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Abstract

Broadcast Encryption allows a centre to send information over a broadcast

channel to a dynamically changing group of users. The performance is rated by

the bandwidth required for the broadcast and the amount of secret information

needed to be stored at the user end. It can also be rated by the computational

overhead. In the “Stateless Receiver” model, receivers are incapable of storing

any new information, or updating themselves, between broadcasts. We look

at two Stateless Receiver schemes by Naor et al., the Complete Subtree Revo-

cation Scheme and the Subset Difference Revocation Scheme. We improve the

bound on the bandwidth for the Complete Subtree Revocation Scheme given

by Naor from tmax(n, r) ≤ r(k − log2(r)) to tmax(n, r) = r(k − j)− 2(r − 2j),

where j = blog2(r)c. We prove a similar bound on the maximum bandwidth

for the Subset Difference Revocation Scheme. We also derive formula for the

average bandwidth for both schemes.

The schemes of Naor et al. are each based on a single binary tree. We con-

struct some variations of the Complete Subtree Revocation Scheme, the first

has more than one tree, the other is based on an a-ary tree. We calculate the

improved performance in bandwidth (traded off against an increase in stor-

age). We make meaningful comparisons between these schemes and existing

ones. Finally, we show how to reduce the storage requirement of the Complete

Subtree Revocation Scheme from O(log2(n)) to a constant term.
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Chapter 1

Introduction

Broadcast encryption is becoming increasingly important in commercial appli-

cations such as Pay Television, Digital Rights Management, as well as network

security in general. The basic idea is that there is a broadcast centre with a

large group of subscribers to a particular service. Naturally, we have an ini-

tialisation phase where secret keys are (securely) distributed. Later, the centre

will have to communicate with some (but probably not all) of the users. Some

users may need to be permanently revoked, others may only be temporarily

revoked, i.e. they are not allowed to access certain material.

An application of this would be Pay-Per-View Television. The broadcaster

would distribute set-top boxes to each of its customers (each containing some

unique secret information). If the centre has some content to broadcast (a

movie or live sporting event), then it must be done so only those customers

who have paid for it can get access. Another example would be a on-line

subscription service. Say this centre wants to send streaming audio content to

its customers. Initially, each customer will be given the software to receive the

broadcast as well as some secret information. Again, the centre must make the

broadcast so that only allowed customers can access the content. Reasons for

being disallowed or revoked might be a user failing to pay the subscription fee,

re-broadcasting the content or revealing their secret information. Intuitively,

the ratio of allowed users to revoked users would be very different in the two

examples. In the Pay-Per-View case, we expect a small number of paying

customers (it is unlikely most users want to watch most movies, especially
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if there is more than one channel). Alternatively, the subscription service is

likely to have many more allowed users. The fraction of users who sign up and

then fail/forget to pay the subscription fee is likely to stay small.

There are various conditions and restraints that can be placed on both the

centre and the users. We have already seen that the number of revoked users

can vary. There may be limits on the memory of each user’s storage device, or

the bandwidth the centre has available. Any secret information may need to

be stored in tamper-resistant hardware which, because of the cost would have

to be limited in size. There may be an a priori bound on the number of users

that would need to be denied access at any time. What the receiver is capable

of can also place a limit on what is possible. There are the standard costs of

computation and storage that have to be considered. Does the receiver have

the processing power to decode the broadcast “on-the-fly”? If not, can the

entire broadcast be stored for later processing?

One factor we will be looking at specifically is the constraint of “State-

less Receivers” [23]. In this model, receivers retain no memory of previous

broadcasts. The only information needed by a receiver to decode a broadcast

is that given to the receiver initially and the broadcast itself. In this situa-

tion we must rule out any re-keying protocol, which is a common technique

in some broadcast methods. A re-keying protocol in a system with “Stateful

Receivers” would involve somehow setting up a group key with all authorised

users. Multiple broadcasts can be made with this key since it only has to be

changed when any of the previously authorised users is to be denied access.

Due to the nature of the Stateless Receivers, any group key set up for a broad-

cast can only be used for that broadcast. Even if the very next broadcast is

destined for the exact same set of users, a new key has to be established as the

previous one is forgot by the receiver. So there will be some repetition when it

comes to multiple broadcasts to the same set of users. Consequently, Stateless

Receivers are better suited for situations where the set of desired recipients is

constantly changing in an erratic manner.

The motivation for the “Stateless Receiver” model is the desire for the

12



Stateful Receivers Stateless Receivers
Needs to be able to write to memory Never needs to write to memory
May need to be constantly on-line Can go off-line at will
Users can be permanently revoked Users cannot be permanently re-

voked
Multiple broadcasts with the same
key

Needs to establish a key for each
broadcast

Table 1.1: Comparison of Stateful and Stateless Receivers

hardware/software at the receiver end to be as simple as possible. For use in

a decoder-box or a portable media player, not having to update existing data

would mean a simpler device. If the receiver were a PC, then the ability of

update local information would be less of a problem. However, if any secret

information held on the device is long term and not subject to updating, then

this allows for the use of tamper resistant hardware. Also, the Stateless model

removes the need for the receiver to be “on-line” all the time. If keys needed

to be regularly updated and a user misses an update, then they are lacking

the information to access all future updates. The centre can allow for some

“down-time” by repeating updates, adding to bandwidth costs. It could even

allow the user to request updates, again at the cost of bandwidth and creating a

bottleneck at the centre. But it is assumed that in Broadcast Encryption users

only receive information. The downside of this is that there is no easy way

to permanently remove a compromised user from the system. We will show

that the bandwidth cost is to some extent dependent on the number of users

that are to be revoked. Once it is apparent that a user’s secret information is

made public or stolen, that user will be added to the set of revoked users, and

the bandwidth will be affected. Due to the Stateless nature of the receivers,

this one user cannot be removed with a one-time operation. The effect that

revoking them has will last for the lifetime of the system. The differences

between Stateless and Stateful Receivers are summarised in Table 1.1.

