we have either a ≤ b or b ≤ a.

In a poset (S,≤) an antichain is a subset of S such that every pair of

elements a, b ∈ S are incomparable.

Definition 5.15. The associated poset of W(G) is the poset formed by

the set W(G) and the binary comparison operator of computability. That is

a ≤ b if a is computable from b.

The largest signature scheme that can be formed from a particular gen-

eralised hash DAG is the largest compatible set of minimal verifiable sets.

This is equivalent to the largest antichain in the associated poset of W(G),

and the size of this antichain is the width of W(G), which we will denote by

w(W(G)).

The authors of [10] define two functions ν(n) and µ(n), which are the

maximal number of MVSs for a DAG on n vertices, and the maximum size

of signature scheme that can be formed on a graph with n vertices. The

functions are defined as:

ν(n) = max{|W(G)| : G = (V,E) with |V | = n}; (5.5)

µ(n) = max{w(W(G)) : G = (V,E) with |V | = n}. (5.6)

We define a DAG G of order n to be an optimal DAG on n vertices

if w(W(G)) = µ(n).

In [11], the same authors prove an interesting relation between µ(n) and ν(n)

which holds for all n ≥ 1.

CHAPTER 5. SIGNATURES 133

Result 5.16. Equation 1 of Bleichenbacher and Maurer [11]:

ν(n)

n
≤ µ(n) ≤ ν(n).

The lower and upper bounds in Result 5.16 are attained respectively by

a hash chain on n vertices, and a graph of n unconnected vertices.

It is clear that by generalising hash chains and hash trees to generalised

hash DAGs we may find schemes with the same number of vertices but more

signatures. An example is given in Figure 5.7, which shows, for nine vertices,

the tree and DAG which admit the largest signature scheme (as found by

exhaustive search).

a a

b

@@����
c

^^>>>>
b

@@����
c

^^>>>>

d

AA����
e

]];;;;
f

]];;;;

d

AA����
e

]];;;;
AA����

f

]];;;;

g

OO

h

OO

i

OO

g

OO

h

OO

i

OO

Figure 5.7: An optimal tree and an optimal DAG on 9 vertices. The
optimal signature scheme for the tree contains 4 signature patterns
({g, h, c}, {d, h, f}, {g, e, f}, {d, e, i}), whereas the optimal signature scheme
for the DAG contains 5 signature patterns ({g, h, c}, {d, h, f}, {g, e, f},
{d, e, i}, {b, h, i}).

5.2.4.1 Efficient schemes

The authors of [11] also focus on finding efficient schemes. To compare the

efficiency of schemes they focus on the underlying DAG. To simplify things

further they insist that every scheme should have only one public key (as

discussed in Section 5.2.3.1).

They also insist that every vertex in the DAG has in-degree at most two.

This can be achieved by replacing vertices with in-degree greater than two

with a binary hash tree, and replacing any edges that left the old vertex with

edges that leave the root of this new tree. We give an example in Figure 5.8.

CHAPTER 5. SIGNATURES 134

◦ ◦

•
??~~~

◦
__@@@

• // •
OO

◦
__@@@

◦
??~~~

◦

ggOOOOOOOO
OO

◦
??~~~
•
OO

•
OO

◦oo

OO

◦

GG��������
OO

◦

OO

◦
??~~~

WW00000000
◦
OO

◦
??~~~

OO

◦
OO

◦
??~~~

OO

◦
OO

Figure 5.8: On the left is a DAG where the filled in vertex has in-degree
greater than two. It can be replaced by a binary hash tree, as shown in the
diagram on the right, to ensure that all vertices now have in-degree of at
most two.

We assume that all the seed vertices are formed from a single private key,

as described in Section 5.2.3.1; however this vertex is not included as part of

the DAG for the purposes of counting the vertices.

With this model, all vertices in a generalised hash DAG except the single

seed vertex require a hash function application to compute. Consequently,

Bleichenbacher and Maurer [11] approximate the amount of ‘work’ needed

to use a particular one-time signature scheme by the number of vertices it

contains. They approximate the payoff of the signature scheme’s DAG as

the size of the largest one-time signature scheme based on it (that is the size

of the largest compatible set of minimal verifiable sets).

For a generalised hash DAG of order n, they define the efficiency η(Γ) of

a one-time signature scheme based on a set Γ of minimal verifiable sets to be

η(Γ) =
log2 |Γ|
n+ 1

. (5.7)

As an example, consider the Diffie-Lamport scheme for k-bit messages with

a binary hash tree to make a single public key value (see Figure 5.9).

The scheme is designed to sign k-bit messages and so has minimal ver-

ifiable sets for each of the 2k messages, that is |Γ| = 2k. To calculate the

efficiency we also need to find n, the number of vertices, of which there

are 6k − 1. The efficiency η(Γ) can be computed as follows:

η(Γ) =
log2 |Γ|
n+ 1

=
log2 2k

6k
=

1

6
. (5.8)

CHAPTER 5. SIGNATURES 135

P

p0,(k/2)−1

44hhhhhhhhhh
pk/2,2k−1

iiTTTTTTTT

...

99tttttt ...

hhPPPPPPPP ...

99tttttt ...

ffMMMMMMM

p0,1 p2,3 · · · p2k−2,2k−1

y0

@@���
y1

^^===
y2

99rrrr
y3

^^===
· · · y2k−2

77oooo
y2k−1

ggOOOO

x0

OO

x1

OO

x2

OO

x3

OO

· · · x2k−2

OO

x2k−1

OO

Figure 5.9: The Diffie-Lamport one-time signature scheme for k-bit messages
with a binary hash tree to combine all the public key values to a single value.

The authors also prove that the maximum efficiency of a one-time signa-

ture scheme based on a hash tree is less than 0.42 and give a construction

of a sequence of signature schemes based on a sequence of generalised hash

DAGs with

lim
n→∞

η(Γn) > 0.47. (5.9)

In Section 5.4.1 we will look in more detail at this construction and in Sec-

tions 5.4.2 and 5.4.3 we will give some constructions of our own.

First we present a method by which ν(n) and µ(n) can be investigated.

In Section 5.3.2 we exhibit a collection of algorithms that finds the associated

poset of a DAG G, and hence gives us a lower bound on ν(n) for small n.

In Section 5.3.3 we present several algorithms that find the largest signature

scheme on G, and consequently give us a lower bound on µ(n).

5.3 Finding the largest compatible set of min-

imal verifiable sets for a given graph

In this section we will present several algorithms that build towards an al-

gorithm that efficiently finds and outputs a large one-time signature scheme

on a given DAG G. In Section 5.2.4 we saw that this was the same as finding

a large compatible set of minimal verifiable sets for G.

CHAPTER 5. SIGNATURES 136

We start this section by explaining how we split the task of finding a

large set of compatible minimal verifiable sets from a DAG G into two smaller

problems. We then present algorithms that build towards several solutions

to the first problem and we compare the efficiency of these algorithms. We

then look at algorithms to solve the second problem, and again study their

performance. Finally we present the results obtained by implementing our

algorithms.

5.3.1 Introduction

We are interested in µ(n), the maximum size of a one-time signature scheme

on a DAG of order n. By trying many graphs, our program finds a lower

bound on this, which we will call m(n). For each signature scheme, our

program can optionally also output the DAG G, the set of MVSs W(G) and

the signature patterns Γ(G) that make up the signature scheme found.

The method by which we select graphs is itself of interest. Originally we

tested randomly chosen graphs, edges added randomly with the restriction

that no vertex had an in-degree greater than k. We were not satisfied by

the rate at which m(n) increased, and so we redesigned the graph selection

algorithm to keep track of the best graph found so far, and to make small

changes to that graph. This significantly improved the rate at which m(n)

increased.

A list of all the algorithms we present in this section is given in Table 5.3.

The problem of finding a large set of compatible minimal verifiable sets

from a DAG G seems to split logically into two problems:

1. Finding the set of minimal verifiable sets W(G) from the DAG;

2. Finding a large set of compatible minimal verifiable sets M(G) from

W(G) (and G).

CHAPTER 5. SIGNATURES 137

Algorithm Description
Algorithm 2 An algorithm to check whether a given subset U of

G is a minimal verifiable set or not.
Algorithm 3 An algorithm to check whether a given subset U of

G is a verifiable set.
Algorithm 4 An algorithm to check whether a given verifiable

subset U of G is minimally verifiable or not.
Algorithm 5 An algorithm to output all the paths in a DAG G

with source set S(G) and sink set P (G).
Algorithm 6 A trivial but inefficient exhaustive search algorithm

to find all the minimal verifiable sets in a DAG G.
Algorithm 7 A second trivial but inefficient exhaustive search

algorithm to find all the minimal verifiable sets in
a DAG G with paths Paths(G).

Algorithm 8 An algorithm to output all minimal verifiable
sets that is very often more efficient than Algo-
rithms 6 and 7.

Algorithm 9 An algorithm to construct the associated poset on
the set of minimal verifiable sets MVS(G) ordered
by computability.

Algorithm 10 The Bron-Kerbosch algorithm - a reasonably effi-
cient recursive algorithm to find the largest com-
patible set of MVSs for a DAG G.

Algorithm 11 A very efficient algorithm to find a large compatible
set of MVSs for a DAG G.

Table 5.3: A list of the algorithms presented in this section. Those in the
top half are found in Section 5.3.2 and those in the bottom half are found in
Section 5.3.3.

CHAPTER 5. SIGNATURES 138

5.3.2 Problem 1 — Finding the set of minimal verifi-

able sets from the DAG

We can check if a subset U of G is a minimal verifiable set by checking that it

contains at least one vertex from each path from a source of G to a sink (i.e.

it is verifiable), and by checking that each vertex in the subset is the only

vertex of the subset present in at least one path (i.e. the subset is minimal).

This straightforward scheme is given in Algorithm 2, which makes calls to

Algorithms 3 and 4.

Algorithm 2:
Description: An algorithm to check whether a given subset
U of G is a minimal verifiable set or not.
Is set minimal and verifiable(U)
(1) if Is set verifiable(U) and Is set minimal(U)
(2) return true
(3) else
(4) return false

Running time: O(|U | · |Paths(G)|).

Algorithm 3:
Description: An algorithm to check whether a given subset
U of G is a verifiable set.
Is set verifiable(U)
(1) foreach path P in G
(2) if P and U have no vertices in common
(3) return false
(4) return true

Running time: O(|Paths(G)|).

It is clear that Algorithms 3 and 4 require us to have a list of all the

paths from sources to sinks in G. Algorithm 5 is a classic depth first search

algorithm [150] for finding paths in a graph G with source set S(G) and sink

set P (G).

CHAPTER 5. SIGNATURES 139

Algorithm 4:
Description: An algorithm to check whether a given verifi-
able subset U of G is minimally verifiable or not.
Is set minimal(U)
(1) foreach vertex u in U
(2) Initialise flag VertexIsCritical to false
(3) foreach path P in Paths(G)
(4) if P ∩ U = {u}
(5) Set VertexIsCritical to true
(6) if not VertexIsCritical
(7) return false
(8) return true

Running time: O(|U | · |Paths(G)|).

Algorithm 5:
Description: An algorithm to output all the paths in a DAG
G with source set S(G) and sink set P (G).
Find paths(G, S(G), P (G))

See Appendix A for the full algorithm.

To find every minimal verifiable set in G we could simply try all subsets

of G and check each with Algorithm 2. This naive approach is given in

Algorithm 6. However the number of sets to be checked for each DAG is 2n,

which proved prohibitively large by about n = 10.

Algorithm 6:
Description: A trivial but inefficient exhaustive search algo-
rithm to find all the minimal verifiable sets in a DAG G.
Find minimal verifiable sets 1(G)
(1) foreach subset U of G
(2) if Is set minimal and verifiable(U)
(3) print U

Running time: O
(
2|G| · |G| · |Paths(G)|

)
.

Another way to find all minimal verifiable sets is to form subsets of G
by taking one vertex from each path and checking with Algorithm 4 to see

if the set is minimal (it will trivially be verifiable). This method is given in

CHAPTER 5. SIGNATURES 140

Algorithm 7. Unfortunately this too becomes a prohibitive method when we

are dealing with DAGs that have five or six paths of length about three or

four vertices.

Algorithm 7:
Description: A second trivial but inefficient exhaustive
search algorithm to find all the minimal verifiable sets in a
DAG G with paths Paths(G).
Find minimal verifiable sets 2(Paths(G))
(1) Create a set Pointers with a pointer for each path.
(2) foreach combination of Pointers with the ith pointer

pointing to a vertex from the ith path
(3) Create a set U containing the union of all vertices

pointed to by Pointers.
(4) if Is set minimal(U)
(5) print U

Running time: O
(
PathLen(G)|Paths(G)| · |G| · |Paths(G)|

)
,

where PathLen(G) is the average path length in G.

We devised a method of combining elements of these two methods of

searching to create a much more efficient exhaustive search. There are two

important observations.

1. If a DAG has a vertex v that is in almost all of the paths then we can

find all the minimal verifiable sets containing v very quickly, and then

we can ignore v for the rest of the search.

2. If a DAG has a very short path P then since all minimal verifiable sets

intersect P , we can consider every subset U of the vertices in P , and

then only consider paths that do not intersect U .

The actual algorithm we have used is recursive in order to optimise the

benefit of the two above observations. It is given in Algorithm 8.

The best way to illustrate these two observations is with an example, so

we will consider the DAG in Figure 5.10. We need to have an ordered list of

the paths in our DAG, so these are given in Table 5.4.

CHAPTER 5. SIGNATURES 141

Algorithm 8:
Description: An algorithm to output all minimal verifiable
sets that is very often more efficient than Algorithms 6 and 7.
Input: A list of all the paths in G, an empty set (PartialMVS).
Output: A list of all the minimal verifiable sets in G.
Find minimal verifiable sets(Paths, PartialMVS)

See Appendix A for the full algorithm.

Algorithm 6 would require us to test all subsets of G and check each with

Algorithm 2. Since there are seven vertices, this would take approximately

27 = 128 calls to Algorithm 2.

Algorithm 7 would require us to check all sets formed by taking one vertex

from each path with Algorithm 4. Although this algorithm is marginally

quicker than Algorithm 2, we need to check 2 · 4 · 4 · 4 · 4 · 4 · 4 = 8192 subsets,

and so this method would almost certainly be slower than Algorithm 6.

However, if instead we use Algorithm 8 then we only end up checking

12 sets with Algorithm 2.5 This is much faster than either of the aforemen-

tioned methods.

A B

C

``@@@@@@@

>>~~~~~~~

D

OO

E

``@@@@@@@

F

OO

>>~~~~~~~
G

``@@@@@@@

OO

Figure 5.10: An example DAG.

5These sets in order are CF, CA, C, AB, ADE, ADG, AD, AFE, AFG, AF, FG, FDE.
This assumes that, if the algorithm allows a choice, the paths are selected lowest index
first and vertices are chosen lexicographically.

CHAPTER 5. SIGNATURES 142

Path index Vertices in path
0 FA
1 FDCA
2 FDCB
3 GDCA
4 GDCB
5 GECA
6 GECB

Table 5.4: The paths in the example DAG in Figure 5.10.

5.3.3 Problem 2 — Finding a large compatible set of

minimal verifiable sets from the set of all minimal

verifiable sets

Once we have found the set of all MVSs W(G) for a given DAG G, the next

task is to find a large compatible subset of W(G). Ideally we would like to

find the largest compatible subset, but we also wish our program to finish in

a sensible length of time.

For the purposes of this section it will be good to have a graph by which we

can compare performances of different algorithms. We have chosen to use the

graph given in Figure 5.11, since it is not too hard to analyse. For a 13 vertex

graph it does not have an extreme number of minimal verifiable sets (54),

nor does it permit an overly large one-time signature scheme (size 12).

5.3.3.1 Discussion of Algorithm 9

The first step in finding a large set of compatible sets is to construct the

associated poset of the DAG. The associated poset of G consists of the set of

minimal verifiable sets and the relation of whether one MVS is computable

from another (see Section 5.2.4 for definitions).

We note that two members i, j ∈ MVS(G) must satisfy exactly one of the

following four conditions: i = j, i < j, i > j or i and j are incomparable. If

i = j then i and j must be same element. If they are distinct and there is no

path P for which i ∩ P is nearer the source than j ∩ P then i < j. If j < i

CHAPTER 5. SIGNATURES 143

◦

◦

ggOOOOOOOOOO

◦

<<yyyyyyyyyyyy

◦

BB������
◦

\\::::::

◦

BB������
◦

\\:::::: 44iiiiiiiiii

◦

OO

◦

OO

◦

OO

◦

OO

◦

OO

◦

OO

Figure 5.11: An example graph with 13 vertices. This graph contains 54 min-
imal verifiable sets, of which at most 12 can combined to form a compatible
set.

then we have i < j and finally if none of the other conditions are satisfied

then i and j are incomparable.

Algorithm 9 uses this observation to determine the relationship between

each pair of elements in MVS(G).

Algorithm 9:
Description: An algorithm to construct the associated poset
on the set of minimal verifiable sets MVS(G) ordered by com-
putability.
Input: A list of the minimal verifiable sets of G, a list of the
paths in G.
Output: An array containing the poset relations between the
members of MVS(G).
Find associated poset(MVS(G), Paths(G))

See Appendix A for the full algorithm.

Once we have identified which minimal verifiable sets are computable

from each other, and which are compatible with each other, we are ready to

attempt to construct a large compatible set of minimal verifiable sets.

CHAPTER 5. SIGNATURES 144

5.3.3.2 Discussion of Algorithm 10

Finding the largest compatible set of MVSs on a DAG is the same as the

maximum clique problem [59] on the graph with MVSs as vertices and edges

between pairs of MVSs that are compatible.

In [18] Bron and Kerbosch present an algorithm for finding the largest

clique in a graph. This method is given in Algorithm 10.

Algorithm 10:
Description: The Bron-Kerbosch algorithm to find the
largest clique G [18]. Initially the algorithm is called as
BK(∅, V (G, ∅). The function Γ(v) returns the neighbours of
the vertex v.
Input: Three sets of vertices R, P and X
Output: A list C containing the vertices in a maximal clique.
BK(MVS(G), Poset[MVS(G),MVS(G)])
(1) Set C = ∅.
(2) if P = ∅ and X = ∅
(3)
(4) if |R| > |C|
(5) Set C = R.
(6) else
(7) foreach v ∈ P
(8) P = P − {v}
(9) Rnew = R ∪ {v}
(10) Pnew = P ∩ Γ(v)
(11) Xnew = X ∩ Γ(v)
(12) BK(Rnew, Pnew, Xnew)
(13) X = X ∪ v
(14) print C

Our experiments show Algorithm 10 to be a useful algorithm on graphs

with up to 14 vertices, and all but the best graphs on 15 and 16 vertices.6

For some 15 vertex DAGs with around about 100 MVSs, the algorithm was

still running after an hour.