The layout of the chapters is as follows. In the second chapter we define

the concepts (Revocation Schemes, Broadcasts, centre, etc.) and notation

13



we will be using. We also describe the ways we measure the performance of

the schemes, in particular formalising the existing notion of the maximum

bandwidth by tmax(n, r) and introducing the measure of average bandwidth,

taver(n, r). As most Revocations Schemes have a graphical description, in this

chapter we cover the basic Graph Theory we will be using.

In the third chapter we review previous work on Revocation Schemes, in

particular the schemes of Naor et al. [23] and Asano [1]. We also summarise

the work in the more general field of Broadcast Encryption.

In the fourth and sixth chapters we look at the two schemes by Naor et al.:

the Complete Subtree Revocation Scheme and the Subset Difference Revoca-

tion Scheme. We improve existing analysis of tmax(n, r) for these schemes, as

well as looking at the average bandwidth. We also describe a new method for

reducing the storage required in the Complete Subtree Revocation Scheme.

In the fifth chapter we look at the different possible ways of combining and

growing Revocation Schemes. This leads directly to the construction of the

new Forest of Trees Revocation Schemes.

Finally, in the last chapter we compare the various schemes that have been

reviewed/constructed. We describe all the steps necessary for a centre to find

the optimal scheme for any particular needs or constraints.
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Chapter 2

Definitions and Notation

In this chapter we will lay the groundwork for the discussion and analysis of

Revocation Schemes. We will state what is required of a Revocation Scheme,

define a Revocation Scheme as a mathematical object, and then give a protocol

describing how this object can be used to achieve the desired results. We will

define some measures of different properties of schemes that will be useful

in comparisons. The final section of the chapter details some basic Graph

Theory. Most of the schemes we will be looking at are derived from specific

graphs known as Trees. Throughout this thesis we will follow the notation in

[23] as much as possible.

We will first define the entities we will come across, before stating the

problem. In terms of participants, we essentially just have a broadcast centre

and users. The broadcast centre is the most active participant in this arena. It

must have a one-way communication channel with the users, as well as needing

to give initial secret information to each user at start-up. Periodically, the

centre will want to deliver a message to the users, which it will do in the form

of a broadcast or transmission. This broadcast is the encryption of a message,

along with a header which is extra information needed for users to decrypt the

message. The users need do nothing more than receive and process broadcasts.

The problem in its simplest terms is as follows: There is a broadcast centre

with a large set of users N (|N | = n). Each user will be given a set of keys

(which we will call establishment keys). At regular intervals the centre will

want to broadcast a (probably large) message. For any transmission the centre
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wishes to make, the set of all users will be split into two sets. Excluded/revoked

users, set R (of size r), that are to be denied access, and privileged/authorized

users, set P , to whom the content has to be delivered. All users fall into

one of the two categories with respect to a given message and there is no

overlap (P ∪ R = N , P ∩ R = ∅). The centre will want to be able to

broadcast the one message to everyone so that only users in P can use their

establishment keys to get the message. Because we use the set R more often

than the set P , the broadcast algorithms we will be looking at are also known

as Revocation Schemes. The algorithms that we use to generate the broadcast

and the parameters we use to measure the performance usually depend on the

set of revoked users as opposed to the privileged set, i.e. the formula will be

written in terms of r = |R| not |P|.
Before we give the mathematical definition of a Revocation Schemes, we

need to define the following:

Definition 1. Given a collection of non-empty subsets S = {S1, S2, . . . , Sω},
Sj ⊆ N for j = 1, . . . , ω, and a non-empty set P ⊆ N , a Cover of P is a set

{Si1 , Si2 , . . . , Sit} for some subset {i1, . . . , it} ⊆ {1, . . . , ω} such that:

P =
t⋃

j=1

Sij ,

and is called a Disjoint Cover if it has the added property that Sij ∩ Sij′ = ∅,
∀j 6= j′.

For our purposes, the set P will be the set of privileged users (sometimes

referred to as N \R), and the subsets Si are each defined to be the set of users

who share a particular key. By forming a cover of P with these subsets, we

will obtain the keys needed for the broadcast. The specifics of the broadcast

will be described later. A cover for the empty set P = ∅ is not defined. This

is a trivial case for a broadcast (no privileged users) and will be dealt with

separately. Whenever we talk about the size of a cover we mean the number

of sets that make up the cover.

We can now begin to describe a Revocation Scheme. The design of the

system can be divided into three parts.
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1. The keys need to be generated and distributed to the users. This is a

once-off initialisation, that is to be performed by the centre.

2. The centre needs an encryption algorithm that on input of any mes-

sage M and a set of users to be revoked R, outputs a ciphertext to be

broadcast, B. This will be used each time the centre needs to deliver a

message to (some) users.

3. Each user needs a decryption algorithm that takes as input the user’s

secret keys and any broadcast B and outputs the original message M if

and only if that user is not a part of R.

There are three conditions that the system must satisfy:

• A broadcast can be constructed and sent so that any set of privileged

users can decrypt the broadcast.

• No excluded user for that transmission can decrypt the broadcast.

• No adversary outside the system (i.e. not in the set of users N ) can

decrypt any transmission.

Ideally, there are also some factors which we would like to limit:

• Each user should only have to store a “reasonable” number of keys.

• The broadcast that the centre has to make should not be prohibitively

long.

• The user should not have to perform too many complex operations in

order to obtain the message.

We use the following notation to discuss some of these constraints. We

denote the establishment keys as L1, L2, . . . , Lω (the number of keys ω will

vary from scheme to scheme). We label the users u1, . . . , un. For any user

ui ∈ N , Ui is the set of keys that user knows. We look to minimise the size

of this set, i.e. minimise |U |max = maxi |Ui|. In most of the schemes we will
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look at, |Ui| is constant for all users, so this maximum is often the same as the

storage at any receiver. Also, recall that these keys do not change (because of

the stateless nature of the receivers), so we expect these to be long-lived keys.

We will use t(N ,R) as a measure of the bandwidth, and we will define this

explicitly once the broadcast algorithm has been clarified.

First we will give the basic definition of what a Revocation Scheme is, then

we will describe a protocol to implement the scheme.

2.1 Revocation Scheme

Definition 2. A Revocation Scheme is a triple (N , Ω, γ) where N is a set of

users, N = {u1, u2, . . . , un}, Ω is an index set and γ is a one-to-one function,

γ : Ω → 2N , with the following conditions: For every non-empty P ⊆ N there

exists a subset {i1, . . . , it} ⊆ Ω such that {γ(i1), . . . , γ(it)} is a cover of P :

P =
t⋃

j=1

γ(ij). (2.1)

Also, γ never maps onto the empty set: γ(i) 6= ∅,∀i ∈ Ω.

We have already discussed the set N . The index set Ω is related to the set

of all establishment keys. Each index will be a placeholder for a distinct key.

For the most part, we will simply have that Ω = {1, . . . , ω}. The function γ

assigns keys (or the indices of keys) to sets of users. In the description of the

protocol we will see how these are combined to satisfy the requirements of the

system.

2.2 Revocation Protocol

As we have already mentioned, there are three phases in the Revocation Proto-

col. Initialisation, Broadcast Encryption and Broadcast Decryption. We will

assume that the centre has chosen a Revocation Scheme (N , Ω, γ) satisfying

(2.1). Moreover, it is not enough for a cover to always exist, the centre will

need an efficient “cover algorithm” to find a cover for any subset.
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2.2.1 Initialisation

The centre must randomly generate the secret establishment keys to be used,

L = {L1, L2, . . . , Lω}, one for each of the indices in the set Ω. However,

before doing so we must specify the keyspace. The centre must choose two

symmetric1 encryption algorithms, E1 and E2. E1 will encrypt the message

with a one-time session key and E2 will encrypt the session key with several

establishment keys. Therefore, the distinct establishment keys must be chosen

from the keyspace of E2:

L = {L1, L2, . . . , Lω} ∈ (KEY SPACE(E2))ω

Li 6= Lj ∀ i 6= j.

At the very least, the keyspace has to be big enough to ensure that there

are enough keys for all the indices. The centre must also ensure that all users

have the ability to decrypt with both of the algorithms (we call the decryption

functions D1 and D2 respectively). The specific requirements of the encryption

algorithms will be discussed in Section 2.2.4.

We use the following formula to show how γ determines which establish-

ment keys a user is given:

uj ∈ γ(i) ⇔ Li ∈ Uj.

The function γ takes as input one of the indices i and outputs the set of all

users who are to be given the key Li. The function is one-to-one, but not

necessarily onto as that would require an extremely large set of secret keys L.

The function is not one-to-many since it is well-defined. We could allow the

function to be many-to-one, but this would mean that we would have multiple

keys serving the same purpose. There is no advantage in having more than one

key shared among the same set of users. This would only result in the exact

same scheme, only with users storing extra keys. We will restrict ourselves to

looking at schemes with no redundant keys, hence γ is one-to-one.

1Naor [23] gave an example of using an asymmetric algorithm for E2, but that would
only be needed if the Broadcaster was not the same as the key generating centre.
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From γ, the centre can work out the opposite function:

δ : N → 2Ω

i ∈ δ(uj) ⇔ Li ∈ Uj.

This function δ takes as input one of the users uj and outputs the set of all

indices of keys that user uj is to be given. The centre needs to calculate δ(uj)

and securely deliver the resulting set of keys to uj, for all users. The function

δ is only used during the initialisation stage, whereas γ will be used in each

broadcast.

2.2.2 Broadcast Encryption

Once the initialisation phase is complete, each user has the keys they need,

and the centre can begin broadcasting (γ(i) is now the set of users who have

the key Li). As we said earlier, along with any message to be sent, M , there

is an associated set of users who are revoked, R. The centre must use the

cover algorithm to form a cover of N \R using the sets γ(i). Say the cover is

C = {γ(i1), γ(i2), . . . , γ(it)}, so that:

N \R =
t⋃

j=1

γ(ij).

The centre generates a random session key K for use with E1. The message is

encrypted with this key using E1. The session key K is encrypted with each

key Lij from the cover using E2. Finally, we need to list the indices ij of each

key used. This is so that any user can find which of his/her keys were used (if

any) and on which encrypted block. So the actual broadcast would be:

B =< [i1, i2, . . . , it, E
2
Li1

(K), E2
Li2

(K), . . . , E2
Lit

(K)]
︸ ︷︷ ︸

header

, E1
K(M) >,

where the superscript on E defines which encryption algorithm is used, and

the subscript defines the key.

The case where P = ∅ (or equivalently R = N , r = n) is a special case.