6Here we use ‘best graphs’ to mean those graphs that admit the largest signature
schemes.

CHAPTER 5. SIGNATURES 145

5.3.3.3 Discussion of Algorithm 11

If a large compatible set A of minimal verifiable sets is compatible with

another minimal verifiable set b then we can create a larger compatible set A∪
b. Consequently we can form an estimate of how good a minimal verifiable

set is by measuring the number of minimal verifiable sets that it is compatible

with.

We can create a subset iteratively by including, at each iteration, the

MVS which is compatible with the largest number of MVSs, until there are

no more MVSs to include in the subset. This algorithm is presented as

Algorithm 11. It is a greedy algorithm, because we only look one step ahead

at each step.

Algorithm 11 is more efficient than Algorithm 10. We can approximate

the number of computations needed to find a large compatible set in this

way by looking at the line which is repeated the most times. Line 15 of

Algorithm 11 is the line inside more loops than any other (one ‘while’ loop

and three ‘foreach’ loops). For a DAG with 54 minimal verifiable sets and

maximal compatible verifiable set of order 12, this line is inside loops of size at

most 12, 54, 54 and 12 (Lines 3, 5, 12 and 14 respectively). Multiplying these

values together, we find that Line 15 is visited no more than 4.2×105 times,7

which would take about 0.4 seconds at a speed of a million computations a

second.

5.3.3.4 Comparison of algorithms for finding large compatible sets

We have presented two algorithms for finding large compatible sets of MVSs

for a DAG G. Algorithms 10 and 11 are both of use to us, since they provide

a trade-off between size of output set and running time.

Algorithm 10 takes an excessive time for some graphs of order 15 and

increasingly so for many graphs on more vertices. Although we have found

some DAGs for which Algorithm 11 does not find the maximal compatible

set, they have all been too large to evaluate with Algorithm 10.

7We measured this with our implementation of Algorithm 11 for the DAG given in
Figure 5.11 and found that the program visited Line 15 about 5300 times. It is clear that
our estimation of algorithm complexity is generous towards rival algorithms.

CHAPTER 5. SIGNATURES 146

Algorithm 11:
Description: A greedy algorithm to find a large compati-
ble set of minimal verifiable sets on a DAG G. The constant
INCOMPARABLE is defined in Appendix A.
Find A Large Compatible Set(MVS(G),
Poset[MVS(G),MVS(G)])
(1) Set MVSsLeft = |MVS(G)|.
(2) Create an empty set CompSet.
(3) while MVSsLeft > 0
(4) BestScore = -1
(5) foreach MVS i
(6) Set flag Incomparable to true
(7) foreach MVS k from the set CompSet
(8) if Poset[i, k] differs from INCOMPARABLE
(9) Set flag Incomparable to false
(10) if Incomparable = true
(11) Set Score to 0
(12) foreach MVS j
(13) Set flag Comparable to true
(14) foreach MVS k from the set CompSet
(15) if Poset[j, k] differs from INCOMPARA-

BLE
(16) Set flag Incomparable to false
(17) if Incomparable = true and Poset[i, j] =

INCOMPARABLE
(18) Increment Score by 1
(19) if Score > BestScore
(20) BestScore = Score
(21) BestMVS = i
(22) Add BestMVS to the set CompSet
(23) Set MVSsLeft to BestScore

CHAPTER 5. SIGNATURES 147

We also note that in Section 5.4.3, where we exhibit a one-time signature

scheme based on a hash DAG, we do not use all of the MVSs found in order

to simplify the signature pattern function.

5.3.4 Results

The results in Tables 5.5, 5.6 and 5.7 have been produced by a program us-

ing Algorithms 5, 8, 9 and 11. The program tested a succession of graphs

and output information each time it improved the value of m(n) (defined in

Section 5.3.1). The first graph was either selected randomly by the program,

or entered by hand. We used a hill-climbing method of making small changes

to the graph while maintaining the maximum in-degree, and if a graph im-

proved on the value of m(n) then it replaced the original graph, and future

graphs would be derived from it.

Due to the random nature of the DAGs tested by our program, there is

always a chance that by testing one more graph we will find an improvement

on the previously found signature scheme. Consequently we made a decision

to run the program for ten minutes for each value of n and output all the

DAGs found.

For reasons discussed in Section 5.2.4.1, Bleichenbacher and Maurer only

consider DAGs with in-degree at most two. In [10] they presented a list of

the size of the largest one-time signature schemes they had found for DAGs

with a fixed order n.

Using our program we have been able to improve on a number of their

results. In fact, for all values of n ≥ 13 we have improved on the size of the

best signature scheme known. These results are presented in Table 5.5.

This table also shows a number of other trends. By plotting the results

with a spreadsheet application and asking for a line of best fit, we find the

approximate results: |W(G)| ≈ 0.75e0.34n and m(n) ≈ 0.37e0.29n. From

Result 5.16, we can see that if ν(n) and µ(n) are functions of the form aebn

then the constant b must be the same for both ν(n) and µ(n).

We then investigated the value of m(n) for graphs with maximum in-

degree three. In Table 5.6 we present our results, along with the values

CHAPTER 5. SIGNATURES 148

of m(n) from Table 5.5 for maximum in-degree two. Unsurprisingly, we can

find larger signature schemes on the same number of vertices if we allow the

in-degree to be increased.

From our results we get the approximate relation m(n) ≈ 0.40e0.30n for

DAGs with in-degree three. We note that this is similar to our approxima-

tion for in-degree two DAGs, the main difference being the linear factor has

increased.

In Table 5.6, and also in Table 5.7, there is a bracketed row for which our

program could not find the best signature scheme fromW(G). Instead we dis-

covered this DAG by hand. We note that if we had been using Algorithm 10

instead of Algorithm 11 then the program would not have overlooked these

results, but it may not have found them in the allotted time.

We went on to investigate the value of m(n) of DAGs with the maximum

in-degree increased to four, the results of which are in Table 5.7. Since this

includes all the DAGs previously tested, it might be expected that the value

of m(n) found would be larger than in the previous tables. When there are 11

or fewer vertices, the larger in-degree did not make an impact on m(n). At

12 vertices our program found a DAG that admitted a signature scheme

larger than any previously tested 12 vertex DAG.

However for DAGs with 13 vertices or more, our program did not manage

to find improvements on any of the results in Table 5.6, and by 20 vertices it

did not even find the DAG that admitted a signature scheme with 141 pat-

terns in the ten minutes that we ran the program for. We believe that this

is because the increase in maximum in-degree also increased the number of

DAGs that could be checked. By the time n reached 20, the size of the search

space became the overwhelming factor.

Our program helped us to identify DAGs that facilitated large signature

schemes, and in the next section we will see two signature schemes that

we have designed with the help of our program. Both of the schemes have

maximum in-degree two, so that they are comparable to the work by Ble-

ichenbacher and Maurer [10, 11, 12].

CHAPTER 5. SIGNATURES 149

Vertices n Edges Paths |W(G)| m(n)
Old value of
m(n) from [10]

8 8 4 12 4 4
8 9 5 12 4 4
8 10 5 11 4 4
9 9 4 17 5 5
9 9 4 18 5 5
9 10 4 12 5 5
9 11 5 12 5 5
9 11 5 16 5 5
9 13 13 17 5 5
10 12 6 24 7 7
10 12 6 24 7 7
10 13 6 24 7 7
11 13 8 31 9 9
12 14 8 45 12 12
12 15 8 41 12 12
13 15 8 65 16 15
13 16 10 65 16 15
13 17 10 59 16 15
14 16 8 95 22 20
14 17 9 95 22 20
15 19 13 108 28 25
16 18 11 159 36 33
17 21 14 251 55 45
18 22 15 351 69 57
19 24 16 492 90 79
20 26 28 639 131 101
21 27 28 935 173 139

Table 5.5: Best lower bounds found by our program for µ(n) and previous
best lower bounds from [10] for DAGs with in-degree at most 2.

CHAPTER 5. SIGNATURES 150

Vertices n Edges Paths |W(G)| m(n)
m(n) when in-
degree is 2

8 8 4 12 4 4
9 11 8 16 6 5
9 12 12 16 6 5

(10 9 3 28 8) 7
10 12 11 21 7 7
11 14 7 34 11 9
11 15 8 34 11 9
12 13 6 51 13 12
12 14 7 51 13 12
12 15 8 50 13 12
12 15 9 48 13 12
12 15 9 51 13 12
12 15 10 47 13 12
13 16 9 78 19 16
13 16 10 78 19 16
13 16 12 80 19 16
13 17 11 78 19 16
13 17 13 78 19 16
13 17 13 80 19 16
14 17 11 104 26 22
14 18 12 102 26 22
14 18 12 105 26 22
14 18 13 104 26 22
14 18 15 102 26 22
15 18 11 149 35 28
15 18 11 152 35 28
15 19 13 156 35 28
15 19 15 152 35 28
16 19 9 230 49 36
16 20 10 230 49 36
20 23 12 763 141 131

Table 5.6: Best lower bounds found by our program for µ(n) when the in-
degree is at most 3. Note that the program did not find the bracketed row
(this was found by hand).

CHAPTER 5. SIGNATURES 151

Vertices n Edges Paths |W(G)| m(n)
m(n) when in-
degree is 3

8 8 4 13 4 4
9 9 5 17 6 6
9 11 8 17 6 6

(10 9 3 28 8) (8)7
10 10 5 25 7 (8)7
10 10 5 23 7 (8)7
10 11 6 25 7 (8)7
11 14 7 34 11 11
12 15 8 44 14 13
13 12 4 82 19 19
13 15 6 80 19 19
13 15 6 78 19 19
14 17 10 105 26 26
14 17 9 107 26 26
15 19 15 133 35 35
15 19 18 133 35 35
15 18 13 155 35 35
20 24 12 687 132 141

Table 5.7: Best lower bounds found by our program for µ(n) when the in-
degree is at most 4. Note that the program did not find the bracketed row
(this was found by hand).

CHAPTER 5. SIGNATURES 152

5.4 Concrete examples of DAGs which facili-

tate efficient one-time signature schemes

In this section we present some examples of one-time signature schemes based

on a generalised hash DAG for particular families of DAGs. First we present

a family of DAGs due to Bleichenbacher and Maurer [11] that performs very

well in the limit, and as the number of vertices tends to infinity it can be

shown to contain a signature scheme of very high efficiency 0.47. We prove

that this scheme is the optimal choice in a family of schemes.

Unfortunately, for the generalised hash DAG from [11], there is no easy

way to find a construction of a good signature scheme, and consequently no

signature pattern function is known. Without further work this scheme is

primarily of theoretical interest.

We then present our scheme, capable of signing blocks of six bits with an

efficiency of 0.3, and we exhibit a signature pattern function for it. Finally

we present another more complex scheme that can be used to sign eight-bit

blocks with an efficiency of 0.32.

5.4.1 Bleichenbacher and Maurer’s DAG

In [11] Bleichenbacher and Maurer give a sequence of DAGs Hn and prove

that there exists a sequence of signature schemes on them with efficiencies

that tend to over 0.47. Figure 5.12 gives the DAG H2 based on two blocks

of 12 vertices. In general the DAG is formed by stacking n 12-vertex blocks,

and connecting the top three vertices of each block to the block above, as

shown for the bottom block.

In [11] it is shown that there are 43 = 64 signature patterns for each

block. Of these, there are 13 patterns which result in vertices in lower blocks

being unnecessary for a minimal verifiable set, and so there are 64− 13 = 51

combinations which can be used. They then consider the DAG Hn for which

there are n blocks and so there are 51n signature patterns, that is |W(Hn)| ≥
51n. They then show, using Result 5.16, that there exists a signature scheme

CHAPTER 5. SIGNATURES 153

on Hn with at least 51n

12n+5
signatures. This scheme has efficiency at least

η(Hn) ≥ log2(51
n/(12n+ 5))

12n+ 6
,

which converges to about 0.47 as n grows:

lim
n→∞

η(Hn) ≥ log2(51)

12
≈ 0.47.

The efficiency of the graph can be improved, since the bottom three

vertices can be merged into one vertex, but this makes no difference to the

limit and would make the diagram less clear.

We now generalise the DAG Hn in Figure 5.12 to a DAG Hn,r. It consists

of n blocks, each containing r chains of length r. The top of the r chains

in the top block are compressed to a single vertex by a binary hash tree (of

order r − 1). The top vertex of every other chain is connected to the block

above by r edges. If this vertex tops the ith chain of a block then the r edges

lead to the r lowest vertices in the block above satisfying:

(chain number + height in chain) mod r = i.

There are r additional source vertices I below the bottom block that are

connected to the bottom block in the same manner.

A lower bound ξr on the efficiency limn→∞ η(Hn,r) for these DAGs can

be found in a similar manner to the original computation for Hn from [11].

For a single block in Hn,r (r chains of length r) we can form (r + 1)r

MVSs by taking one vertex from each chain. The construction in [11] selects

a subset of these as suitable block MVSs {ς∗}. We define a function q(ςi, j)

taking a suitable block MVS ςi and a block index j which outputs the set of

vertices corresponding to the MVS on that block.

To find the most efficient scheme we choose {ς∗} to be as large as possible

so that all sets of vertices of the form:

I ∪ q(ςi0 , 0) ∪ q(ςi1 , 1) ∪ . . . ∪ q(ςin−1 , n− 1)

are signature patterns. The lower bound ξr is found from a sequence of

CHAPTER 5. SIGNATURES 154

◦ Public key

◦

OO

◦

;;wwwwww ◦

OO

◦

ZZ44444444444

•

OO

◦

OO

◦

OO

◦

OO

◦

OO

•

OO

◦

OO

•

OO

◦

OO

◦

DD

II��������������������

@@������������������
◦

LL

WW...............

II��������������������
◦

ZZ

WW...............

[[

◦

OO

◦

OO

•

OO

◦

OO

◦

OO

◦

OO

•

OO

•

OO

◦

OO

•

DD

II��������������������

@@������������������
•

LL

WW...............

II��������������������
•

ZZ

WW...............

[[

Figure 5.12: The DAG Hn due to Bleichenbacher and Maurer on 2 blocks
(i.e. H2). A signature pattern is shown for the graph by the solid vertices.
It can be shown that there are 51 signature patterns in each block that can
be combined to make a minimal verifiable set on the whole DAG.

signature schemes formed from these signature patterns.

Theorem 5.17. The lower bound ξr is maximised when r = 3.

Proof When r = 2 we can see by inspection that |{ς∗}| is at most 6.

When r = 3 we know from [11] that there are 51 suitable block MVSs.

For r ≥ 4 it will suffice to know that there are no more than (r + 1)r

suitable block MVSs.

For each block in Hn,r we can pick any suitable block MVS and take

the union of these sets of vertices and I to form a signature pattern. There

are |{ς∗}|n ways of doing this. This gives us a lower bound on the maximum

CHAPTER 5. SIGNATURES 155

number of MVSs a DAG on |Hn,r| vertices can contain, and by Equation 5.16

a lower bound on the maximum efficiency of a one-time signature scheme on

Hn,r:

log2 (|{ς∗}|n/|Hn,r|)
|Hn,r|+ 1

=
log2 (|{ς∗}|n)− log2 (nr(r + 1) + 5)

nr(r + 1) + 6
.

We set ξr equal to the limit of this as n tends to infinity:

ξr =
log2 |{ς∗}|
r(r + 1)

.

Evaluating this for small values of r gives the following:

r |{ς∗}| ξr

2 6 0.43

3 51 0.47

4 ≤ (4 + 1)4 ≤0.46

We observe that for r ≥ 4 we have

ξr ≤
log2 |{(r + 1)r}|

r(r + 1)
=

log2(r + 1)

r + 1
,

which is strictly decreasing, and so ξr is maximised when r = 3.

5.4.2 A one-time signature scheme for multiples of six

bits

As was mentioned in Section 5.2.4.1, the Lamport-Diffie scheme can be de-

signed to sign messages of arbitrary length and has efficiency 1
6
. In Sec-

tion 5.4.1 we saw that for arbitrarily sized messages we can construct a gen-

eralised hash DAG on which there provably exists a signature scheme with

efficiency 0.47. There is currently no simple way to find this scheme, nor is

there a simple map from the message space to the set of signature patterns.

We present a scheme with efficiency 0.3, which can be used to sign ar-

bitrarily large messages, and also has a fairly straightforward map from the

message space to the set of signature patterns.

CHAPTER 5. SIGNATURES 156

The generalised hash DAG scheme shown on the right in Figure 5.7, and

reproduced in Figure 5.13, is both simple and fairly efficient (on its own it

has an efficiency of about 0.26). We will refer to this DAG as G in this

section. We could increase the message space and maintain the efficiency by

connecting several copies of G by joining their sinks with a hash tree.

a

b

@@����
c

^^>>>>

d

AA����
e

]];;;;
AA����

f

]];;;;

g

OO

h

OO

i

OO

Figure 5.13: A generalised hash DAG G for which w(W(G)) is maximised
compared to other DAGs of order 9.

Instead, we will investigate the structure of the signature patterns a lit-

tle deeper, in order to improve the efficiency while maintaining a useable

signature pattern function.

The set of all signature patterns of G is shown in Figure 5.14, with paths

leading between all signature patterns which are incompatible.

All DAGs have an associated poset, and given any poset we can group the

elements into layers such that all the elements in a layer are incomparable

(and in this case compatible). With the poset in Figure 5.14 we get seven

layers of sizes 1, 1, 2, 5, 5, 3 and 1.

Theorem 5.18. The DAG H (Figure 5.15) formed by joining the roots of

two copies of G to a new vertex admits a one-time signature scheme of size 64.

Proof If we combine two copies of G by connecting their sinks to a new

vertex, we form a DAG which we will call H. Since both halves of H have

the minimal verifiable sets shown in Figure 5.14, we can form a minimal

verifiable set for H by choosing an MVS for the left copy of G and an MVS

for the right copy of G.