Since there are no privileged users, the centre does not make any broadcast at
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all. The other extreme, P = N , will depend on the scheme. Most schemes will

have some index i such that γ(i) = N , which means that there is one key that

every user has. But whether the cover is comprised of one or many indices, the

message will still have to be encrypted with a session key as described above,

and not sent in the clear, since the message still needs to be protected from

attackers outside N .

2.2.3 Broadcast Decryption

On receipt of the broadcast B, a privileged user must do the following.

• Search through the labels i1, . . . , it until he finds one corresponding to a

key that he has, say Lij .

• Use this key to decrypt the corresponding encrypted session key,

D2
Lij

(E2
Lij

(K)) = K.

• Use K to decrypt the message, D1
K(E1

K(M)) = M .

A revoked user will not get past the first of these stages.

2.2.4 Encryption Functions

The message could have been encrypted with the establishment keys directly,

removing the need for a session key and a second encryption function. But

this would make the length of the broadcast equal to the length of the message

times the size of the cover (and that’s assuming no message expansion). As

it is described above, we only add a header that is roughly the size of the

cover times the size of an E1 key, which is likely to be much smaller than the

message. Also, if the establishment keys were used directly, they would be

vulnerable. If an attacker had a large quantity of ciphertext (which we have

said is very likely), he may be able to cryptanalyse it to obtain information

about the key. The establishment keys are long-lived, and must be kept secret.

The two encryption functions serve very different purposes and have differ-

ent requirements. E1 is applied to the message, so must be suitable for large
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amounts of plaintext/ciphertext. Namely, it needs to be fast and not expand

the plaintext. Also, extremely high security is not essential for E1. Only ses-

sion keys are used, and they can be changed for each broadcast. They need to

be re-broadcast with each message anyway, because the stateless receivers do

not store received messages. So attacking E1 will only provide an adversary

with at most the one-time session key and the message. It may even be the

case that the message has a limited useful life, for example a live sporting

event, so taking the time to break E1 may mean that the message no longer

has any value. E2, on the other hand, uses the establishment keys Li, which

in a stateless receiver are long-lived. This means that we need to keep them

secret for as long as possible. It is used on very short messages, namely keys

from the keyspace of E1. In some sense this gives us the opposite requirements

to E1, in that we want a strong cipher, but that speed is of less importance.

The obvious solution to these specifications is to use a respected stream cipher

for E1 and a strong block cipher for E2.

In generating a broadcast, the centre uses the cover algorithm to find a

cover of all privileged users. In their paper describing the Complete Subtree

and Subset Difference Revocation Schemes [23], Naor et al. also give a “Traitor

Tracing” algorithm that requires (amongst other things) that the only cover

used in the Revocation Protocol is a disjoint cover. If a group of users decide

to pool their secret knowledge to form a pirate decoder, then Traitor Tracing

is a method to use the pooled information to find the identity of at least one

of the traitors ([9]). We will show that in most cases there is no advantage to

be gained in allowing covers with overlapping sets.

2.2.5 Basic Efficiency Bounds

The description of the Revocation Protocol described the contents of the

header of a broadcast, namely a list of indices and the encryption of the

session key under the corresponding establishment keys. There are a few fac-

tors that determine the length of broadcast header. The size of the key K

and any message expansion from encryption with E2 will contribute. But the
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most important factor is the size of the cover. In any specific instance of a

broadcast, we use the following notation to represent the size of the cover:

Definition 3. Let (N , Ω, γ) be a Revocation Scheme. For any R ⊂ N we

denote by t(N ,R) the minimal number of sets in any cover of N \R.

If it is not clear from the context what Revocation Scheme was used to

find the cover then it will be stated explicitly, i.e. tRS(N ,R) is the size of

the minimal cover of N \ R in the Revocation Scheme RS. The size of the

cover, and consequently of the header, is the main source of the communication

costs in the scheme (aside from the encrypted message, which is unavoidable).

Therefore, we will use t(N ,R) to measure the required bandwidth of any

broadcast algorithm that we discuss, looking at both the maximum and the

average value of the parameter t(N ,R). Clearly this cost will depend on the

size of the population of users, but it is also related to the number of revoked

users. Therefore the two functions we will be interested in are:

tmax(n, r) = max
R⊆N
|R|=r

(t(N ,R)), (2.2)

taver(n, r) =
∑
R⊆N
|R|=r

t(N ,R)(
n
r

) . (2.3)

The first function, tmax(n, r) is a formalisation of the standard measure of

the bandwidth of a Revocation Schemes in the existing literature. The second

function, taver(n, r), the expected length of the broadcast header, has received

much less attention. There has only been one scheme for which the average

bandwidth has been investigated, the Subset Difference Revocation Scheme in

[23], and that was just an upper bound. This is more likely due to practicality

rather than the merit of taver(n, r) compared to tmax(n, r). It is a lot more dif-

ficult to make statements about the average header length than the maximum

header length. When looking at the bandwidth of several schemes, super-

scripts will be used to identify which scheme was used to calculate t(N ,R),

i.e. tRS
max(n, r), tRS

aver(n, r).

One implicit assumption in the definition of a Revocation Scheme, is that

we can always find a cover of the privileged users, for any choice of R. Luckily,
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we can place a simple constraint on Ω and the function γ which will guarantee

that this is always possible. All we need is for each user to have one key that

they share exclusively with the centre.

Theorem 4. Let N = {u1, . . . , un}, Ω = {1, . . . , ω} and γ : Ω → 2N . Define

S = {γ(1), . . . , γ(ω)}. Then (N , Ω, γ) is a Revocation Scheme if and only if

{u} ∈ S, for all u ∈ N .