CHAPTER 5. SIGNATURES 157

To construct a signature scheme for H we need to pick signature patterns

which are compatible, which can be done easily with the aid of the layers of

Figure 5.14. We pick a pattern from the ith layer of the left copy of G and a

pattern from the jth layer of the right copy of G such that i + j = 7 (where

ghi is in the first layer, ghf is in the second layer, etc.). This provides a total

of 64 signatures, which are shown in Table 5.8.

a

bc

OO

dec

99ssssssss
bef

eeKKKKKKK

gec

::ttttttt
dhc

OO

def

eeJJJJJJJ

99ttttttt
bhf

OO

bei

ddIIIIIII

ghc

OO ::ttttttt
gef

ddJJJJJJJ
99ttttttt
dhf

eeJJJJJJJ
OO 99tttttt

dei

eeJJJJJJJ

::uuuuuuu
bhi

ddIIIIII

OO

ghf

ddJJJJJJ
OO 99tttttt

gei

eeJJJJJJJ

99ttttttt
dhi

eeJJJJJJJ

OO ::uuuuuuu

ghi

eeJJJJJJJ

OO 99ttttttt

Figure 5.14: The Hasse diagram showing the relation between the minimal
verifiable sets of the DAG in Figure 5.7. The third row from the bottom is
the efficient signature scheme suggested.

v

al

44iiiiiiiiiiiii ar

jjVVVVVVVVVVVVVV

bl

??~~~~
cl

__@@@@
br

>>}}}}
cr

``AAAA

dl

@@����
el

^^====
@@����

fl

^^====

dr

??����
er

__????
??����

fr

__????

gl

OO

hl

OO

il

OO

gr

OO

hr

OO

ir

OO

Figure 5.15: The graph H formed by joining two copies of G to new vertex v.

CHAPTER 5. SIGNATURES 158

We can combine r copies of H with a hash tree and use Table 5.8 to

provide 64 signature options for each copy. This gives us a total of 64r = 26r

signatures, and we can sign a 6r-bit message by signing each block of 6 bits

with a copy of H.

This scheme has (19× r) + (r − 1) = 20r − 1 vertices and provides for a

message space of size 26r, giving an efficiency of η = log2(26r)
(20r−1)+1

= 6
20

= 0.3.

5.4.3 A one-time signature scheme for multiples of eight

bits

In Section 5.4.2 we presented a complete one-time signature scheme suitable

for signing blocks of six bits. It was noted that by combining several copies

of the generalised hash DAG it was possible to sign any multiple of six bits

without affecting the efficiency of 0.3.

In this section we present another one-time signature scheme, this time

capable of signing eight-bit blocks with an efficiency of 0.32. Again we can

combine many copies of the underlying generalised hash DAG without af-

fecting the efficiency.

Sig. Pattern Index Pattern for left G Pattern for right G
0 bc ghi
1 dec ghf
2 dec gei
3 dec dhi

4-6 bef ghf,gei,dhi
7-11 gec ghc,gef,dhf,dei,bhi
12-16 dhc ghc,gef,dhf,dei,bhi
17-21 def ghc,gef,dhf,dei,bhi
22-26 bhf ghc,gef,dhf,dei,bhi
27-31 bei ghc,gef,dhf,dei,bhi
32-63 Same as 0-31, with left and right patterns swapped

Table 5.8: The map showing how the message space is mapped to the 64
signature patterns of the optimal signature scheme on H.

CHAPTER 5. SIGNATURES 159

The signature scheme will be based on the generalised hash DAG G24

shown in Figure 5.16. It has 24 vertices and, assuming it is seeded from a

master private key (as described in Section 5.2.3.1), it will require 24 hash

function calls to compute the root value from the master private key (one

hash to compute the value at each vertex).

The mapping for each eight-bit value from 0 to 255 to a compatible signa-

ture pattern on G24 is shown in Table 5.9. It is clear from the size of Table 5.9

compared to the size of Table 5.8, that this scheme would be more compli-

cated to implement than the scheme in Section 5.4.2. However this scheme

is more efficient and arguably more suitable for systems based on bytes, or

multiples of bytes, of information (which many modern systems are).

R

A4

::vvvvvv
E2oo // B4

ddHHHHHH

A3

<<yyyyy
E1

OO

B3

bbEEEEEE

A2

<<yyyyy
E0

OO

B2

bbEEEEEE

A1

<<yyyyy
CD3

ccGGGGGGGGGGGGGGG

;;wwwwwwwwwwwwwwww
B1

bbEEEEE

A0

<<yyyyy
C2

hhRRRRRRRRRRRR

55kkkkkkkkkkkk
F2

ggNNNNNNNNNNNNNNNNNNNNNN

77oooooooooooooooooooooo
D2

iiSSSSSSSSSSSS

55llllllllllll
B0

bbEEEEE

C1

OO

F1

OO

D1

OO

C0

OO

F0

OO

D0

OO

Figure 5.16: The generalised hash DAG G24. There are many compatible
minimal verifiable subsets of this DAG, 256 of which are used by our one-
time signature scheme. The vertices have been labelled to aid the description
of this scheme.

CHAPTER 5. SIGNATURES 160

Theorem 5.19. The signature patterns in Table 5.9 are pairwise compatible,

and so form a signature scheme.

Sketch proof We divide the signature patterns into three types:

1. Signature patterns 0 to 210;

2. Signature patterns 211 to 254;

3. Signature pattern 255.

Any two Type 1 patterns can be checked to be compatible by viewing G24 as

six chains labelled A to F and observing that all of the signature patterns

have the same total distance from the end of the six chains.

A Type 1 and a Type 2 pattern, or any two Type 2 patterns, can be

checked to be compatible in a similar way by treating vertex CD3 as an

extra vertex in chain C.8

There is only one Type 3 signature pattern, so we do not need to consider

whether two Type 3 patterns are compatible.

The Type 3 pattern does not reveal any information about D0, D1 or D2

and, since all of the other patterns contain one of these values, the signature

pattern 255 does not reveal any other Type 1 or Type 2 pattern.

The Type 3 pattern contains both E0 and F0. The only other signature

patterns that reveal both E0 and F0 contain either A3, A4, B3 or B4. Con-

sequently these signature patterns do not reveal A1 and B1, and so do not

reveal the Type 3 signature pattern.

Since the Type 3 pattern does not reveal any other pattern, and is not

revealed by any other pattern, then it is compatible with all other signature

patterns. Since all signature patterns are pairwise compatible, they form a

signature scheme.

This is not the largest signature scheme that can be formed on G24, but

it is a practical scheme for signing multiples of 8 bits. We were unable to

8We note that it is possible to include another 44 compatible signature patterns by
treating CD3 as part of chain D in the same way. However, since our aim was to create
a scheme capable of signing eight-bit messages, we did not include these in our mapping.

CHAPTER 5. SIGNATURES 161

Sig. Pattern Index Signature Pattern
0 A0 B0 C2 D2 E2 F2
1 B1 C1 D2 E2 F2
2 C2 D1 E2 F2
3 D2 E1 F2
4 D2 E2 F1
5 B2 C0 D2 E2 F2

6-8 C1 As 2-4
9 C2 D0 E2 F2

10-11 D1 As 3-4
12 D2 E0 F2
13 E1 F1
14 E2 F0

15-17 B3 C0 As 2-4
18-23 C1 As 9-14
24-25 C2 D0 As 3-4
26-28 D1 As 12-14

29 D2 E0 F1
30 E1 F0

31-36 B4 C0 As 9-14
37-43 C1 As 24-30
44-46 C2 D0 As 12-14
47-48 D1 As 29-30

49 D2 E0 F0
50-53 A1 B0 As 1-4
54-63 B1 As 5-14
64-79 B2 As 15-30
80-98 B3 As 31-49
99-105 B4 C0 As 24-30
106-111 C1 As 44-49
112-113 C2 D0 As 29-30

114 D1 E0 F0
115-159 As 5-49, A&B values swapped
160-210 As 64-114, A&B values swapped
211-216 A0 B1 CD3 As 9-14
217-223 B2 CD3 As 24-30
224-229 B3 CD3 As 44-49
230-232 B4 CD3 As 112-114
233-254 As 211-232 with A&B values swapped

255 A1 B1 CD3 E0 F0

Table 5.9: The map showing how the message space is mapped to 256 signa-
ture patterns on G24.

CHAPTER 5. SIGNATURES 162

find a smaller generalised hash DAG that contained 256 compatible signature

patterns.

Theorem 5.20. By replacing the n leaves of a binary tree of order 2n − 1

with n copies of G24 we obtain a graph G24,n that admits a one-time signature

scheme capable of signing n-byte messages with an efficiency of 0.32.

Proof We can define a signature pattern function for G24,n that maps the

ith byte of the message to a signature pattern for the ith copy of G24 using

the map in Table 5.9. From Theorem 5.19 we can see by inspection that

these signature patterns for G24,n will be compatible and so form a signature

scheme.

We have (28)n signature patterns, one for every n byte message. The

graph G24,n has 24 vertices in each of the n copies of G24 and n − 1 vertices

in the tree. The efficiency of this scheme is therefore:

η =
log2(2

8n)

(25n− 1) + 1
=

8

25
= 0.32.

This scheme could be used to sign a 128-bit hash value with a total of

25× 128
8
− 1 = 399 calls to a hash function.

5.5 k-time signatures

In this section we extend the idea of one-time signatures to k-time signa-

tures. We first present some new results about the efficiency of k-time sig-

nature schemes. Then we define two new concepts: perforated and porous

k-time signature schemes. We note that there already exist k-time signature

schemes, which are both perforated and porous, and present a conceptual

design which is porous, but not perforated.

5.5.1 Efficiency of k-time signatures

Although the idea of a k-time signature scheme based on a generalised hash

DAG has been around for a while (for example [12]) there has not been much

work into developing the theory.

CHAPTER 5. SIGNATURES 163

Definition 5.21. A k-time signature scheme based on a generalised hash

DAG is a signature scheme that contains at least k signature patterns, and

knowledge of the values of up to k signature patterns does not allow a forgery

of any other signature pattern.

As an example, consider the DAG in Figure 5.17 on which the following

2-time signature scheme is based: ide, cje, cdk, fgh.

a

b

<<xxxxxxx

c

<<zzzzzzz
d

bbDDDDDDD
e

aaCCCCCCCCCCCCCCC

f

OO

g

OO

h

OO

i

OO

j

OO

k

OO

Figure 5.17: A tree which admits a 2-time signature scheme.

We will represent the set of signature patterns for a k-time signature

scheme as Γk in order to highlight the difference in definition between a

k-time scheme and a one-time scheme.

We look at two different ways in which a k-time signature scheme can be

used:

1. The signatures may be used simultaneously or verified in a different

order to that in which they were sent.

2. The signatures for each message may be created and verified before the

next signature is released. We also assume that in this scenario, the

k messages are all different.

These two different scenarios result in different amounts of information

being signed. This can result in a k-time signature scheme having two dif-

ferent efficiencies depending on the way in which it is used. We present two

generalisations of the definition of efficiency for a one-time signature scheme.

CHAPTER 5. SIGNATURES 164

We give the efficiency η1 for Scenario 1 in (5.10). Our signature scheme

allows us to sign any k of the |Γk| possible messages. Consequently there are

a total of

(
|Γk|
k

)
ways to exhaust the signature scheme.

We give the efficiency η2 for Scenario 2 in (5.11). The amount of data

signed by the scheme increases from log2

(
|Γk|
k

)
bits to log2

(
k!

(
|Γk|
k

))
bits, as the ordering of the signatures is significant in Scenario 2.

In the following equations n is the number of vertices in the DAG on

which the k-time signature scheme is based:

η1(Γk) =

log2

(
|Γk|
k

)
n+ 1

; (5.10)

η2(Γk) =

log2

(
k!

(
|Γk|
k

))
n+ 1

. (5.11)

In the following two theorems we show that by using the first measure

of efficiency, no k-time signature scheme is more efficient than a one-time

signature scheme, but by using the second measure, some k-time schemes

are more efficient than any one-time scheme on the same DAG.

Theorem 5.22. If we use η1 as our measure of efficiency for a k-time sig-

nature scheme then, for any k-time signature scheme on any DAG G, there

exists a one-time signature scheme on G with at least the same efficiency.

Proof We consider the set of all sets of k compatible signature patterns

from Γk:

Θ = {θ : θ = {U1, . . . Uk} with Ui ∈ W (G)} .

There exists a supremum for any subset of W (G) as it is a lattice. We

claim that the set of signature patterns Υ = {sup(θ) : θ ∈ Θ} is a one-time

signature scheme with the same efficiency as the k-time signature scheme.

CHAPTER 5. SIGNATURES 165

We can see that Υ has at most |Θ| =

(
|Γk|
k

)
elements by considering

its design.

We can also show that Υ has at least |Θ| elements. If we assume the

opposite then there must exist distinct θ0 and θ1 such that sup(θ0) = sup(θ1).

This implies that from the signature patterns in θ0 we can compute the

supremum of the signature patterns in θ1. From the supremum of θ1 we can

compute all of the signature patterns in θ1, and so we can also compute them

from θ0. Since θ1 contains at least one signature pattern that is not in θ0 this

contradicts the definition of a k-time signature scheme (Defintion 5.21).

So |Υ| =

(
|Γk|
k

)
and the efficiency of the one-time signature scheme Υ

is the same as the k-time signature scheme Γk:

η(Υ) =

log2

(
|Γk|
k

)
|G|+ 1

= η1(Γk).

In Table 5.10 we show the set of supremums for the 2-time signature

scheme we described above, based on the hash tree in Figure 5.17.

We have proved that for any k-time signature scheme, there is a one-time

scheme on the same DAG whose efficiency (η1) is at least as good. Normally,

however, there will be a strictly more efficient one-time scheme than k-time

scheme on the graph. For example, for the DAG in Figure 5.17, the most

efficient one-time signature scheme contains seven signature patterns (cgk,

cjh, fdk, fje, idh, ige, fgh) but there is no k-time signature scheme with

as good efficiency (k ≥ 2).

Theorem 5.23. There exists a k-time signature scheme with unbounded ef-

ficiency (η2) as k tends to infinity.

Proof Consider a binary Merkle tree with (3k− 1) vertices and k leaves.

We can form a k time signature scheme on this tree by creating k signature

patterns, each containing exactly one of the leaves. The efficiency (η2) of

CHAPTER 5. SIGNATURES 166

this scheme is log2(k!)
3k

. Since log2(k!) ≈ k log2(k) − k (by Sterling’s approxi-

mation [38]) we can approximate the efficiency by 1
3
(log2(k) − 1), and so it

is unbounded as k tends to infinity.

We note that in practice this unbounded efficiency is not very relevant,

as the application would place an upper bound on the parameter k. However

it is interesting, even for small values of k.

In [10], Bleichenbacher and Maurer give a proof that no one-time signa-

ture scheme based on a tree has an efficiency greater than 0.42. Furthermore,

as we mentioned in Section 5.4.1, the most efficient one-time signature scheme

known has efficiency tending to about 0.47 as the size of the underlying DAG

tends to infinity. We now present a simple 5-time signature scheme whose

efficiency (η2) is greater than that under the assumptions made.

On a 17-vertex Merkle tree with six leaves we can form a 5-time signature

scheme using the method in Theorem 5.23. The efficiency of this signature

scheme is η = log2(720)
17+1

≈ 0.53. Since this signature scheme is based on a tree,

we know that any one-time signature scheme based on the same DAG has a

maximum efficiency of at most 0.42.

Sig. pattern from k-time scheme Supremum on the
First signature Second signature associated poset

ide cje ije
ide cdk idk
ide fgh igh
cje cdk cjk
cje fgh fjh
cdk fgh fgk

Table 5.10: For this example we use a 2-time signature scheme based on
the graph in Figure 5.17. If the signatures are used simultaneously (as in
efficiency measure η1) then a k-time signature scheme can be equated to a
one-time signature scheme on the same DAG. This table shows a 2-time sig-
nature scheme and the one-time signature scheme formed by the supremums
of its signature patterns.

CHAPTER 5. SIGNATURES 167

5.5.2 Perforated and porous k-time signature schemes

When looking at the security of any scheme, we make an assumption that the

adversary has only a finite time to perform an attack, and that any ‘attacks’

that take more than a certain amount of computation are not a concern.

All the schemes in this section take this assumption further. They all

start with a scheme that would be insecure in practice for small parameters

but, as the parameters increase, attacks on the scheme become as inefficient

as brute force attacks on the underlying hash functions.

We define two types of k-time signature scheme, perforated and porous

k-time signature schemes.

Definition 5.24. A perforated signature scheme is a signature scheme for

which there is a small chance that it is not possible to sign a particular

message.

Definition 5.25. A porous signature scheme is a signature scheme for which

some subsets of signatures will allow forgeries on another signature.

If a signature scheme is porous then we hope that any forgeries are only

existential forgeries, or that the adversary cannot find the corresponding

messages to the revealed signatures.

All the k-time hash based signature schemes from the literature that we

have seen are both perforated and porous [104, 108, 118]. In the next section

we provide a k-time signature scheme that is porous but not perforated, but

for which we have not been able to find a signature pattern function.

5.5.3 Towards a porous k-time signature scheme

In this section we will look at a conceptual design of a porous signature

scheme. This scheme provides a signature for every message, thus it is not

also perforated.

As we discussed in Section 5.5.1, it is possible to construct a k-time

signature scheme using a generalised hash DAG. We also discussed that the

measure of efficiency for such a scheme was dependent on the application.

CHAPTER 5. SIGNATURES 168

It is hard to design efficient schemes where groups of k signatures do not

reveal other valid signatures. However, (in a suitable security model) it is

enough that the adversary cannot forge a signature from k random signatures

for a message that they can find. In other words, we were concerned during

our earlier discussion of generalised hash DAG based signature schemes that

no new signature is revealed by the given signatures. In some situations, it

may be acceptable for such a signature to exist, provided that the adversary

cannot find a message that corresponds to it.

This would allow us to use a set of signature patterns which are not all

pairwise compatible, as long as it is hard, given a random signature pattern,

to find a different message whose signature pattern is computable from it.

This is potentially a useful observation, since it is often easy to enumerate

the set of all signature patterns, whereas it is often hard to enumerate a

maximal set of compatible signature patterns. A porous signature scheme

may thus be constructed, provided that we can find a signature pattern

function for a large set of mainly compatible signature patterns.

5.6 Conclusions

In this chapter we looked at the applications of hash structures to message

authentication. We then studied one-time and k-time signature schemes

based on hash structures. We presented some results related to Vaudenay’s

rake one-time signature schemes. We proved that for any one-time signature

scheme on a hash tree, there exists an equivalent one-time signature scheme

on a sub-tree, where the sub-tree is the largest Merkle tree contained in the

original tree.