Proof. Assume that {u} ∈ S, for all u ∈ N . Therefore there exists n indices

i1, . . . , in such that γ(ij) = {uj}. For simplicity sake we will relabel the indices

so that γ(i) = {ui} for i = 1, . . . , n. Given any set P(⊆ N ) = {ui1 , . . . , uip}
we can define a cover to be:

Cover = {γ(i1), γ(i2), . . . , γ(ip)}.

Indeed

p⋃
j=1

γ(ij) = {ui1 , ui2 , . . . , uip}

= P ,

which makes it a valid cover satisfying (2.1).

Conversely, suppose (N , Ω, γ) is a Revocation Scheme. Then there exists

a cover for any set. Let u ∈ N . From the requirement (2.1) of a Revocation

Scheme, we can always find a cover of the privileged set. So there exists a set

of indices {i1, . . . , it} ⊆ Ω such that

{u} =
t⋃

j=1

γ(ij).

The sets γ(ij) are always distinct since γ is one-to-one, and non-empty since

γ never maps to the empty set. It follows that the size of the cover is one and

γ(i1) = {u}. Thus {u} ∈ S for all u ∈ N .

This theorem gives us the only necessary condition for a Revocation Scheme.

We now try to minimise the costs of system, like the length of the broadcast

header (t(N ,R)) and the amount of storage required at the user’s end (|U |max).

The following lemmas show how these factors can be minimised independently.
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Lemma 5. Let (N , Ω, γ) be a Revocation Scheme with |U |max = 1. Then

tmax(n, r) = n− r, for all r = 0, . . . , n− 1 (where |N | = n).

Proof. We showed in Theorem 4 that every user u must have one key to itself,

namely Li where γ(i) = {u}. That means that |U | ≥ 1. But if |U |max = 1

then |U | = 1 for all u ∈ N . Since no key is shared by more than one user, this

means |γ(i)| = 1, for all establishment keys Li.

Given a message and a revoked set R 6= N , |R| = r, we have to form a

cover of N \R. We can only use sets of size 1, which means we need at least

n−r sets (cardinality of N \R). Since we are not allowed to repeat sets or use

the null set, this means that the size of the cover, t(N ,R), is always exactly

n− r. Therefore tmax(n, r) = n− r.

Because the keys in Lemma 5 are required to be present (by Theorem 4),

we can use these keys to form a cover as described above in any Revocation

Scheme.

Corollary 6. Let (N , Ω, γ) be a Revocation Scheme. Then

tmax(n, r) ≤ n− r.

Proof. For subset R ⊆ N with t(N ,R) = tmax(n, r), we can cover N \R with

the n− r subsets as described in Lemma 5. If this is the minimal cover then

tmax(n, r) = n− r. Otherwise, there is a smaller cover and tmax(n, r) < n− r.

Therefore:

tmax(n, r) ≤ n− r.

We now minimise the bandwidth:

Lemma 7. Let (N , Ω, γ) be a Revocation Scheme with tmax(n, r) = 1, for all

r = 0, . . . , n− 1. Then |U |max = 2n−1.

Proof. In the given range for r, the number of privileged users, n − r, is

always at least one. Whenever we have a non-zero number of privileged users

to be covered (n − r, r 6= n), t(N ,R) will have to be at least 1. So we have

a Revocation Scheme where t(N ,R) is always 1, except for the trivial case
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where P = ∅. As t(N ,R) = 1 we can form any possible cover using just

one set of the form γ(i). So every non-empty subset of N has an associated

index in Ω. For any user u ∈ N , δ(u) contains an index from Ω for every

subset of N that contains u. Since |N | = n and γ is one-to-one this means

|δ(u)| = 2n−1. But δ(u) is just the set of keys to be given to user u. Therefore,

|U |max = 2n−1.

These two lemmas show the only cases where we can get either the value of

tmax(n, r) or the value of |U |max down to 1, and neither is very practical. The

parameters can be minimised individually, but you can not minimise them

simultaneously. However, the above examples do give some idea of the trade-

off involved between storage and bandwidth. We hope to find the relationship

between these two parameters and explore the best “middle ground”.

Theorem 4 allows us to say the following about tmax(n, r).

Lemma 8. For any Revocation Scheme

tmax(n, r) ≥ tmax(n, r − 1)− 1 for r = 0, . . . , n− 1.

Proof. Set tmax(n, r) = t1. This means that for any subsetR ⊆ N , |R| = r, we

have that t(N ,R) ≤ t1. Consider any subset R′, of size one less, |R′| = r− 1.

Now we wish to cover N \R′. Let u ∈ N \R′. Then |R ∪ {u}| = r and there

exists a cover of N \ {R′ ∪ {u}} using at most t1 subsets. Now these subsets

together with {u} form a cover of N \R′. Therefore:

t(N ,R′) ≤ t1 + 1.

Since this is true for all R′ ⊆ N we have that tmax(n, r − 1) ≤ t1 + 1. This

gives:

tmax(n, r − 1) ≤ tmax(n, r) + 1 i.e. tmax(n, r) ≥ tmax(n, r − 1)− 1.

This means that tmax(n, r) can only ever decrease by at most one as r

increases by one. Unfortunately, it does not limit how much tmax(n, r) can

increase.

26



2.3 Graph Theory

The two Revocation Schemes, “Complete Subtree” and “Subset Difference”,

both use binary trees in their description as well as in discussions, bounds and

proofs. We will first review the basic definitions:

A graph is set of nodes (or points, or vertices), some of which are joined by

edges. Each edge is a pair of nodes (i.e. edge e = (u, v) connects u to v). In a

directed graph or digraph, the pair is ordered, the edge starts at one node and

ends at the other. We can talk about the node set V (G) and the edge set E(G)

of a graph G, but mostly we will just say nodes and edges, respectively. The

degree of a node is the number of edges connected to that node. A path in a

graph G is a sequence v1, e1, v2, e2, . . . , ei, vi+1 where vi ∈ V (G) and ei ∈ E(G)

are all distinct, and the edge ei connects vi and vi+1. A path is a way to

get from one node to another only using edges in G, without repeating nodes

or edges. The length of a path is the number of edges in the sequence that

defines the path. A connected graph is a graph where there is at least one path

between every pair of nodes. A cyclic graph is a graph where there exists a

path in the form v1, e1, v2, e2, . . . , vi, ei, v1 (a path that finishes where it starts).

A loop is an edge that connects a node to itself (e = (v, v)). A subgraph G′

of a graph G is a graph with V (G′) ⊆ V (G), E(G′) ⊆ E(G) and each edge in

E(G′) connects a pair of nodes from V (G′).

2.3.1 Binary Trees

A tree is a undirected (not a digraph), connected, acyclic graph with no loops

or multiple edges (edges that connect the same pair of nodes). Since it is

connected, there is a path between every pair of nodes, and because there are

no loops, multiple edges or cycles, this path is unique. Any node in a tree

can be chosen to be the root of the tree, with all other nodes and edges of the

graph being drawn descending from it (this is a rooted tree). Each node v,

except the root, has a unique parent node, which is the node connected to v

on the path between v and the root. All other nodes connected to v are called

its child nodes (the child nodes of the root are any nodes connected to it).
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Figure 2.1: Binary tree notation.

The children of a node’s parent are called siblings of the node. In formulae, we

will use par(v), left child(v), right child(v) and sib(v) to refer to the parent,

left child, right child and sibling of v respectively.

The nodes of degree 1 that do not have child nodes themselves are called

leaves (these will occur at the bottom of the tree if it is drawn with the root

at the top). A node that is neither the root nor a leaf is called an internal

node. The set of descendants of a node v is the set of all leaves whose paths to

the root pass through v. The leaves in this set are said to be descended from

v, and v is said to be the ancestor of the leaves. Parents are typically drawn

above the node and children below, as in Figure 2.1. We measure the distance

between two nodes as the number of edges on the path between them. So a

parent of a node is closer to the root than its child.

A binary tree is a rooted tree where any node can have up to two child

nodes. The obvious generalisation of this is an a-ary tree, in which each node

can have up to a child nodes. For the most part we will be working with

binary trees. The depth of a binary tree is the maximum of the distances

from the root to a leaf. We can also talk about the depth of a particular node,

which is the distance from that node to the root, and the height of a particular

node, which is the maximum of the distances from that node to a leaf that is
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descended from it. A complete binary tree is a binary tree where all leaves are

the same distance from the root and all internal nodes have degree 3 (and the

root has degree 2). The number of leaves in a complete binary tree that has

depth k (k edges from root to leaf) is n = 2k (which we will sometimes refer

to as the tree length). No binary tree of the same depth can have more leaves

than a complete binary tree as all nodes have the maximum possible degree.

As a result of this we have:

Lemma 9. Any binary tree with r leaves has depth at least dlog2(r)e.

Proof. First, we need to show that dae < a+1, for all a ∈ R. If a is an integer,

then this is clearly true as dae = a. Otherwise, a = a′ + ε, where 0 < ε < 1

and a′ ∈ Z. So dae = a′ + 1 and so:

a = a′ + ε

a > a′ since ε > 0

a + 1 > a′ + 1 adding 1 to the above

a + 1 > dae since dae = a′ + 1.

Proof by Contradiction. Say tree T has r leaves and depth ≤ dlog2(r)e−1.

A complete binary tree with this depth would have 2dlog2(r)e−1. As this is the

most leaves possible for a tree with this depth, an upper bound for the number

of leaves in T is:

2dlog2(r)e−1 < 2log2(r)−1+1 = 2log2(r) = r.

But T was defined to have r leaves. This contradicts the assumption.

The least common ancestor of a pair of nodes vi and vj, is the node where

the paths from vi to the root and from vj to the root both meet. If vi and vj

are leaves then it is the node closest to vi and vj, from which both vi and vj

are descended. A subtree of a tree T is a subgraph of T that is also a tree.

The only property of a tree that does not automatically hold for any subgraph

is connectivity, so a subgraph of a tree is only a subtree if it is connected. A

forest of trees is a collection of two or more trees with non-intersecting node
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sets. For example, if we remove the root, and all edges connected to it, from

a complete binary tree, then we are left with a forest of two trees. Not only

are both of these trees subtrees of the original complete binary tree, they are

also complete binary trees in their own right. Since all the leaves were the

same distance to the root in the first tree, they are the same distance to their

respective roots in the forest. The internal degrees do not change, except for

the new roots, both of which have degree two. Indeed, any node in a complete

binary tree can be chosen to be the root of a complete binary subtree.

Some of these properties are shown in Figure 2.1. As is customary, nodes

at the same depth from the root are all drawn horizontally. A level in a tree

is the collection of all nodes that are the same distance from the root. The

binary tree on the left is not a complete tree, but the subtree rooted at the

right child of node v is. The complete tree is labelled according to breadth

first labelling. The root is labelled 1, and we increase the label by one for

each node on the level beneath (going left to right) until we reach the last leaf.