We presented a set of algorithms to efficiently find large signature schemes

on given generalised hash DAGs. We used these algorithms to find two

new one-time signature schemes, both of which are more efficient than any

previously proposed scheme. It is an open problem to find schemes that

are more efficient than ours, or which have similar efficiency but simpler

signature pattern functions. It is also an open problem to find the maximum

efficiency that a one-time signature scheme can attain.

CHAPTER 5. SIGNATURES 169

We investigated the definition of efficiency for k-time signature schemes,

and presented a two-part solution. We proposed two new definitions for k-

time signature schemes, perforated and porous. It is an open problem to

find a signature pattern function for our scheme of Section 5.5.3 in order to

construct a porous k-time signature scheme.

Chapter 6

Key establishment schemes

We begin this chapter with an introduction to key establishment schemes

and related definitions. We then study group key predistribution schemes,

group key distribution schemes and (briefly) group key agreement schemes.

We consider the use of hash structures in these applications and present some

new schemes. We end the chapter by looking at some methods which allow

the lifetime of a key to be extended using hash structures.

6.1 Introduction

In many applications we wish to provide a group of entities with a reliable

method by which they can establish a shared key. Key establishment is

studied by Martin in [79], and we adhere to similar notation and definitions.

The term key establishment refers to processes that ensure the correct

keys are present in the correct places within a network. Often this takes

place during the initialisation phase of a scheme, but it can also occur when

fresh keys need to be distributed. Most schemes that we consider will have

a trusted authority (or TA) denoted T , which is an entity that is trusted by

all members of the scheme.

Consider a set of users U = {U1, . . . , Un} who wish to obtain shared keys

with each other. We define a set C of subsets of U , called the communication

structure, such that for any A ∈ C we wish to establish a key kA that is

170

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 171

shared by each user in A. The key kA is called the group key of A.

For any key establishment scheme we normally wish to prevent certain

sets of users colluding to compute group keys that they are not meant to

know. The set X of such sets is called the exclusion structure of the scheme

and is more precisely defined as:

X = {B ∈ U : B cannot compute kA if A ∩B = ∅ for all A ∈ C}.

A (t, w)-threshold key establishment scheme is a key establishment scheme

where C is the set of all sets of at most t users, and X is the set of all sets of

at most w users.

We define two specific types of collusion security: w-security, where

X = {All sets of at most w users}, and full collusion security where X =

{All sets of users}.
Any key establishment scheme can be broken down into three stages:

initialisation, key establishment and update.

1. Initialisation typically involves a TA creating the necessary values and

sending secret data to each user. A TA may also publish some values

which are available to everyone, which we denote by Pub.

2. The key establishment stage is where a group of users A ∈ C establish

their common key kA. This is the crux of the scheme, and different

types of schemes will involve different amounts of work and communi-

cation during this stage.

3. Finally, in some schemes there is an additional update stage where some

of the group keys are changed. This may involve the TA changing the

public data Pub, or the users computing new keys from information

they already have. Some users may have been revoked from the scheme,

or others may have joined, in which case the sets of users in C may have

changed. Alternatively in the case of key refreshment, the group keys

are simply updated with new values.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 172

We distinguish between different types of key establishment schemes.

• Group key predistribution schemes (or KPSs) are key establishment

schemes where the TA is only involved during the initialisation phase.

• Group key distribution schemes (or KDSs) are key establishment schemes

where the TA is involved during the key establishment phase.

• Group key agreement schemes (or KASs) are key establishment schemes

where group keys are primarily derived by the users.

Typically, KPSs will have no update phase, as most schemes designed

with update phases require the TA to be active during them. Often KASs to

have no initialisation phase, since they are commonly designed so that the

first communication between users is also the first time a key is needed, and

thus constitutes the key establishment phase.

Most of the schemes that we will encounter will guarantee a key for each

group in C. We call these schemes deterministic. In some schemes for a group

of users in C there is a small chance that they will not be able to generate

a group key. These schemes are called probabilistic (for example HARPS

[115]).

Schemes will be rated by several measures of efficiency:

• Secret storage — the amount of data that each user must keep secret.

We assume that all the secret data is stored in uniform size crypto-

graphic values and so we count the number of values instead of the

number of bits;

• Public communication — the number of cryptographic values that must

be made available to all participating parties during the scheme;

• TA (or user) computation cost — the amount of computation needed

to be done by the TA (or user).

For the computation costs, we assume that ‘basic’ operations (such as

exclusive-or and concatenation) take one unit of time, and we will often

treat them as negligible. We assume that a hash function requires tf units

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 173

of time, and an encryption or decryption function requires tE units of time

(which will typically be larger than tf).

We will give a joint analysis of the initialisation and key establishment

phases, but will address any update phases separately. This is because the

initialisation and key establishment phases will be performed once to set up

a key, whereas the update phases are likely to be performed repetitively, and

affect all users.

6.2 Group key predistribution schemes

In this section we look at key predistribution schemes, starting with some

simple benchmark schemes. We will then study some schemes based on hash

structures from Chapter 3, and see the potential advantages offered. Finally

we look briefly at the idea of key escrow, and we show how hash chains can

be used to provide it for most predistribution schemes.

6.2.1 Introduction

We begin with a formal definition of a predistribution scheme.

Definition 6.1. A (C, X)-key predistribution scheme (or KPS) is a

key establishment scheme with communication structure C and exclusion

structure X such that any user in A ∈ C can compute kA from the information

provided in the initialisation phase, and any set of users A′ ∈ X cannot

compute kA (assuming A′ ∩ A = ∅).

We now describe two trivial key predistribution schemes.

Key Establishment Scheme 6.1: The most trivial KPS where each user

gets one key for each group they are in.

Initialisation

• T generates a key kA for each group A ∈ C.

• T securely sends kA to each user in A.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 174

Analysis

Secret storage Number of groups containing user

Public communication 0

TA computation cost 0

User computation cost 0

This scheme has full collusion security. There is no need for a key es-

tablishment phase; however the scheme suffers from being very expensive in

terms of user secret storage.

We now look at another trivial scheme that requires greater public storage

but less communication over a secure channel, and less secret storage for each

user.

Key Establishment Scheme 6.2: A KPS with minimal secret storage for

each user, but large public storage.

Initialisation

• Each user Ui is securely supplied with a master key Ki by T .

• T encrypts each group key with the master key for each user in it, and

publishes the result EKi
(kA).

Key establishment

• If user Ui ∈ A (A ∈ C) wishes to obtain kA, they simply decrypt

EKi
(kA).

Analysis

Secret storage 1

Public communication
∑

A∈C |A|
TA computation cost

∑
A∈C |A|tE

User computation cost tE

This scheme can be improved if C has a convenient structure by using

some session keys to encrypt session keys for larger groups. For example, if

group A is completely contained in group B then the members of group A

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 175

would all be able to decrypt EkA
(kB) and so T can publish this value instead

of the set of values {EKi
(kB) : i ∈ A}.

A final fundamental scheme we will look at is Scheme 6.3, but first we

must define key distribution patterns.

Definition 6.2. A (C, X)-key distribution pattern (or KDP) is a set of

indices I = [0, v − 1] and a set of subsets of these indices B. Each user Ui is

assigned a subset Bi ∈ B such that for any A ∈ C and A′ ∈ X (A ∩ A′ = ∅)
we have ⋂

Ui∈A

Bi *
⋂

Uj∈A′

Bj.

Key distribution patterns were first studied by Mitchell and Piper in [87].

Key Establishment Scheme 6.3: A basic KDP-based KPS.

Initialisation

• T generates a sub-key xi for each index i ∈ I, and securely sends the

sub-key to user Uj if i ∈ Bj.

• T publishes the KDP, so each user can find out which sub-keys each

other user has been given.

Key establishment

• The group key kA for a group A ∈ C is computed from the group

sub-key index set BA =
⋂

Ui∈ABi as the following bit-wise exclusive-or:

kA =
⊕
j∈BA

xj.

Analysis

Secret storage |Bj|
Public communication

∑
j |Bj|

TA computation cost 0

User computation cost |Bj|

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 176

It could be suggested that using exclusive or (XOR) to combine the sub-

keys xj leaves the scheme vulnerable, as a compromised key could reveal the

subkeys. This can be overcome by replacing XOR with a preimage resistant

hash function, but at the expense of more computation.

Two common types of key distribution patterns are the trivial inclusion

KDP and the trivial exclusion KDP, based on the communication structure

and the exclusion structure respectively.

To create a trivial inclusion KDP we have v = |I| = |C|. We as-

sume the communication set C = {A1, . . . , Av}. The index set is defined

as Bi = {j : Ui ∈ Aj}. When Key Establishment Scheme 6.3 is based on this

KDP, the only users with sub-key xj are precisely those in group Aj.

To create a trivial exclusion KDP we have v = |I| = |X |. We as-

sume the exclusion set X = {A′
1, . . . , A

′
v}. The index set is defined as

Bi = {j : Ui /∈ A′
j}. When Key Establishment Scheme 6.3 is based on this

KDP there is a sub-key owned by all the users not in A′
j ∈ X , and so every

excluded set of users cannot form any group keys they are not meant to. The

trivial exclusion KDP was first given in [39].

6.2.2 Existing hash-based key predistribution schemes

In this section we explore key predistribution schemes based on hash func-

tions. Using some of the hash structures described in Chapter 3 we can

form key predistribution schemes that have better properties than the fun-

damental schemes in Section 6.2.1. We also note that there exist many key

predistribution schemes that are based on one-way trapdoor functions, such

as [13], [14] and [100]. These schemes are also better, in some respects, than

the schemes from Section 6.2.1. However we do not consider them further,

as schemes based on hash functions are typically more efficient and better

suited to light-weight devices.

6.2.2.1 Inverted hash tree key predistribution schemes (IHT KPS)

We present a new type of hash-based KPS, which we call inverted hash tree

key predistribution schemes. This scheme is a generalisation of a KPS scheme

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 177

due to Lee and Stinson from [70], and many of their ideas also apply to our

new scheme.

Both our scheme and the original assign values to each user from a set of

inverted hash trees. In the original scheme, each user receives a value from

every tree. Our generalisation allows the TA to choose a subset of trees for

each user. This increases the range of KPSs that can be produced from a

given set of inverted hash trees.

Definition 6.3. For given C and X , and for a rooted tree G, we can form a

matrix M = (αi,j) with entries from (V (G) ∪∞). Vertex ∞ is considered a

descendant of all vertices in G. We formM with the jth column corresponding

to the user Uj and a row for each of b copies of the tree (for some value

of b). M is a (C, X , G)-inverse hash tree key distribution pattern (IHT

KDP) if, for any disjoint sets A ∈ C, B ∈ X , there exist values κ(A,B) ∈
[0, b− 1] and λ(A,B) ∈ A such that the following two conditions hold:

1. ακ(A,B),λ(A,B) is a descendant of ακ(A,B),j for all Uj ∈ A;

2. ακ(A,B),λ(A,B) is not a descendant of ακ(A,B),j for all Uj ∈ B.

Figure 6.1 has an example of a (C,X ,G)-inverse hash tree key distribution

pattern for six users, where C and X are both the set of all subsets of at most

two users.

0

��

}}zz
zz

zz
zz

z

��@
@@

@@
@@

@

1

����
��
��

��2
22

22
2 2

��
3 4 5 6


0 3 4 5 2 6
∞ 0 3 4 2 6
4 5 0 3 2 6
5 2 2 1 ∞ 0
∞ 4 3 5 5 1



Figure 6.1: An (C,X ,G)-IHT KDP for six users with b = 5. G is shown on
the left, and C and X are both the set of all subsets of at most two users.
The matrix M = (αi,j) is shown on the right.

Key Establishment Scheme 6.4 constructs a KPS from a IHT KDP.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 178

Key Establishment Scheme 6.4: An inverted hash tree key predistribu-

tion scheme (IHT KPS) based on a tree G and a IHT KDP M .

Initialisation

• T publishes M , G and the description of the hash function f .

• T generates b inverted hash trees (see Section 3.4.5), each based on the

tree G, and seeded from the root values {x0,0, . . . , xb−1,0}. The value at

vertex v of hash tree i is called xi,v.

• The value xi,∞ is always defined to be 0 and consequently does not

need to be sent to, or stored by, any users.

• T securely sends user Uj the values {xi,αi,j
: i ∈ [0, b− 1], αi,j 6= ∞}.

Key establishment

• To compute the group key for a group A ∈ C, a set of inverted hash

tree values are selected:

XA =
⋃

B∈X

xκ(A,B),ακ(A,B),λ(A,B)
.

The set XA is the ‘most secret’ set of values that all the members of A

can compute.

• The group key for A ∈ C is defined as

kA =
⊕

x∈XA

x.

Analysis

Secret storage ≈ b

Public communication ≈ b|U|
TA computation cost 0

User computation cost |XA|

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 179

We see from the properties in Definition 6.3 that all members of A can

compute the group key, and that for any excluded group B there is a part of

the group key they will not be able to compute, namely xκ(A,B),ακ(A,B),λ(A,B)
.

Consequently the members of B will gain no information about the group

key.

Since the TA has to create an inverse hash tree for each row of the matrix

M , we prefer instances of M with fewer rows.

6.2.3 Hierarchies and key establishment schemes

It is often the case that a communication structure can be represented by a

poset, such as the one shown in Figure 6.2.

Definition 6.4. A security hierarchy is a poset of security levels S with the

relation of security. All users are associated with a set of security levels such

that, if a user is associated with a security level s ∈ S then they are also

associated with all lower security levels than s.

If we are creating a key establishment scheme for a hierarchy based on a

poset then we may be able to take advantage of the structure by making the

group keys relate to each other. In the given example, we could let the sales

director’s key be obtainable from the managing director’s key, reducing the

amount of information that the managing director needs to store.

A totally ordered hierarchy is such that all levels are comparable, that is

any pair of security levels s, s′ ∈ S are such that either s ≤ s′ or s′ ≤ s. A

tree-shaped hierarchy is such that for any two upper bounds s, s′ of a security

level, either s ≤ s′ or s′ ≤ s.

6.2.3.1 Tree-shaped hierarchy based KPS schemes

The earliest published KPS for a hierarchy is the scheme in [1] by Akl and

Taylor, which is designed for a totally ordered hierarchy. The members of

the smallest group are given a key x0, which is used to seed a hash chain, and

the ith value along the hash chain is used as the group key for the ith smallest

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 180

group. Each user only needs to store one group key, from which all the other

keys they are entitled to can be computed.

Key Establishment Scheme 6.5: The KPS scheme for a totally ordered

hierarchy given by Akl and Taylor in [1]. We label the groups in C as {A0, . . . , Al}
such that Ai ⊆ Ai+1 for all i ∈ [0, l − 1].

Initialisation

• T picks a value x0 at random and uses it to seed a hash chain of length l.

• T securely sends x0 to all members of A0 and xi to all members of

Ai/Ai−1 (for 1 ≤ i ≤ l).

Key establishment

• A user who has been given xi can compute the group key for Aj as long

as j ≥ i. They compute the group key as f j(x0) = f (j−i)(xi).

Managing director

ttiiiiiiiiiiiiiiiii

**VVVVVVVVVVVVVVVVVV

Sales director

�� **UUUUUUUUUUUUUUUUU Project manager

��tthhhhhhhhhhhhhhhhhh

Publicity manager

��

Production manager

��

Senior design engineer

��
Publicity team

**UUUUUUUUUUUUUUUUU Production team

��

Design team

tthhhhhhhhhhhhhhhhhh

Company-wide documents

Figure 6.2: A Hasse diagram showing the hierarchy of a business. If there is
a path from security level A to security level B then any user with access to
security level A is allowed to read all documents produced at security level B.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 181

Analysis

Secret storage 1

Public communication 0

TA computation cost ltf

User computation cost ≤ ltf

Many authors have extended the above scheme to allow for tree-shaped

hierarchies [24, 124, 156, 157, 158], by which we mean a hierarchy such that

for any two sets Ai, Aj ∈ C which both contain the user Uk, we have either

Ai ⊆ Aj or Ai ⊆ Aj. Many of the above schemes define the hash function

for each edge in the inverted hash tree differently, but apart from that they

are all essentially Key Establishment Scheme 6.6.

Key Establishment Scheme 6.6: A key predistribution scheme based on

an inverted hash tree for tree-shaped hierarchies. We label the groups in C
as {A0, . . . , Av−1} such that if Ai ⊆ Aj then i ≤ j.

Initialisation

• T picks a value x0 at random and uses it to seed an inverted hash tree

with the same structure as C.

• T securely sends xi to all members of Ai\(
⋃

j<iAj) (note that each

user only receives one key).

Key establishment

• The group key for a group Aj is the inverted hash tree value at the

vertex corresponding to Aj.

• A user who has been given xi can compute the group key for any group

Aj that they are a member of. They compute the group key by applying

the appropriate sequence of hash functions.

Analysis

Secret storage 1

Public communication 0

TA computation cost |C|tf
User computation cost ≈ log |C| × tf

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 182

This is a deterministic key predistribution scheme with minimal use of a

secure channel.

Another KPS for tree-shaped hierarchies is suggested by Ramkumar and

Memon in [116]. The scheme is an extension of HARPS, formed by restricting

the values a group can receive to be values from a subset of the chains that its

parent’s values are from. This restriction allows the parent group to derive

the child group’s key from its own secret information. This scheme differs

from Scheme 6.6 because it has a small chance of failing to provide a group

with a group key, as was also the case with HARPS [115].

6.2.3.2 General hierarchy-based KPS

The main problem with using hash functions for key predistribution schemes

comes if there is more than one covering element for a particular security level

(for example in Figure 6.2 ‘Production manager’ has two covering elements,

‘Sales director’ and ‘Project manager’). In this case it is infeasible for users

from all these security levels to be able to compute the same group key from

the different information that they have been given.

Using the ‘Production manager’ example from Figure 6.2, we need to give

the ‘Sales director’ and ‘Project manager’ groups distinct information which

can be used to find the ‘Production manager’ group key. One way to do this

is to use Key Establishment Scheme 6.6, ignoring the requirement for the

‘Project manager’ group to be able to compute the ‘Production manager’

group’s key, and then supply the ‘Project manager’ group with the required

key. This is a very practical scheme and for this example would be very

efficient; however it has the drawback that some users have to store more

than one key.

Another obvious, but inefficient scheme is to create two copies of all doc-

uments created by the ‘Production manager’ and ‘Production team’ groups.

These would be encrypted with different keys derived from the ‘Sales direc-

tor’ group key and the ‘Project manager’ group key. In our example this

would double the encryption time. It may also cause other problems with

version management for the organisation.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 183

The first attempt to solve this problem, while keeping user storage to a

minimum, was by Gudes in [45]. Gudes hoped to find collisions in the hash

functions at appropriate points, although did not explain how one should go

about finding the collisions. We note that if collisions are too easy to find

on a mapping where the codomain and domain are equal (here we have the

application of a hash function to its own range), then the potential key space

will be vulnerable to an exhaustive search attack.

A similar scheme is described in [157] by Zheng et al. The scheme requires

the existence of a family of functions U such that for r given inputs and one

given output it is easy to find a function in U that maps all the inputs to the

given output. This ‘collision’ property allows for all the parents to find the

child’s key, without compromising their own security. They also require that,

given this function, it is computationally hard to find the output without

knowledge of at least one of the inputs. This ensures that the child’s key

cannot be found trivially from the function, since it would be pointless to

use the function if this were the case.

Even if such functions are found then they are unlikely to be as efficient

as the scheme in the next section.

Other methods of extending Key Establishment Scheme 6.6 to general hi-

erarchies have been created by Zhong [158], Yang and Li [156] and Crampton

et al. [23].

6.2.3.3 Key predistribution for lattice-shaped hierarchies

In this section we present a scheme suitable for ‘lattice-shaped hierarchies’.

A d-dimensional lattice-shaped hierarchy is a hierarchy where every security

level A ∈ C has an associated set of indices (aA,0, . . . , aA,d−1), and A is strictly

more secure than B if aA,i ≤ aB,i for all i.

If we have a d-dimensional lattice-shaped hierarchy then we can use the

following new key predistribution scheme.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 184

Key Establishment Scheme 6.7: A key predistribution scheme suitable

for d-dimensional lattice-shaped hierarchies.

Initialisation

• T creates d hash chains (x0,0, . . . , x0,l0), . . . , (xd−1,0, . . . , xd−1,ld−1
) of lengths

l0, . . . , ld−1, where:

li = max
A∈C

(aA,i) .

• T securely supplies each member of A ∈ C who is not also part of a

more secure group with the set {x0,aA,0
, . . . , xd−1,aA,d−1

}.

Key establishment

• Any member who is in A and also in B, where A is more secure than

B, can compute the associated index set of B by hashing, because

aA,i ≤ aB,i for all i.

• The group key of A is ⊕
0≤i≤d−1

xi,aA,i
.

Analysis

Secret storage d

Public communication 0

TA computation cost
∑

i litf

User computation cost ≤
∑

i litf

We note that this KPS is also suitable for hierarchies that are contained

within a lattice-shaped hierarchy. We give an example of this in Figure 6.3.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 185

(a) A

B

CC�������
C

OO

D

[[8888888

E

OO BB�������
F

OO\\9999999

G

OO

H

UU,,,,,,,,,,,,,,

II��������������

I

\\9999999

OO

II��������������

(b) (2, 1, 1)

(1, 1, 1)

=={{{{{{{{
(2, 0, 1)

OO

(2, 1, 0)

aaCCCCCCCC

(0, 1, 1)

=={{{{{{{{
(1, 0, 1)

OO =={{{{{{{{
(1, 1, 0)

aaCCCCCCCC

=={{{{{{{{
(2, 0, 0)

aaCCCCCCCC

OO

(0, 0, 1)

OO =={{{{{{{{
(0, 1, 0)

=={{{{{{{{

aaCCCCCCCC

(1, 0, 0)

aaCCCCCCCC

OO =={{{{{{{{

(0, 0, 0)

aaCCCCCCCC

OO =={{{{{{{{

(c) x0,2

x0,1

OO

x1,1 x2,1

x0,0

OO

x1,0

OO

x2,0

OO

(d) A x0,2 ⊕ x1,1 ⊕ x2,1

B x0,1 ⊕ x1,1 ⊕ x2,1

C x0,2 ⊕ x1,0 ⊕ x2,1

D x0,2 ⊕ x1,1 ⊕ x2,0

E x0,1 ⊕ x1,0 ⊕ x2,1

F x0,2 ⊕ x1,0 ⊕ x2,0

G x0,0 ⊕ x1,0 ⊕ x2,1

H x0,0 ⊕ x1,1 ⊕ x2,0

I x0,0 ⊕ x1,0 ⊕ x2,0

Figure 6.3: An example of applying Key Establishment Scheme 6.7 to a
hierarchy contained in a lattice-shaped hierarchy.
(a) The hierarchy which requires keys. I is the most secure group and A is
the least secure group.
(b) The lattice in which the hierarchy is contained. The boxed nodes corre-
spond to the groups in the hierarchy.
(c) The hash chains generated for Key Establishment Scheme 6.7 when used
with the lattice in (b).
(d) A table showing the group key for each group in the hierarchy.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 186

6.2.3.4 A generalisation to many more hierarchies

Using generalised hash DAGs (Definition 3.7) we can extend Key Establish-

ment Scheme 6.7 to many more types of hierarchy.

Key Establishment Scheme 6.8: Our key predistribution scheme based

on a generalised hash DAG.

Initialisation

• T creates a generalised hash DAG G.

• T securely supplies each member of A ∈ C who is not also part of a

more secure group with the corresponding MVS (Definition 5.10).

Key establishment

• Any member who is in A and also in B, where A is more secure than

B, can compute the MVS of B by hashing.

• The group key of A is the exclusive-or of all the values in its MVS.

Analysis

Secret storage |MVS|
Public communication 0

TA computation cost (Number of vertices− Number of sources)tf

User computation cost ≤ (Number of vertices− Number of sources)tf

We would like to use a small DAG whose associated poset W(G) con-

tains our hierarchy. We note that, for any given hierarchy, the algorithms in

Section 5.3 could be adapted to find a small DAG that is suitable.

An example of a hierarchy and a suitable DAG for that hierarchy is given

in Figure 6.4.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 187

(a) A

B

OO

C

<<yyyy
D

ccFFFF

E

;;vvvvv
F

OO

G

bbEEEE
;;xxxxx
H

OO

I

ccGGGGG

J

OO

K

ccHHHHH
OO

L

bbEEEEE
OO ;;xxxxx

M

OO ;;wwwww
N

OO

O

ccGGGGG
OO <<zzzzz

P

iiRRRRRRRRRRR

55lllllllllll Q

bbEEEEE
OO <<yyyyy

R

bbDDDDD
OO <<yyyyy

(b)

◦

◦

CC�������
◦

[[6666666

◦

BB�������
◦

[[6666666

CC�������
◦

[[6666666

◦

OO

◦

OO

◦

OO

Figure 6.4: On the left is a hierarchy, and on the right is a generalised hash
DAG which can provide keys with the relationship needed for the hierarchy.

6.2.3.5 Providing key escrow for key predistribution schemes

A consideration for key establishment schemes is that some applications re-

quire keys to be held in escrow by a third party. The third party will typically

only use the key if the user associated with that key does something wrong,

or is suspected of illicit behaviour. For example, a user’s key might be kept

secret by the third party until the law authorities obtain a court order to use

it.

In [58] Joye and Yen describe a scheme which allows the key escrow agent

to efficiently release a user’s secret keys for a particular time interval. The

TA gives each user the seeds to two hash chains x0 and y0, both of length n,

and defines the session key for time period ti as (xi ⊕ yn−i). The authors

refer to this construction as a ‘one-way cross-tree’.

If the authorities request access to key values between ti and tj (i <

j) then the TA can give them xi and yj, and then the authority can only

compute the requested group keys.

This scheme has the drawback that the TA cannot supply key values for

two separate intervals without also revealing all the session keys in between.

We observe that this scheme can be applied to any set of group keys

formed by a standard KPS. If the original KPS provides a group key kA then

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 188

the key escrow version of the KPS uses two hash chains seeded by f(kA||0)

and f(kA||1) to compute session keys for the same group.

6.3 Group key distribution schemes

This section is mainly included for completeness; some of the most well known

uses of hash structures are key distribution schemes. Our contributions in

this section are to present a summary of some of the better KDSs, to propose

a ‘user add’ phase for a KDS from [21] (Scheme 6.9), and to present a flaw

in the update phase of a KDS from [63] (Section 6.3.3.3).

6.3.1 Introduction

Group key distribution schemes allow for some communication between the

TA and the users during the key establishment phase.

Definition 6.5. A (C, X)-key distribution scheme (or KDS) is a key es-

tablishment scheme with communication structure C and exclusion structure

X such that:

1. Any user in A ∈ C can compute kA from the information provided in

the initialisation phase ui and the information provided by T during

the key establishment phase vi,A;

2. Any group of users B ∈ X disjoint from A cannot compute kA from

the information provided to them during the initialisation and key es-

tablishment phases.

6.3.2 Different schemes for different applications

In this section we look at two very common scenarios which key distribution

schemes are applied to.

In the first scenario there is only one stream of data, and most users

in the scheme are assumed to want to receive it. Users may be added or

revoked from the stream. An example of this scenario is an encrypted digital

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 189

TV channel (or package of channels). All users are assumed to want access

to the programmes, but some may forget to pay their subscription fee and

so may have their access temporarily revoked (or permanently revoked if

they opt out altogether). We will refer to schemes that fit this scenario as

revocation schemes, as the group key is known by all but a small number of

revoked users.

The second scenario may have several streams of encrypted data, each

with only a few users able to decrypt them. Each stream, each group mem-

bership and each group key, is not assumed to be related to other streams,

group memberships and group keys. Also, each stream has a short lifetime

compared to data streams in revocation schemes.

An example of this scenario is pay-per-view sporting events. Any users

who want to watch a particular game must pay to obtain a key for just that

event. Alternatively, the users who want to watch an event pay and then the

broadcast centre encrypts the game in such a way that only the subscribed

members can view it. The set of viewers for one event are not assumed to

have any links to the set of viewers for another.

We will refer to a scheme providing many groups with keys as a broadcast

encryption scheme.

Ideally the user set U for revocation and broadcast encryption schemes

should be adaptable during an update phase.

6.3.3 Logical key hierarchy

If the TA predistributes enough group keys, so that each user has at least

one key, then the TA can use a suitable subset of them to encrypt a universal

group key. This subset of keys is often referred to as a set of key encryption

keys (or KEKs).

One idea for a predistibuted set of group keys is to arrange the users as

the leaves of a tree (often a binary tree), and create a key encryption key at

each node in the tree. Each user receives all the key encryption keys along

the path from their leaf to the root.

A type of key distribution scheme based on a tree is the logical key hierar-

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 190

chy (or LKH) and was independently proposed in [144] and [154]. It was first

suggested as being based on an almost perfect tree, but easily generalises to

any tree. Users are assigned a leaf of the tree and are privy to all the values

along the path from their leaf to the root.

By decreasing the height of the tree and increasing the average degree we

can reduce the storage requirements for each user, but increase the average

number of KEKs that must be used to send a message to an arbitrary set of

users.

6.3.3.1 Using hash structures for a logical key hierarchy

In [82], McGrew and Sherman proposed an improved version of the logical

hierarchy scheme based on [144] and [154]. In it they replace the independent

keys at each node with keys formed by a hash tree.

The hash function used by McGrew at al. to combine child key values c1

and c2 is M(f(c1), f(c2)), where f is a preimage-resistant hash function and

M is a mixing function. The authors suggest that exclusive-or is a suitable

choice for the function M , and for simplicity we assume this to be the case.

Another adaptation of the LKH is proposed in [19] by Canetti et al. The

scheme reduces the overhead required for user add and user revoke by defining

all new keys to be related to each other as values in a hash chain. In this

way, each user only needs to be told the most secure new value that they are

privy to, and from that they can compute all the others.

Although these schemes are designed for binary trees, they can be gener-

alised to other trees (for example see [63]). Canetti et al. [20] also generalise

the binary tree logical key hierarchy scheme to an a-ary tree scheme where

each leaf is associated with a small group of users.

In [117] Reddy and Nalla present a key agreement scheme similar to the

logical key hierarchy scheme, which uses the Diffie Hellman key exchange

method [34]. Their work is an extension of the two party ID-based authen-

ticated key agreement protocol in [130] to a many party scheme based on

a logical key hierarchy. The scheme has advantages over schemes based on

symmetric cryptography, but it is much slower and less suitable for use on

light-weight devices.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 191

6.3.3.2 The revocation scheme due to Chang et al.

A revocation scheme based on the LKH can be generated from the revocation

scheme described by Chang et al. in [21].

A maximum number of users 2N is specified. This is the number of key

sets in the system, and no user may be allowed to know more than one key

set. There are 2N keys {k0,0, k1,0, k0,1, k1,1, . . . , k0,N−1, k1,N−1}, and every key

set contains either k0,i or k1,i for all values of i.

Key Establishment Scheme 6.9: The revocation scheme described by

Chang et al. in [21].

Initialisation

• T generates 2N independent keys {k0,0, k1,0, k0,1, k1,1, . . . , k0,N−1, k1,N−1}
uniformly at random .

• For each user that registers to the group, T assigns them a uniqueN -bit

identifier XN−1XN−2 · · ·X0.

• The TA securely sends user XN−1XN−2 · · ·X0 all keys of the form kXi,i.

Key establishment

• The TA generates a session key SK and broadcasts it encrypted with k0,0

and again encrypted with k1,0, so that all users can obtain it.

Update — User revoke

• The TA considers the list of users to be revoked and finds a minimal set

of derived keys {κ0, . . . , κr−1}, such that all non-revoked users can find

at least one, while ensuring that all freshly revoked users cannot. Each

key κi is an exclusive-or of a subset of {k0,0, k1,0, . . . , k0,N−1, k1,N−1}.
This is not a simple problem, and the best method to solve it is outside

the scope of this document.1

1According to [21], the TA should use the Quine-McCluskey algorithm of [81].

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 192

• The TA broadcasts the encryption

ESK(Eκ0(SK
∗), . . . , Eκr−1(SK

∗)).

In [21] the authors do not provide a method for user add, but we suggest

below an extension of the scheme to allow new users to join it.

Update — User add

• If there are already 2N users in the scheme then the new user is rejected

until one of the existing users leaves the scheme.

• The new user is assigned an unassigned N -bit identifier. If the user

has previously been part of the system then they must be allocated

the same N -bit identifier as they had previously. If this identifier is

currently allocated to another user then they may not presently rejoin

the scheme (otherwise they would know the keys from both key sets,

which would total more than N).

• The TA securely sends the new user the keys associated with their

identifier and the current session key.

Analysis

Base Add Revoke

Secret storage N No extra No extra

Public communication 0 0 ≈ r

TA computation cost 2tE 0 (r + 1)tE

User computation cost tE 0 2tE

We can use a result from Section 5.2.3.1 to improve the scheme further for

the TA. The TA’s storage can be vastly reduced by generating the 2n keys

from a master key kT known only to T . For example, we can set k0,i =

f(0||i||kT) and k1,i = f(1||i||kT). In this way the TA can easily compute any

of the keys from the master key, and knowledge of some of the user keys does

not compromise any others.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 193

Scheme 6.9 does not protect against collusion. If a freshly revoked user

colludes with any other revoked user then they will usually be able to compute

the new session key (there are some exceptions).

6.3.3.3 Key recovery for logical key hierarchies

Some key distribution schemes address the problem that occurs if a user

misses a key update message relevant to them (for example [77, 106]).

The simplest solution is for the user to request the current key encryption

keys from T . However each time T responds to such a request there is a large

communication cost incurred.

In [63] Kurnio et al. describe a variation of the LKH which solves the

problem more efficiently. We first give the underlying scheme, which is an

extension of the scheme in [20] due to Canetti et al. to allow for simultaneous

addition and revocation of users.

Key Establishment Scheme 6.10: The first key establishment scheme

described by Kurnio et al. in [63] for an a-ary tree.

Initialisation

• T creates an a-ary tree G with n leaves and assigns a random key xv to

each vertex v. Each user is assigned a unique leaf, and each value xv

is securely sent to all users whose leaf is a descendant of v. If a user’s

leaf is at depth d then they will receive d values.

• There is one KPS communication group per vertex:

C ′ = {Bv = {Ui : Ui’s leaf is a descendant of v}} .

Key establishment

• If T wants to communicate with a group A then he decomposes A into

a minimal set {Bv0 , . . . , Bvr} of disjoint subgroups in C ′.

• T picks a random session key kA.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 194

• For each subgroup Bvj
, T encrypts kA with the group key xvj

and

broadcasts Exvj
(kA).

• Each user in A can decrypt precisely one of the encryptions of kA.

Update — Multiple user add and revoke

• T deletes the leaves of any revoked users and creates leaves for any new

users (this may require the creation of other vertices, depending on the

restrictions imposed on the shape of the tree).

• T deletes any vertices with only one child, and promotes the child

vertex to take their place.

• T creates a subtree of the vertices which the revoked users know the

value of, or which the new users need to know the value of. They then

split the subtree into a set of disjoint chains C.

• T creates a hash chain for each chain in C, seeded with a random value,

and assigns the hash chain values to the vertices of the chain.

• T sends any new user their leaf value.

• For every vertex in the subtree, T broadcasts an encryption of its value

with any child from main tree, except for parent-child pairs which are

part of the same hash chain.

We give an example of the multiple user add and revoke phase in Fig-

ure 6.5.

The full scheme from [63] also includes a key recovery system to counter

the problem of users missing the update messages. The system is designed

for the recovery of a single key, and so the full scheme is best considered as

a revocation scheme with the root key being the session key.

For each session key Ki, T creates two key recovery values, Pi chosen at

random, and Si = Ki ⊕ Pi. With the ith session update, the TA broadcasts

2t encrypted key recovery values, EKi
(Pi−t, . . . , Pi−1, Si+1, . . . , Si+t). Since P∗

and S∗ are chosen with a random element, no information about session keys

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 195

can be recovered from a single key recovery message. However a user can

recover session key Ki if they can find Pi and Si, by decrypting one of the

key recovery messages from sessions (i − t) to (i − 1), and one of the key

recovery messages from sessions (i+ 1) to (i+ t).