The advantage of this labelling scheme is that the children of node v are 2v

and 2v + 1. Using this notation, if v is at height h then the descendants of a

node v are simply {2hv, . . . , 2hv + 2h− 1}. We will sometimes refer to this set

as desc(v). Of course, this only works for a complete binary tree and breadth

first labelling.

2.3.2 Steiner Trees

There is another type of graph that we will use frequently. A Steiner Tree is a

subgraph of a tree, and is defined by a set of nodes from that tree. To generate

the Steiner Tree, we take the set of nodes R, and find all the paths from each

of these nodes to the root. The node set of the Steiner Tree (or ST (R)) is

the set of all nodes that occur in these paths, and similarly the edge set is

the set of all edges that occur. Since it is connected and is a subgraph of a

tree, ST (R) is also a tree. Since the path between any two nodes in a tree is

unique, the tree ST (R) is uniquely defined by R. In Figure 2.1, the tree on

the right is the Steiner Tree of nodes a, b and c. There is a very simple result
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for Steiner Trees based on binary trees:

Lemma 10. Let R be a non-empty set of leaves in a complete binary tree.

Then the number of nodes in ST (R) with both children in ST (R) is |R| − 1.

Proof. Consider the number of nodes in ST (R) at each level, starting at the

root. By the definition, the root is in ST (R). At the second level, the number

of nodes in ST (R) is one if the root has one child in ST (R), but is two if both

children are. If, in a given level of ST (R), there are a nodes, b of which have

two children in ST (R), then the number of nodes in ST (R) in the next level

of ST (R) is a+b. Let ai be the number of nodes of ST (R) at level i and let bi

be the number of nodes in ST (R) at level i that have two children in ST (R)

at level i + 1. Then ai+1 = ai + bi for i = 0, . . . , k − 1 and so

ak = a0 +
k−1∑
i=0

bi.

Since the root is the only node in ST (R) at the level i = 0, a0 = 1. And by the

definition of ST (R), the number of nodes at level i = k is |R|, i.e. ak = |R|.
The sum of the bi’s is the total number of nodes in ST (R) that have both

children in ST (R), which is what we are looking for. Therefore:

Number of nodes v s.t. both children ∈ ST (R) = |R| − 1.

As ST (R) is a subtree of the complete tree T , there will be some nodes in

T that are not in ST (R) (assuming R is a proper subset). We define a node

vi, to be hanging off (or hangs off ) if vi is not contained in ST (R) but par(vi)

is in ST (R). This is an important property of the subtree that will be used

in forming the cover in several Revocation Schemes.

One result that we will need later concerns the least common ancestor for

Steiner Trees. For any set of leaf nodes R on a binary tree, we can always

find at least one pair of nodes in R such that their least common ancestor

has no other descendants in R. Consider the Steiner Tree in Figure 2.1 (R =

{a, b, c}). The diagram shows the least common b and c, but this node is also

the ancestor of a. The least common ancestor of a and b is not an ancestor of

31



Algorithm to find the least common ancestor of only two nodes
0: Initialise: T , a binary tree, node v = root, R, subset of at

least two leaf nodes of T
1: while v has more than two nodes from R as descendants do
2: if v only has one child in ST (R) then

set v to be this child
3: else
4: if one child of v has exactly one descendant in R then

set v to be this child’s sibling
5: else
6: set v to be the child that has the least descendants in R

(or either child of v if both are the same)
7: end if
8: end if
9: end do

10: while v is not the least common ancestor of the (two) nodes
in R that are descended from it do

11: set v to be its child that is in ST (R)
12: end do

Table 2.1: Algorithm to find a node v, the least common ancestor of two leaves
in R such that v has no other descendants in ST (R).

the only other node in R, c, and so is of the form we want. Table 2.1 gives an

algorithm to find such a node. The nature of the stopping conditions in the

algorithm ensure that the output will be in the form we want, a node that is

the ancestor of exactly two nodes of R and is their least common ancestor.

The proof that the algorithm works is mainly concerned with showing that

the algorithm does actually terminate.

Lemma 11. Let T be a (finite) binary tree and R a subset of nodes of T (size

at least 2). Then we can always find at least one pair of nodes in R such that

their least common ancestor has no other descendants in R.

Proof. Let ST (R) be the Steiner Tree connecting the nodes in R and the

root. Apply the above algorithm on the set of nodes R. The output of the

algorithm v, has to have less than or equal to two nodes in R descended from

it (by the conditional statement of the while loop). However, the algorithm
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never chooses a node with only one descendent in R. Therefore, if the while

loop terminates, v will have exactly two descendants in R. It just remains to

show that the loop will terminate.

Firstly, we will show that every iteration through either while loop, moves

v to a node further from the root. We know that there are at least 3 nodes

from R descended from v at the start of any iteration of the first loop. We

will call the set of nodes from R that are descended from v, R′. Of the two

children of v, one of the following must be true:

1. All nodes in R′ are descended from one of the two children.

2. One child node has exactly one node from R′ as a descendant, the other

having the rest (at least two).

3. Both children have more than one node from R′ as a descendant.

In each case, we have a corresponding action in the algorithm that takes us

to one of the two child nodes. For the first case we have Step 2, the second

we have Step 4, and for the last case we have Step 6. So we are moving

further from the root in each step. The number of nodes from R descended

from v is bounded above by the total number of nodes descended from v.

This eventually gets reduced to 2 when we get to the parents of the leaves, so

the first while loop must terminate at some node by then. Since the second

while loop also moves v to a node further from the root every iteration, it also

terminates.