We present a flaw in the key recovery from the full scheme in [63]. We

will refer to the diagrams in Figure 6.5. We start with the left diagram

and assume that user U5 initially knows k10, k2 and k0, where k0 = K1 the

session key from the first session. Then the scheme is updated to give the

right diagram in Figure 6.5, but U5 does not receive the update message, and

consequently cannot decrypt anything during the second session, including

the re-keying information. Assume that for the next t sessions the changes

do not affect the key f(k′13) at the vertex U8 and U5 have in common, and

so U5 cannot recover any more information, including the t key recovery

messages. Consequently U5 has permanently missed the session information

from the second session. U5 will continue to miss another session for each

k0

k1

EE������
k2

YY333333

k3

EE������
k4

OO

k5

YY444444

k6

EE������
k7

OO

k8

OO

k9

YY222222

k10

OO

k11

OO

k12

YY444444

U1 U2 U3 U4 U5 U6 U7

f(k′15)

k′15

<<zzzzzzzz
f 2(k′13)

^^=======

k4

OO

f(k′13)

@@�������
f(k′14)

^^=======

k6

HH���������������
k8

GG������
k9

OO

k10

DD							
k′13

OO

k11

@@�������
k12

OO

k′14

ZZ555555

U1 U3 U4 U5 U8 U6 U7 U9

Figure 6.5: The left diagram shows the keys in the initial setup, and
the right diagram shows the updated diagram. User U2 is removed, and
users U8 and U9 are added. New keys are marked with a dash for clarity.
U8 and U9 are securely sent their leaf keys, and then T broadcasts the follow-
ing encryptions Ek6(k

′
15), Ek4(k

′
15), Ek10(f(k′13)), Ek11(f(k′14)), Ek12(f(k′14)),

Ef(k′14)(f
2(k′13)), Ef2(k′13)(f(k′15)), from which all users can update their keys.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 196

session that f(k′13) remains unchanged.

This problem can be overcome, but the only methods we have found

greatly increase the communication cost.

6.4 Group key agreement schemes

A third type of key establishment scheme that we will not consider in any

detail are group key agreement schemes. In these schemes users communicate

amongst themselves during the key establishment phase to derive group keys.

A typical scenario which is well suited for key agreement schemes, is secure

conferencing. Here users, who already ‘know’ or ‘trust’ each other, may wish

to communicate as a group in a secure environment.

A large proportion of these schemes are based on the Diffie-Hellman key

exchange protocol [34].

If the group have access to a secure channel then one user can pick a

random group key and securely send it to the others. If the users do not

have access to a secure channel then the best known schemes that are secure

against eavesdroppers all use public key cryptography.

As hash structures do not appear to be of great use in key agreement, we

will not consider these further.

6.5 Extending the lifetime of a key

In this section we compare several hash-based key refreshment schemes. We

propose a scheme based on the pseudo-random number generator, and a

simple extension with improved efficiency.

6.5.1 Introduction

In many applications keys are refreshed periodically. This may be required

when new members join or members leave a group.

Also, assuming there is a brute force adversary who systematically guesses

the key, periodic key refreshment will increase the expected time before the

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 197

key is guessed, as well as ensuring that the adversary can only use the com-

promised key for a limited time.

A key refreshment scheme is a scheme which facilitates the update of

group keys. Usually the update will be instigated by a trusted authority or

will be carried out periodically.

Although the literature is not consistent, we choose to define ‘backward

secrecy’ and ‘forward secrecy’ in what we believe to be the most standard

way (for example [35, 61]).2

Definition 6.6. A key refreshment scheme has backward secrecy if all

subsets of future session keys reveal no information about past session keys.

A key refreshment scheme has forward secrecy if all subsets of past

session keys reveal no information about future session keys.

Some key refreshment schemes derive the session key from a long term

secret, while others derive it from a secret value that is often updated. In both

cases each user stores more information than just the session key, so there

will be a difference between an adversary who discovers a session key and an

adversary who gains access to all the values held by a user. We propose the

following two definitions, which relate to the latter type of adversary.

Definition 6.7. A key refreshment scheme has strong backward secrecy

if it has backward secrecy, and an adversary who has access to all values held

by all current users cannot compute past session keys.

A key refreshment scheme has strong forward secrecy if it has for-

ward secrecy, and it is possible to revoke users from the scheme, such that a

collusion of all revoked users cannot compute future session keys.

We summarise each of the key refreshment schemes in this section with

a table. We denote the secrecy provided by the letters B, F, SB and SF for

backward, forward, strong backward and strong forward secrecy respectively.

For each scheme we also give the storage each user requires (as for the ‘com-

munication cost’ in Section 4.2.5). We also compare the computation needed

2We note that some authors swap the definitions of backward and forward secrecy (for
example [29]).

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 198

to compute the next key from the existing one for each scheme (using the

notation from Section 6.1).

6.5.2 Key refreshment using the session number

For any key establishment scheme it is possible to refresh the group keys

by initialising the scheme again, and for some it is possible just to run the

key establishment phase again. However, if instead we use the group key as

a generator (or ‘master key’) for other keys, we can reduce the amount of

group communication required.

One of the simplest ways to do this securely is by using a preimage-

resistant hash function f to hash the session number with the master key to

form the session key.

f(K||0)

f(K||4) f(K||1)

K

OO

iiSSSSSSSS
55kkkkkkkk

����
��

��
�

��9
99

99
99

f(K||3) f(K||2)

Figure 6.6: The session keys for the first five sessions as generated by Key
Refreshment Scheme 6.11.

Key Refreshment Scheme 6.11: Key refreshment using a session number.

We assume that each group A has a master key KA set up using a key

establishment scheme.

Key establishment

• In session s the session key for group A is kA,s = f(KA||s).

Analysis

User storage 3

Secrecy F,B

User computation cost tf

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 199

A disadvantage of this scheme is that each user must store the master

key KA and also the session number s. Assuming each user is in a large

number of groups, and the session number is the same for all groups, then

storing one additional value is not much of a sacrifice.

Another shortcoming of the above scheme is that, although it offers back-

ward and forward secrecy, it does not offer strong backward or strong forward

secrecy.

6.5.3 A hash chain based key refreshment scheme

We can use a hash chain to achieve strong backward secrecy, removing the

need for each user to keep track of the session number.

Key Refreshment Scheme 6.12: A key refreshment scheme using a hash

chain based on a preimage-resistant hash function f in order to avoid each

user storing a session number. We assume that each group A has a master

key KA set up using a key establishment scheme.

Key establishment

• In session s the session key for group A is kA,s = f s(KA). However,

since the user already knows kA,s−1, they can compute the next session

key as kA,s = f(kA,s−1).

Analysis

User storage 1

Secrecy B, SB

User computation cost tf

Although this scheme is very suitable if strong backward secrecy is re-

quired, it is not suitable if it is possible that a key might be guessed or

leaked. If one session key is compromised then all future session keys are

also compromised.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 200

6.5.4 A chained pseudo-random number generator based

key refreshment scheme

A simple scheme which avoids the problem of a compromised session key

leaking the value of future session keys is to use the chained pseudo-random

number generator (Section 3.4.4).

Key Refreshment Scheme 6.13: A key refreshment scheme based on the

chained pseudo-random number generator. We assume that each group A

has a master key KA set up using a key establishment scheme.

Key establishment

• In session s the session key for group A is kA,s = f2(f
s
1 (KA)).

• Each user does not need to store the master key KA, but instead should

store the value xA,s = f s
1 (KA) from the underlying hash chain (see

Figure 6.7). With this, the user can compute the next session key

as kA,s+1 = f2(f1(xA,s)).

Analysis

User storage 2

Secrecy F,B, SB

User computation cost 2tf

This scheme is much more resistant to compromised session keys than

Key Refreshment Scheme 6.12. If an adversary manages to obtain a session

key then it gives them no information about previous or future session keys.

It is slightly slower than the hash chain based scheme, requiring two hashes

per session, and it requires the user to store two values (the session key and

the hash chain value), but this should be efficient enough for all but the most

light-weight of applications.

Even though each session key does not reveal future session keys, the

chained pseudo-random number generator scheme does not provide strong

forward secrecy, as any user can compute all session keys ahead of the point

they join the scheme.

Any user joining the scheme will not be able to compute previous keys.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 201

KA = xA,0
f1 //

f2

���
�
�
�

xA,1
f1 //

f2

���
�
�
�

xA,2
f1 //

f2

���
�
�
� · · ·

kA,0 kA,1 kA,2 · · ·

Figure 6.7: The key refreshment values for group A using Key Refreshment
Scheme 6.13. The top row of values forms a hash chain. One value is stored
per session in order to derive future session keys.

We observe that Scheme 6.13 can be improved if all users are aware

when a user is added to the scheme. Users simply compute their keys as

in Scheme 6.11 until a user is added, at which point they hash the master

key, as in Scheme 6.13. An example of this scheme is given in Figure 6.8.

kA,0 kA,2 kA,3 kA,6 kA,7

KA = xA,0

OO

//

��

xA,1

ZZ666666666

DD���������

����
��

��
��

�

��6
66

66
66

66
// xA,2 //

��

ZZ666666666

DD���������
· · ·

kA,1 kA,4 kA,5 kA,8

Figure 6.8: An extension of Scheme 6.13 so that users only need to compute
two hashes when a user is added.

6.5.5 Key refreshment with strong forward secrecy

If we require that a key refreshment scheme has strong forward secrecy then

we need to be able to revoke users. Consequently, it is a good idea to use a

revocation scheme to generate the group key. We can use any of the schemes

from Section 6.3.

Many revocation schemes will provide strong forward and strong back-

ward secrecy. They typically require much greater user storage than the

other key refreshment schemes that we have seen in this section.

CHAPTER 6. KEY ESTABLISHMENT SCHEMES 202

6.6 Conclusions

In this chapter we compared several key establishment schemes. We pre-

sented a generalisation of an inverted hash tree key predistribution scheme

(KPS). We suggest that it would be of interest to find the optimal tree shape

for this scheme.

We presented a KPS for lattice-shaped hierarchy, and generalised it to

many more hierarchies. It is an open problem to find, given a hierarchy, the

most efficient DAG to form a KPS using Key Establishment Scheme 6.8.

We presented a flaw in the key recovery system of the key distribution

scheme by Kurnio et al. We also exhibited some key refreshment schemes

based on hash structures including the chained pseudo-random number gen-

erator, which we believe to be very well suited to light-weight applications.

Chapter 7

Other applications and future

work

In this chapter we provide a brief overview of several other cryptographic

applications of hash structures. In each case we feel that it may be possible

to make improvements on the techniques described in the current literature,

but have not had time to explore these in detail in this thesis.

7.1 Micropayment schemes

One of the best known uses of hash chains is in micropayment schemes.

A company that frequently deals with small amounts of money, such as a

mobile phone operator, could potentially suffer large administrative costs

if it processed these transactions every time. Micropayment schemes are

specifically designed to efficiently process large volumes of small payments.

One of the most well known micropayment schemes is Payword, which

was simultaneously developed by a number of different authors [50, 103,

119]. Note the similarity between this scheme and Entity Authentication

Scheme 4.9.

203

CHAPTER 7. OTHER APPLICATIONS AND FUTURE WORK 204

Micropayment Scheme 7.1: A simplified version of Payword, with cus-

tomer A, service provider B and trusted authority T .

Initialisation

• A pays T the sum of n pence, which will be spent paying B in penny

increments.

• T S−→ A : x for some random value x.

• T A−→ B : fn(x).

Payment number i

• When A wants to pay B the ith penny, A sends B the hash chain

value fn−i(x).

• B checks that the hash of this value matches the value received in

payment i− 1, and stores fn−i(x) in place of fn−(i−1)(x).

Collection of payments

• Whenever B wishes to collect the payments to date, they send T the

most recent value that they have received.

• T hashes this value repetitively to compare with fn(x), and thereby

verify that it is part of the hash chain.

• T then pays B appropriately from A’s funds.

The basic idea is adapted or extended by other papers, for example [102]

and [60]. A scheme by Lin et al. [74] is based on Payword, but instead

uses values from a hierarchical chain construction as opposed to a hash

chain. We observe that many other n-time entity authentication schemes

from Chapter 4 could be extended into micropayment schemes (for example

Schemes 4.16, 4.18 and 4.19), however we have not had an opportunity to

analyse these fully.

CHAPTER 7. OTHER APPLICATIONS AND FUTURE WORK 205

7.2 Auctions

A similar application to micropayments is auctions. Here the bidders provide

the auctioneer with commitments to pay, as opposed to actual payments. An

example of an auction scheme that makes use of a hash chain for these com-

mitments is given in [135]. This scheme is for an English auction. However

other types of auction exist, including the first-price sealed-bid auction.

Definition 7.1. An English auction is an auction in which the auctioneer

accepts increasingly higher bids, until no competing bidder improves on the

current bid (within some reasonable time). The item is sold to the highest

bidder at a price equal to their bid.

Definition 7.2. A first-price sealed-bid auction is a two-phase auction

in which all bidders privately submit their bids during the bidding phase,

after which the auctioneer views the bids and determines the highest bidder

during the opening phase. The item is sold to the highest bidder at a price

equal to their bid.

Suzuki et al. use hash chains to facilitate an online first-price sealed-bid

auction in [136].1 Their hash-based scheme has a major advantage over any

traditional physical implementation. In a traditional physical scheme the

second phase must either be made public, in which case rival parties will find

out important information about one another’s valuations, or kept secret,

in which case the bidders are forced to trust that the auctioneer has not

colluded with any of the bidders. In the hash-based scheme all users can be

assured of the auction’s correctness, without losing bids being revealed. We

now give a simplified version of their scheme.

1In fact their scheme is better described as a Dutch auction, which in theory should
have the same outcome as a sealed-bid first-price auction [80]. A Dutch Auction is an
auction in which the auctioneer starts with a high asking price and gradually lowers it
until a bidder is willing to accept the auctioneer’s price.

CHAPTER 7. OTHER APPLICATIONS AND FUTURE WORK 206

Auction Scheme 7.2: A simplified version of the first-price sealed-bid auc-

tion from [136]. The auctioneer advertises the lot being auctioned, together

with some system parameters: a maximum price of m pence, which should be

chosen higher than anyone will bid, and two distinct bit strings zyes and zno.

Bidding phase

• Each bidder makes their valuation of the lot: p pence (p < m). Each

bidder chooses a seed at random xp−1. They create a chain with values:

xp = f(zyes||xp−1);

xi = f(zno||xi−1), for p+ 1 ≤ i ≤ m.

• Each bidder securely sends xm to the auctioneer.

Opening phase

• The auctioneer announces each price decreasing from (m− 1) pence.

• At i pence, each bidder sends the value xi to the auctioneer.

• The auctioneer checks if xi+1 = f(zno||xi) for each user. If this holds

for all users then the auctioneer announces the next price (i−1 pence).

• If the values do not match then the auctioneer checks if xi+1 = f(zyes||xi).

If this is the case, they announce the end of the auction and the win-

ning bid. Otherwise the bidder has not submitted a valid chain and

the auctioneer should take appropriate action.

In [110], Prakobpol and Permpoontanalarp present a variation of the

previous scheme using a hierarchical chain construction. In [99], Omote and

Miyaji present an auction scheme using hash chains differently; each chain

value is used to mask a digit of a user’s bid.

In 1961, Vickrey proposed an alternative to the first-price sealed-bid auc-

tion, which has become known as the Vickrey auction [143].

CHAPTER 7. OTHER APPLICATIONS AND FUTURE WORK 207

Definition 7.3. A Vickrey auction (or second-price sealed-bid auc-

tion) is a two-phase auction in which all bidders privately submit their bids

during the bidding phase, and then the auctioneer views the bids and deter-

mines the highest bidder during the opening phase. The item is sold to the

highest bidder at a price equal to the second highest bid.

Any computational implementation of a Vickrey auction must address is-

sues that do not affect first-price sealed-bid auctions [123]. One such example

is that a corrupt auctioneer must not be able to insert additional bids after

the opening phase has begun, otherwise they could insert a bid between the

highest and second highest bids in order to increase their revenue.

Many Vickrey auction schemes exist, including several that do not depend

on public key cryptography [17, 75, 90]. However all of these solutions require

multiple independent auctioning authorities, and some reveal private bid

values to some of these authorities (ideally in a Vickrey auction only the

second highest bid should be obtainable).

We created a draft Vickrey auction scheme using hash chains, based on

Auction Scheme 7.2, but it is prohibitively costly in terms of computation.

It remains an open problem to design a hash-based Vickrey auction with a

single auctioneer, such that all bidders can be satisfied that the auction has

been carried out correctly [139].

7.3 Pseudo-random number generation

As mentioned in Section 2.4, randomness is intrinsically linked with hash

functions, and many applications of hash functions require their outputs to

be pseudo-random. There are several well-known ways of generating pseudo-

random numbers using a hash function.

Perhaps the most common technique for generating a pseudo-random

sequence {x0, x1, . . .} is using a star-shaped inverted hash tree defined as

follows:

xi = f(s||i), where s is the seed.

CHAPTER 7. OTHER APPLICATIONS AND FUTURE WORK 208

In Section 6.5.2 we saw how this method of generating pseudo-random

numbers could be used for key refreshment.

In Section 4.3.3 we saw that in some situations it may be appropriate to

use the chained pseudo-random number generator (Definition 3.10). However

this scheme will suffer if the underlying hash chain is comparable in length

to the size of the hash’s range (see Section 3.1.4.5 for more details).

Other methods of combining hash functions to create pseudo-random

numbers exist, including [46] and [133].

If a hash function can be used to generate pseudo-random numbers from a

seed then it can also be used to encrypt a message. Many stream ciphers use

the key as a seed to generate pseudo-random numbers, and then exclusive-or

it with the message. One recent example of a stream cipher that is based on

a hash function in this way is Salsa20 [8].

7.4 Information sealing

In this section we look at two methods of sealing information. The first

allows information to be kept secret for a certain amount of time, and the

second facilitates the efficient release of consecutive records from an ordered

set of data.

7.4.1 Time-release cryptography

In certain applications it may be useful to seal a piece of information such

that it can only be read after a certain amount of time has passed. For

example, in a sealed-bid auction, a bidder may want to keep their bid secret

until the opening phase.

In [120] Rivest et al. suggest that a trusted agent T using a hash chain

could provide a service where they respond to two types of request. If a user

asks for the current hash chain value, T will provide it. From this value

the user can compute all previous hash chain values. If the user asks T to

encrypt a message m so that it can be decrypted at time t, then the agent

will respond with the encryption Ekt(m), where kt is the hash chain value

that will be released at time t.

CHAPTER 7. OTHER APPLICATIONS AND FUTURE WORK 209

7.4.2 Interval release cryptography

In Section 6.2.3.5 we saw a scheme from [58] which facilitated the possibility

of interval release cryptography. A server creates two hash chains x∗ and y∗,

each of length n. From these, the server defines an ordered list of keys of

the form (xi ⊕ yn−i). The server can then provide a user with two values xi

and yj, and using these values the user can find keys for the interval [i, j].

We note that this can easily be extended to more dimensions by using

two more hash chains for each additional dimension.

For example, pixel data in a video may have the three dimensions column,

row and time. The video’s owner can create six hash chains xcolumn,∗, xrow,∗,

xtime,∗, ycolumn,∗, yrow,∗, ytime,∗ and use these to create a key for each pixel of

the form: xcolumn,c ⊕ xrow,r ⊕ xtime,t ⊕ ycolumn,C−c ⊕ yrow,R−r ⊕ ytime,T−t.

The video’s owner can then provide the same copy of the video to many

users, but provide them with a different viewing configuration. One user may

pay for widescreen access, while another may pay to see extended footage.

The owner only needs to send six hash chain values for any configuration

that a user pays for.

7.5 Generating rainbow tables

Lastly we consider a very different application of hash structures. Many pass-

word based applications store the hash of the password (computed using a

preimage-resistant hash function f), as in Entity Authentication Scheme 4.3.

Assuming the user is allowed to choose their own password, there is a reason-

able chance that it will be found in a dictionary, or list of common passwords.

Typically, a search of these lists will be computationally easy, especially

compared to the computationally infeasible task of a search of all potential

passwords.

In some scenarios the adversary may be able to obtain the hash of the

password, and may wish to avoid submitting large numbers of incorrect pass-

words. An efficient way to find the password is using rainbow tables [97].

To form a rainbow table, we use the hash function f and a family of

CHAPTER 7. OTHER APPLICATIONS AND FUTURE WORK 210

reduction functions g∗ with domain equal to the range of f , and range equal

to the list of common passwords L. The rainbow table x∗,∗ has r rows and

(l + 1) columns, and has entries from L defined by:

xi,j =

{
a random member of L if i = 0

gi(f(xi−1,j)) otherwise.

We note that by considering the combination of the hash function and the

reduction function as a new hash function, each row of the rainbow table x∗,j

is a rainbow chain of length l (Definition 3.8).

To reduce the memory required to store the rainbow table, only the first

and last columns are stored (that is {x0,∗} and {xl,∗}).
If a password is hashed somewhere in our rainbow table then we can find

the password p from the hash output f(p). We search each column of the

table in turn by applying the appropriate sequence of reductions and hashes

to f(p), and check to see if the result is a member of {xl,∗}. If it is, then

we find the first value of that row, and hash and reduce until we obtain the

preimage p.

The precursor to rainbow tables was based on hash chains [51]; however

rainbow chains are better suited to this application.

7.6 Conclusions

In this chapter we gave an overview of the application of hash structures to

micropayments, auctions, pseudo-random number generation, interval release

cryptography and hash preimage computation, and indicated several open

problems.

Chapter 8

Conclusions

In this thesis we have considered many applications of hash functions and

hash structures to cryptography.

We began in Chapter 2 by examining the definitions of types of hash

function, and found that there exists a certain amount of conflict in the

literature. We presented a set of three definitions suitable for this thesis.

We explored the relationship between hash functions and pseudo-random

functions. We suggested a parameterisation of hash functions by security

and output size. We summarised the progress made by NIST in defining

properties required from a new hash function SHA-3.

In Chapter 3 we presented a toolkit of hash structures, which we believe

to be the first comprehensive overview of its kind. We briefly studied the

relationship between the properties of a hash function and the hash chain

formed from it. We compared infinite-length hash chains with hash chains

and observed that infinite-length hash chains are less suitable for use in

restricted environments. We made a distinction between hash trees and

Merkle trees, and defined a useful type of tree, the almost perfect a-ary

tree. We gave a formal definition of a generalised hash directed acyclic graph

(DAG).

In Chapter 4 we studied entity authentication, and the schemes that can

be formed using the hash structures from Chapter 3. We also presented a new

notion of public verifiability, and several hash-based schemes which possessed

211

CHAPTER 8. CONCLUSIONS 212

it. We identified two adversaries that were useful in comparing existing

and new entity authentication schemes. We presented a novel hash-based

scheme with minimal storage requirements for authenticating and verifying

parties. We created two new entity authentication schemes which provide

entity authentication to many verifying parties. We showed a relationship

between the use of Merkle trees in a entity authentication scheme and a one-

time signature scheme. We suggested an extension of the hierarchical chain

construction to an entity authentication scheme suitable for sensor networks.

We also suggested entity authentication schemes based on sandwich chains,

comb skipchains and hash chains with breakpoints.

In Chapter 5 we studied the application of hash structures to signature

schemes. We compared one-way trapdoor based signature schemes with hash-

based one-time signature schemes. We proved that any set of Vaudenay’s rake

signature patterns with constant average chain position is a signature scheme.

We then proved some results about the size of these signature schemes. We

showed that for a given signature space size there is not a unique best choice

for the optimal Vaudenay’s rake signature scheme used. We proved that for

any signature scheme based on a hash tree there is another signature scheme

based on a Merkle sub-tree that has the same number of signature patterns.

We then presented a novel algorithm to find a large one-time signature

scheme based on a given hash structure. We also presented a scheme to

find the largest signature scheme, although this proved prohibitively slow for

large structures. We used our algorithms to explore the relationship between

the number of vertices in a graph, and the efficiency of one-time signature

scheme that it admitted. We generalised a scheme by Bleichenbacher and

Maurer and demonstrated that the original scheme is the most efficient in

the limit. We created two efficient one-time signature schemes, which also

have simple message to signature space maps. These signature schemes are

the most efficient such schemes that we know of. We also explored k-time

signature schemes, and presented the concepts of perforated and porous k-

time signature schemes. We studied the definition of efficiency for k-time

signature schemes, and presented two useful definitions. We suggested a new

method for the construction of a porous k-time signature scheme.

CHAPTER 8. CONCLUSIONS 213

In Chapter 6 we studied the application of hash structures to key estab-

lishment schemes and compared many key predistribution and key distrib-

ution schemes (KPSs and KDSs) from the literature. We combined ideas

from two key predistribution schemes to create the inverted hash tree KPS.

We presented a hash chain based KPS for lattice-shaped hierarchies. We

generalised this scheme, replacing hash chains with generalised hash DAGs,

making the scheme suitable for use with many other hierarchies. We ob-

served that a key escrow scheme by Joye and Yen can be applied to any set

of group keys formed by a KPS. We improved a scheme by Chang et al. to

facilitate the inclusion of new users and to reduce the storage space required

by trusted authority. We presented a flaw in a KDS due to Kurnio et al.

We noted the inconsistency in the literature over the definitions of forward

and backward secrecy. We proposed definitions of strong forward and back-

ward secrecy, and used these definitions to compare several hash-based key

refreshment schemes. We proposed a key refreshment scheme based on the

chained pseudo-random number generator, and a simple extension to improve

its efficiency.

In Chapter 7 we briefly studied the application of hash structures to

several other areas of cryptography, including micropayments, auctions and

pseudo-random number generators. We also mention hash structure based

schemes for interval release cryptography and preimage computation. We

generalise an interval release scheme due to Joye and Yen to many dimen-

sions.

Bibliography

[1] S. G. Akl and P. D. Taylor. Cryptographic solution to a problem of

access control in a hierarchy. ACM TOCS, 1(3):239–248, 1983.

[2] R. Anderson. The classification of hash functions. In IMA Conference

in Cryptography and Coding, pages 83–94, 1993.

[3] A. Babenhauserheide. Phex 3.0.0 released. Website from 7th June

2009. http://www.phex.org/mambo/content/view/80/58/.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for

message authentication. In Advances in Cryptology, CRYPTO ’96,

LNCS, volume 1109, pages 1–15, 1996.

[5] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm

for designing efficient protocols. In CCS 93, ACM, pages 62–73, 1993.

[6] M. Bellare and P. Rogaway. The exact security of digital signatures –

how to sign with RSA and Rabin. In Advances in Cryptology, EURO-

CRYPT ’96, LNCS, volume 1070, pages 399–416, 1996.

[7] F. Bergadano, D. Cavagnino, and B. Crispo. Chained stream authen-

tication. In SAC ’00, LNCS, volume 2012, pages 144–157, 2001.

[8] D. J. Bernstein. The Salsa20 stream cipher. In SKEW ’05, ECRYPT,

2005. http://www.ecrypt.eu.org/stream/salsa20p2.html.

[9] K. Bicakci and N. Baykal. Infinite length hash chains and their appli-

cations. In WETICE ’02, IEEE, pages 57–61, 2002.

214

BIBLIOGRAPHY 215

[10] D. Bleichenbacher and U. M. Maurer. Directed acyclic graphs, one-way

functions and digital signatures. In Advances in Cryptology, CRYPTO

’94, LNCS, volume 839, pages 75–82, 1994.

[11] D. Bleichenbacher and U. M. Maurer. On the efficiency of one-time dig-

ital signatures. In Advances in Cryptology, ASIACRYPT ’96, LNCS,

volume 1163, pages 145–158, 1996.

[12] D. Bleichenbacher and U. M. Maurer. Optimal tree-based one-time

digital signature schemes. In STACS ’96, LNCS, volume 1046, pages

363–374, 1996.

[13] R. Blom. An optimal class of symmetric key generation systems. In

Advances in Cryptology, EUROCRYPT ’84, LNCS, volume 209, pages

335–338, 1985.

[14] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and

M. Yung. Perfectly-secure key distribution for dynamic conferences.

In Advances in Cryptology, CRYPTO ’92, LNCS, volume 740, pages

471–486, 1993.

[15] C. Boyd and A. Mathuria. Protocols for Authentication and Key Es-

tablishment. Springer, 2003.

[16] P. G. Bradford and O. V. Gavrylyako. Hash chains with diminishing

ranges for sensors. In ICPPW ’04, IEEE, pages 77–83, 2004.

[17] F. Brandt. Cryptographic protocols for secure second-price auctions.

In CIA ’01, LNAI, volume 2182, pages 154–165, 2001.

[18] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an

undirected graph. Communications of the ACM, 16(9):575–577, 1973.

[19] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas.

Multicast security: A taxonomy and some efficient constructions. In

INFOCOM ’99, IEEE, volume 2, pages 708–716, 1999.

BIBLIOGRAPHY 216

[20] R. Canetti, T. Malkin, and K. Nissim. Efficient communication-storage

tradeoffs for multicast encryption. In Advances in Cryptology, EURO-

CRYPT ’99, LNCS, volume 1592, pages 459–474, 1999.

[21] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key man-

agement for secure internet multicast using boolean function minimiza-

tion techniques. In INFOCOM ’99, IEEE, volume 2, pages 689–698,

1999.

[22] S. Chang and M. Dworkin. Workshop report: The first crypto-

graphic hash workshop. Technical report, National Institute of Stan-

dards and Technology, Information Technology Laboratory, National

Institute of Standards and Technology, Gaithersburg, MD 20899,

2005. http://www.csrc.nist.gov/pki/HashWorkshop/2005/HashWshop

2005 Report.pdf.

[23] J. Crampton, K. Martin, and P. Wild. An exposition of key assignment

schemes. Unpublished manuscript, 2005.

[24] J. Crampton, K. Martin, and P. Wild. On key assignment for hierar-

chical access control. In CSFW ’06, IEEE, pages 98–111, 2006.

[25] I. B. Damg̊ard. Collision free hash functions and public key signature

schemes. In Advances in Cryptology, EUROCRYPT ’87, LNCS, volume

304, 1987.

[26] I. B. Damg̊ard. The application of claw free functions in cryptography.

PhD thesis, Aarhus University, Mathematical Institute, 1988.

[27] D. W. Davies and W. L. Price. The Application of Digital Signatures

Based on Public Key Cryptosystems. National Physical Laboratory,

1980.

[28] D. W. Davies and W. L. Price. Security for computer networks: An in-

troduction to data security in teleprocessing and electronic funds trans-

fer. John Wiley & Sons, Ltd., 1984.

BIBLIOGRAPHY 217

[29] H. Delfs and H. Knebl. Introduction to Cryptography: principles and

applications. Springer, 2002.

[30] D. E. Denning and G. M. Sacco. Timestamps in key distribution pro-

tocols. Communications of the ACM, 24(8):533–536, 1981.

[31] A. Dent and Mitchell C. User’s Guide To Cryptography And Standards.

Artech House Publishers, 2004.

[32] R. Di Pietro, A. Durante, L. V. Mancini, and V. Patil. Short paper:

Practically unbounded one-way chains for authentication with back-

ward secrecy. In SECURECOMM ’05, IEEE, pages 400–402, 2005.

[33] R. Di Pietro, A. Durante, L. V. Mancini, and V. Patil. Addressing

the shortcomings of one-way chains. In ASIACCS ’06, ACM, pages

289–296, 2006.

[34] W. Diffie and M. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

[35] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication

and authenticated key exchanges. Designs, Codes and Cryptography,

2(2):107–125, 1992.

[36] A. Evans Jr., W. Kantrowitz, and E. Weiss. A user authentication

scheme not requiring secrecy in the computer. Communications of the

ACM, 17(8):437–442, 1974.

[37] S. Even. A protocol for signing contracts. SIGACT News, ACM,

15(1):34–39, 1983.

[38] W. Feller. An Introduction to Probability Theory and Its Applications.

Wiley, third edition, 1968.

[39] A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology,

CRYPTO ’93, LNCS, volume 773, pages 480–491, 1994.

BIBLIOGRAPHY 218

[40] P. Flajolet and A. M. Odlyzko. Random mapping statistics. In Ad-

vances in Cryptology, EUROCRYPT ’89, LNCS, volume 434, pages

329–354, 1990.

[41] L. Gong. Variations on the themes of message freshness and replay

or the difficulty in devising formal methods to analyze cryptographic

protocols. In CSFW ’93, IEEE, pages 131–136, 1993.

[42] V. Goyal. Construction and traversal of hash chain with public links.

Cryptology ePrint Archive, Report 2004/371, 2004. http://eprint.

iacr.org/2004/371.

[43] V. Goyal. How to re-initialize a hash chain. Cryptology ePrint Archive,

Report 2004/097, 2004. http://eprint.iacr.org/2004/097.

[44] B. Groza and T. Dragomir. On the use of one-way chain based au-

thentication protocols in secure control systems. In ARES ’07, IEEE,

pages 1214–1221, 2007.

[45] E. Gudes. The design of a cryptography based secure file system. IEEE

Transactions on Software Engineering, 6(5):411–420, 1980.

[46] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux ran-

dom number generator. In SP ’06, IEEE, pages 371–385, 2006.

[47] N. Haller. The S/KEY one-time password system. In Proceedings of the

Symposium on Network and Distributed System Security, ISOC, pages

151–157, 1994.

[48] N. Haller, C. Metz, P. Nesser, and M. Straw. Requests for comments:

2289, a one-time password system. The Internet Engineering Task

Force, February 1998. ftp://ftp.rfc-editor.org/in-notes/rfc2289.

txt.

[49] L. Harn and W. Hsin. On the security of wireless network access with

enhancements. In WiSe ’03, ACM, pages 88–95, 2003.

BIBLIOGRAPHY 219

[50] R. Hauser, M. Steiner, and M. Waidner. Micro-payments based on

iKP. In SECURICOM ’96, pages 67–82, 1996.

[51] M. E. Hellman. A cryptanalytic time-memory trade off. IEEE Trans-

actions on Information Theory, 26:401–406, 1980.

[52] K. Hong, S. Jung, and F. S. Wu. A hash-chain based authentication

scheme for fast handover in wireless network. In WISA ’05, LNCS,

volume 3786, pages 96–107, 2006.

[53] Y. Hu, D. Johnson, and A. Perrig. Sead: Secure efficient distance

vector routing for mobile wireless ad hoc networks. In WMCSA ’02,

IEEE, pages 3–13, 2002.

[54] Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against

wormhole attacks in wireless ad hoc networks. In INFOCOM ’03,

IEEE, volume 3, pages 1976–1986, 2003.

[55] Y. C. Hu, M. Jakobsson, and A. Perrig. Efficient constructions for one-

way hash chains. In ACNS ’05, LNCS, volume 3531, pages 423–441,

2005.

[56] R. Impagliazzo and S. Rudich. Limits on the provable consequences of

one-way permutations. In STOC ’89, ACM, pages 44–61, 1989.

[57] ISO/IEC. ISO/IEC 9798-4, Information Technology – Security Tech-

niques – Entity Authentication – Part 4: Mechanisms Using a Crypto-

graphic Check Function. 1999.

[58] M. Joye and S. Yen. One-way cross-trees and their applications. In

PKC ’02, LNCS, volume 2274, pages 346–356, 2002.

[59] R. M. Karp. Reducibility among combinatorial problems. In Complex-

ity of Computer Computations, pages 85–103. Plenum Press, 1972.

[60] E. Kim, H. Kim, and K. Park. Provisioning protected resource sharing

in multi-hop wireless networks. Cryptology ePrint Archive, Report

2006/382, 2006. http://eprint.iacr.org/2006/382.

BIBLIOGRAPHY 220

[61] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agree-

ment for dynamic collaborative groups. In CCS ’00, ACM, pages 235–

244, 2000.

[62] J. Kohl and C. Neuman. Requests for comments: 1510, the Ker-

beros network authentication service (V5). The Internet Engineering

Task Force, September 1993. ftp://ftp.rfc-editor.org/in-notes/

rfc1510.txt.

[63] H. Kurnio, R. Safavi-Naini, and H. Wang. A secure re-keying scheme

with key recovery property. In ACISP ’02, LNCS, volume 2384, pages

40–55, 2002.

[64] X. Lai and J. L. Massey. Hash functions based on block ciphers. In

Advances in Cryptology, EUROCRYPT ’92, LNCS, volume 658, pages

55–70, 1993.

[65] K. Lam and T. Beth. Timely authentication in distributed systems. In

ESORICS 92, LNCS, volume 648, pages 293–303, 1992.

[66] K. Lam and D. Gollmann. Freshness assurance of authentication pro-

tocols. In ESORICS 92, LNCS, volume 648, pages 261–272, 1992.

[67] L. Lamport. Time, clocks and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558–565, 1978.

[68] L. Lamport. Constructing digital signatures from a one-way function.

Technical report, CSL-98, SRI International, October 1979.

[69] L. Lamport. Password authentication with insecure communication.

Communications of the ACM, 24(11):770–772, 1981.

[70] J. Lee and D. Stinson. Tree based key distribution patterns. SAC ’05,

LNCS, 3897:189–204, 2006.

[71] S. Lee, H. Kim, and K. Chung. Hash based secure sensor network

programming method without public key cryptography. In WSW ’06,

ACM, 2006.

BIBLIOGRAPHY 221

[72] T. Leighton and S. Micali. Large provably fast and secure digital sig-

nature schemes based on secure hash functions, 1993. U.S. Patent No.

5,432,852.

[73] Limegroup. Hash tree - limewire consolidated api. Website from

7th June 2009. http://www.limewire.org/nightly/javadocs/com/

limegroup/gnutella/tigertree/HashTree.html.

[74] I. Lin, M. Hwang, and C. Chang. The general pay-word: A micro-

payment scheme based on n-dimension one-way hash chain. Designs,

Codes and Cryptography, 36(1):53–67, 2005.

[75] H. Lipmaa, N. Asokan, and V. Niemi. Secure Vickrey auctions without

threshold trust. In FC ’02, LNCS, volume 2357, pages 87–101, 2003.

[76] D. Liu and P. Ning. Efficient distribution of key chain commitments for

broadcast authentication in distributed sensor networks. In NDSS ’03,

ISOC, 2003.

[77] D. Liu, P. Ning, and K. Sun. Efficient self-healing group key distrib-

ution with revocation capability. In CCS ’03, ACM, pages 231–240,

2003.

[78] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall

PTR, first edition, 2003.

[79] K. M. Martin. The combinatorics of cryptographic key establishment.

Surveys in Combinatorics, CUP, pages 223–273, 2007.

[80] P. Mcafee and J. Mcmillan. Auctions and bidding. Journal of Economic

Literature, 25(2):699–738, 1987.

[81] E. J. McCluskey. Minimization of boolean functions. The Bell System

Technical Journal, 35(5):1417–1444, November 1956.

[82] D. A. McGrew and A. T. Sherman. Key establishment in large dynamic

groups using one-way function trees. IEEE Transactions on Software

Engineering, 29(5):444–458, 2003.

BIBLIOGRAPHY 222

[83] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

Applied Cryptography. CRC, October 1996. http://www.cacr.math.

uwaterloo.ca/hac/.

[84] R. C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD

thesis, Stanford University, 1979.

[85] R. C. Merkle. A digital signature based on a conventional encryption

function. In Advances in Cryptology, CRYPTO ’87, LNCS, volume

293, pages 369–378, 1988.

[86] R. C. Merkle. One way hash functions and DES. In Advances in

Cryptology, CRYPTO ’89, LNCS, volume 435, pages 428–446, 1989.

[87] C. Mitchell and F. Piper. Key storage in secure networks. Discrete

Applied Mathematics, 21(3):215–228, 1988.

[88] R. A. Mollin. An Introduction to Cryptography. CRC Press, Inc., 2000.

[89] R. Morris and K. Thompson. Password security: A case history. Com-

munications of the ACM, 22(11):594–597, 1979.

[90] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and

mechanism design. In EC ’99, ACM, pages 129–139, 1999.

[91] M. Naor and M. Yung. Universal one-way hash functions and their

cryptographic applications. In STOC ’89, ACM, pages 33–43, 1989.

[92] National Institute of Standards and Technology. NIST’s policy on

hash functions. Website from 31st July 2008. http://csrc.nist.gov/

groups/ST/hash/policy.html.

[93] National Institute of Standards and Technology. Digital signature stan-

dard. Technical Report 186, Federal Information Processing Standards

Publications, May 1994.

[94] National institute of standards and technology. FIPS 180-2, secure hash

standard, Federal Information Processing Standard (FIPS), publication

180-2. Technical report, Department of Commerce, August 2002.

BIBLIOGRAPHY 223

[95] National Institute of Standards and Technology. Announcing request

for candidate algorithm nominations for a new cryptographic hash al-

gorithm (SHA-3) family. Technical report, Department of Commerce,

November 2007.

[96] J. Nechvatal and S. Chang. Workshop report: The second cryp-

tographic hash workshop. Technical report, National Institute of

Standards and Technology, Information Technology Laboratory, Na-

tional Institute of Standards and Technology, Gaithersburg, MD

20899, 2006. http://www.csrc.nist.gov/pki/HashWorkshop/2006/

SecondHashWshop∼2006∼Report.pdf.

[97] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In

Advances in Cryptology, CRYPTO ’03, LNCS, volume 2729, pages

617–630, 2003.

[98] T. Okamoto. Provably secure and practical identification schemes and

corresponding signature schemes. In Advances in Cryptology, CRYPTO

’92, LNCS, volume 740, pages 31–53, 1993.

[99] K. Omote and A. Miyaji. An anonymous aution protocol with a single

non-trusted center using binary trees. In ISW ’00, LNCS, volume 1975,

pages 108–120, 2000.

[100] C. Padró, I. Gracia, S. M. Mollev́ı, and P. Morillo. Linear key predis-

tribution schemes. Designs, Codes and Cryptography, 25(3):281–298,

2002.

[101] H. Pagnia, H. Vogt, and F. Gartner. Fair exchange. The Computer

Journal, OUP, 46(1):55–75, 2003.

[102] V. Patil and R. Shyamasundar. e-coupons: An efficient, secure and

delegable micro-payment system. Information Systems Frontiers, 7(4–

5):371–389, 2005.

[103] T. P. Pedersen. Electronic payments of small amounts. In Security

Protocols ’96, LNCS, volume 1189, pages 59–68, 1996.

BIBLIOGRAPHY 224

[104] A. Perrig. The BiBa one-time signature and broadcast authentication

protocol. In CCS ’01, ACM, pages 28–37, 2001.

[105] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentica-

tion and signing of multicast streams over lossy channels. In SP ’00,

IEEE, pages 56–73, 2000.

[106] A. Perrig, D. Song, and J. D. Tygar. ELK, a new protocol for efficient

large-group key distribution. In SP ’01, IEEE. IEEE Computer Society,

2001.

[107] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. Spins:

security protocols for sensor networks. Wireless Networks, 8(5):521–

534, September 2002.

[108] J. Pieprzyk, H. Wang, and C. Xing. Multiple-time signature schemes

against adaptive chosen message attacks. In SAC ’03, LNCS, volume

3006, pages 88–100, 2004.

[109] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical

Mathematics, 15(3):331–334, 1975.

[110] N. Prakobpol and Y. Permpoontanalarp. Multi-dimensional hash chain

for sealed-bid auction. In WISA ’03, LNCS, volume 2908, pages 257–

271, 2004.

[111] B. Preneel. Analysis and design of cryptographic hash functions. PhD

thesis, Katholieke Universiteit Leuven, Belgium, 1993.

[112] B. Preneel and P. C. van Oorschot. On the security of iterated mes-

sage authentication codes. IEEE Transactions on Information Theory,

45(1):188–199, 1999.

[113] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm

for elliptic curves. Quantum Information and Computation, 3:317–344,

2003.

BIBLIOGRAPHY 225

[114] M. O. Rabin. Digitalized signatures. Foundations of Secure Computa-

tion, Academic Press, pages 155–166, 1978.

[115] M. Ramkumar and N. Memon. An efficient key predistribution scheme

for ad hoc network security. IEEE Journal on Selected Areas in Com-

munications, 23(3):611–621, 2005.

[116] M. Ramkumar and N. Memon. A hierarchical key predistribution

scheme. In EIT ’05, IEEE, 2005.

[117] K. C. Reddy and Divya Nalla. Identity based authenticated group key

agreement protocol. In Advances in Cryptology, INDOCRYPT ’02,

LNCS, volume 2551, pages 215–233, 2002.

[118] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures

with fast signing and verifying. In ACISP ’02, LNCS, volume 2384,

pages 144–153, 2002.

[119] R. L. Rivest and A. Shamir. PayWord and MicroMint: Two simple

micropayment schemes. In 1996 International Workshop on Security

Protocols, LNCS, volume 1189, pages 69–87, 1997.

[120] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and

timed-release crypto. Technical Report MIT/LCS/TR-684, Massa-

chusetts Institute of Technology, 1996.

[121] P. Rogaway. Formalizing human ignorance collision-resistant hashing

without the keys. In Progress in Cryptology, VIETCRYPT ’06, LNCS,

volume 4341, pages 211–228, 2006.

[122] P. Rogaway and T. Shrimpton. Cryptographic hash-function ba-

sics: Definitions, implications, and separations for preimage resistance,

second-preimage resistance, and collision resistance. In FSE ’04, LNCS,

volume 3017, pages 371–388, 2004.

[123] T. Sandholm. Issues in computational Vickrey auctions. IJEC,

4(3):107–129, 2000.

BIBLIOGRAPHY 226

[124] R. S. Sandhu. Cryptographic implementation of a tree hierarchy for

access control. Information Processing Letters, 27(2):95–98, 1988.

[125] C. E. Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27:379–423 and 623–656, 1948.

[126] P. W. Shor. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM Journal on Com-

puting, 26(5):1484–1509, 1997.

[127] G. J. Simmons. Contemporary Cryptology: The Science of Information

Integrity. IEEE, 1994.

[128] D. R. Simon. Finding collisions on a one-way street: Can secure hash

functions be based on general assumptions? In Advances in Cryptology,

EUROCRYPT ’98, LNCS, volume 1403, pages 334–345, 1998.

[129] W. Simpson. Requests for Comments: 1994, PPP Challenge Handshake

Authentication Protocol (CHAP). The Internet Engineering Task

Force, August 1996. ftp://ftp.rfc-editor.org/in-notes/rfc1994.

txt.

[130] N. P. Smart. An identity based authenticated key agreement protocol

based on the Weil pairing. Cryptology ePrint Archive, 2001. http:

//eprint.iacr.org/2001/111.

[131] W. R. Speirs II and S. S. Wagstaff Jr. Dynamic cryptographic hash

functions. Cryptology ePrint Archive, Report 2006/477, 2006. http:

//eprint.iacr.org/2006/477.

[132] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Math-

ematische Zeitschrift, 27(1):544–548, 1928.

[133] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean.

Self-healing key distribution with revocation. In SP ’02, IEEE. IEEE

Computer Society, 2002.

BIBLIOGRAPHY 227

[134] D. Stinson. Cryptography: Theory and Practice. Chapman &

Hall/CRC, second edition, 2002.

[135] S. G. Stubblebine and P. F. Syverson. Fair on-line auctions without

special trusted parties. In FC ’99, LNCS, volume 1648, pages 230–240,

1999.

[136] K. Suzuki, K. Kobayashi, and H. Morita. Efficient sealed-bid auction

using hash chain. In ICISC ’00, LNCS, volume 2015, pages 183–191,

2001.

[137] T. Tedrick. Fair exchange of secrets. In Advances in Cryptology,

CRYPTO ’84, LNCS, volume 196, pages 434–438, 1985.

[138] W. Trappe and L. C. Washington. Introduction to Cryptography with

Coding Theory. Prentice Hall, second edition, 2005.

[139] J. Trevathan. Electronic auctions literature review. Unpublished man-

uscript, 2005. http://www.cs.jcu.edu.au/∼jarrod/lit.ps.

[140] “USR56K”. DC++ FAQ / Direct Connect FAQ - What is TTH (Tiger

Tree Hashing) (#9677). Website from 1st August 2008. http://www.

dslreports.com/faq/9677.

[141] H. C. A. van Tilborg. Encyclopedia of Cryptography and Security.

Springer-Verlag New York, Inc., 2005.

[142] S. Vaudenay. One-time identification with low memory. In EU-

ROCODE ’92, CISM, pages 217–228, 1992.

[143] W. Vickrey. Counterspeculation, auctions, and competitive sealed ten-

ders. Journal of Finance, 16(1):8–37, 1961.

[144] D. Wallner, E. Harder, and R. Agee. Requests for comments: 2627,

key management for multicast: Issues and architectures. The Inter-

net Engineering Task Force, June 1999. ftp://ftp.rfc-editor.org/

in-notes/rfc2627.txt.

BIBLIOGRAPHY 228

[145] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1.

In Advances in Cryptology, CRYPTO ’05, LNCS, volume 3621, pages

17–36, 2005.

[146] X. Wang and H. Yu. How to break MD5 and other hash functions.

In Advances in Cryptology, EUROCRYPT ’05, LNCS, volume 3494,

pages 19–35, 2005.

[147] Wikipedia. Random oracle — Wikipedia, the free encyclopedia.

Website, 2006. http://en.wikipedia.org/w/index.php?title=Random

oracle&oldid=78563553.

[148] Wikipedia. Cryptographic hash function — Wikipedia, the free en-

cyclopedia. Website, 2007. http://en.wikipedia.org/w/index.php?

title=Cryptographic hash function&oldid=100480738.

[149] Wikipedia. International standard book number — Wikipedia, the free

encyclopedia. Website, 2008. http://en.wikipedia.org/w/index.php?

title=International Standard Book Number&oldid=229141685.

[150] Wikipedia. Depth-first search — Wikipedia, the free encyclope-

dia. Website, 2009. http://en.wikipedia.org/w/index.php?title=

Depth-first search&oldid=293976442.

[151] Wikipedia. Hash function — Wikipedia, the free encyclopedia.

Website, 2009. http://en.wikipedia.org/w/index.php?title=Hash

function&oldid=291989208.

[152] Wikipedia. Hash tree — Wikipedia, the free encyclopedia.

Website, 2009. http://en.wikipedia.org/w/index.php?title=Hash

tree&oldid=288106653.

[153] M. V. Wilkes. Time-Sharing Computer Systems. Elsevier Science Ltd,

1968.

[154] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications

using key graphs. IEEE/ACM Transactions on Networking, 8(1):16–

30, 2000.

BIBLIOGRAPHY 229

[155] X9F – Data & Information Security. Public Key Cryptography: The

Elliptical Curve Digital Signature Algorithm (ECDSA). Technical re-

port, Accredited Standards Committee, 2005.

[156] C. Yang and C. Li. Access control in a hierarchy using one-way hash

functions. Computers & Security, 23(8):659–664, December 2004.

[157] Y. Zheng, T. Hardjono, and J. Seberry. New solutions to the problem

of access control in a hierarchy. Technical report, Department of Com-

puter Science, University of Wollongong, 1993. http://www.sis.uncc.

edu/∼yzheng/publications/files/uow-cs-report-93-02.pdf.

[158] S. Zhong. A practical key management scheme for access control in

a user hierarchy. Computers and Security, 21(8):750–759, November

2002. http://www.cse.buffalo.edu/∼szhong/papers/hier.pdf.

[159] L. Zhou and C. V. Ravishankar. A fault localized scheme for false

report filtering in sensor networks. In ICPS ’05, IEEE, pages 59–68,

2005.

[160] G. Zorn. Requests for comments: 2759, Microsoft PPP CHAP Exten-

sions, Version 2. The Internet Engineering Task Force, January 2000.

ftp://ftp.rfc-editor.org/in-notes/rfc2759.txt.

Appendix A

Algorithms
Algorithm 5:
Description: An algorithm to output all the paths in a DAG
G with source set S(G) and sink set P (G).
Find paths(G, S(G), P (G))
(1) foreach vertex in S(G)
(2) Create a new list starting with this vertex.
(3) while the previously considered vertex is not in P (G)
(4) Append the first child of that vertex to the list.
(5) print the list as a path of G
(6) Set Pointer to point to the last but one vertex of the

path.
(7) while Pointer points to a vertex
(8) if the vertex pointed to by Pointer has an older

child than the child used in the previous list
(9) Create a new list by copying all the vertices in

the previous list up to and including the one
pointed to by Pointer

(10) while the previously considered vertex is not in
P (G)

(11) Append the first child of that vertex to the
list

(12) print the list as a path of G
(13) Set Pointer to point to the last but one vertex

of the path
(14) else
(15) Set Pointer to point to the previous vertex in

the previous path.

230

APPENDIX A. ALGORITHMS 231

Algorithm 8:
Description: An algorithm to output all minimal verifiable
sets which is very often more efficient than Algorithms 6 and 7
Input: A list of all the paths in G, An empty set (PartialMVS)
Output: A list of all the minimal verifiable sets in G
Find minimal verifiable sets(Paths, PartialMVS)
(1) while we still have at least one path

and all paths still contain vertices
(2) if no vertex is in all paths and the shortest path has

length at most one
(3) foreach non-empty subset U of the shortest

path P̂
(4) Append the vertices in U to PartialMVS.
(5) Make a temporary set of paths TempPaths to

pass to the next recursion.
(6) Copy all paths from Paths to TempPaths which

do not contain vertices in U .
(7) foreach vertex v in P̂ and not in U
(8) Remove all references to v in TempPaths.
(9) Find minimal verifiable sets(TempPaths,

PartialMVS)
(10) Remove the vertices in U from PartialMVS.
(11) return
(12) else if it is currently better to consider the vertex v∗

which appears in the most paths
(13) Append vertex v∗ to PartialMVS.
(14) Make a temporary set of paths TempPaths to pass

to the next recursion.
(15) foreach path P in Paths
(16) if P does not contain v∗

(17) Copy P to TempPaths.
(18) Find minimal verifiable sets(TempPaths,

PartialMVS)
(19) Remove vertex v∗ from PartialMVS.
(20) Remove all references to vertex v∗ from all the lists

in Paths.
(21) if Is set minimal and verifiable(PartialMVS)
(22) print PartialMVS

APPENDIX A. ALGORITHMS 232

Algorithm 9:
Description: An algorithm to construct the associated poset
on the set of minimal verifiable sets MVS(G) ordered by com-
putability.
Input: A list of the minimal verifiable sets of G, A list of the
paths in G.
Output: An array containing the poset relations between the
members of MVS(G).
Find associated poset(MVS(G), Paths(G))
(1) Create an array to contain the poset rela-

tions Poset[MVS(G),MVS(G)].
(2) Initialise all entries of the form Poset[i, i] to EQUAL,

and all others to UNKNOWN.
(3) foreach distinct pair of minimal verifiable sets i and j
(4) foreach path P in Paths(G)
(5) Set pi to the vertex in P and i nearest the source

of P .
(6) Set pj to the vertex in P and j nearest the source

of P .
(7) if pi is nearer the source of P than pj

(8) if Poset[i, j] = UNKNOWN
(9) Poset[i, j] = LOWER
(10) Poset[j, i] = HIGHER
(11) else if Poset[i, j] = HIGHER
(12) Poset[i, j] = INCOMPARABLE
(13) Poset[j, i] = INCOMPARABLE
(14) else if pj is nearer the source of P than pi

(15) if Poset[j, i] = UNKNOWN
(16) Poset[j, i] = LOWER
(17) Poset[i, j] = HIGHER
(18) else if Poset[i, j] = HIGHER
(19) Poset[j, i] = INCOMPARABLE
(20) Poset[i, j] = INCOMPARABLE
(21) print Poset

In Algorithm 9 we use the following constants UNKNOWN, EQUAL,
HIGHER, LOWER and INCOMPARABLE. If Poset[i, j] is set to HIGHER
then i is computable from j. If Poset[i, j] is set to LOWER then j is com-
putable from i. If Poset[i, j] is set to INCOMPARABLE then i and j are
not computable from each other.