We have now introduced the terminology and notation we will be using

in our analysis of Revocation Schemes. Of particular importance will be For-

mulae (2.2) and (2.3) for tmax(n, r) and taver(n, r). The two properties of

Revocation Schemes that we will be examining will be bandwidth, in terms of

these two measures, and storage, in terms of |U |max.
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Chapter 3

Previous Work

In this chapter we will summarise the existing work in the field of Broadcast

Encryption, as well as some related topics. Those subjects that we will be

looking at in later chapters will be described in detail in subsequent sections.

One such related topic is that of Key Predistribution Systems. The problem

can be considered a special case of that addressed by Revocation Schemes.

The centre has to distribute secret information to each user in such a way

as to allow any subset of users to establish a common key. The Revocation

Scheme of Lemma 7 is essentially a Key Predistribution System as for every

subset of users there is one secret key known only to them and the centre.

The centre does not play any further part in a Key Predistribution Systems

after initialisation, as the users play a more active role. There may need to

be interaction between the users to establish the key, and it is the users who

communicate the messages, i.e. it allows many-to-many multicast, rather than

just one-to-many broadcast. The first work on this subject was by Blom [7],

who designed a system using MDS codes that allowed pairs of users to generate

common keys. Matsumoto and Imai [20] constructed the first general system

using symmetric matrices. A more complete review of the topic can be found

in [17], and recent work on the subject include [25] and [4].

One of the first papers to address the problem of a centre who wants

to broadcast to a group was by Berkovits [5]. He proposed adapting a Secret

Sharing Scheme to solve the problem. Secret Sharing Schemes were discovered

independently by Blakley [6] and Shamir [28], and solve a problem slightly
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different to that in Broadcast Encryption (but with some similarities). A

centre (usually called a dealer in Secret Sharing Schemes) wants to give users

“shares” of a secret in such a way that only certain subsets of users can combine

their shares to recover the secret. The most common is an (m, n)-threshold

Secret Sharing Scheme where any m of the n shares are required to recover

the secret. Berkovits’ solution removed the need for users to combine their

shares, but as the secret is an integral part of the Secret Sharing Scheme, it

could only be used once. The shares must be updated after every use.

The phrase Broadcast Encryption was first coined by Fiat and Naor [13].

They defined it to mean any situation where a centre distributes keys to

users to allow broadcasting to subsets of users. They also defined k-Resilient

Schemes, which are a more relaxed version of Revocation Schemes. In a k-

Resilient Scheme, the goal of the centre is the same as in a Revocation Scheme,

namely distribute content to only those users in a privileged subset. The dif-

ference is that a k-Resilient Scheme has a more relaxed security condition.

The centre constructs the broadcast in such a way that no coalition of k

revoked users can collude to decrypt the message. They describe several 1-

Resilient Schemes (one based on one-way functions, one based on extracting

roots modulo composites). They then explain how to construct k-Resilient

Schemes by combining 1-Resilient Schemes using perfect hash functions. Their

best scheme required storage of O(k log k log n) and the centre to broadcast

O(k2 log2 k log n) messages. However, these complexities are too high for useful

applications as commercial pirates could have access to large numbers of legit-

imate receivers (e.g. decoder boxes, smart cards, etc.). Further work include

[15], [29] and [11]. The Key Predistribution Systems of [25] are generalised to

Broadcast Encryption schemes in [26].

About the same time Chor, Fiat and Naor introduced the concept of Traitor

Tracing Schemes [9]. In this scenario the centre wishes to broadcast a secret

so that all users can decode it, but enabling the centre to find the source of

any leak should the secret be disclosed. The secret is split into shares, each of

which is encrypted with a number of secret keys. For each encrypted share,

all users will have exactly one secret key to decrypt it. However, the key

they have will differ from user to user. It is these keys that the users use to
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decrypt the shares that will identify the user if they are disclosed, even if a

number of users collude to form a “pirate decoder”. In one of the schemes they

propose, an (l, k2) table of secret keys is constructed. The secret is divided

into l shares (i.e. l values that XOR to give the secret), and the ith share is

encrypted with each key in the ith row of the table. Each user is given one

key per row, assigned by random hash values. Since the personal keys of the

users are different from those selected by other users in the vast majority of

the rows, it is still possible to identify the traitors even when keys are pooled.

The tracing algorithm can be found in [9] and further work in [24], [22] and

[14].

The Logical Key Hierarchy (LKH) scheme devised by Wallner et al. [10],

and independently by Wone et al. [31], is a Broadcast Encryption scheme for

Stateful Receivers. The object of the scheme is mostly the same as that of

a Revocation Scheme, but the implementation is different. The users are not

passive receivers to be deemed privileged or excluded by the centre, but rather

active participants who can request to leave or join at will. To initialise the

scheme, the centre will assign the group of users to the leaves of an a-ary tree.

The centre will allocate keys to each node in the tree, and each user receives

the keys for all nodes on the path from its leaf to the root. At certain times,

the centre will broadcast an encrypted message. Unlike a Revocation Scheme,

only one of the keys in the tree is used in the broadcast, that of the root. The

purpose of the other keys is to allow the centre to update the keys in the event

of a users leaving or joining the group. If a user is to join the group, a new

leaf has to be added to the tree. All keys for nodes on the path from the new

leaf to the root have to be changed to prevent the new user accessing previous

broadcasts. Each of these keys is encrypted and broadcast, both with the

old key for the existing users, and with the new user’s key, making 2 loga(n)

encryptions in total. When a user leaves the group, all keys that user had

must be updated. Obviously these keys cannot be used to encrypt the new

keys. Instead the a keys one level down are used. So to remove a user from

the group means sending (a− 1) loga(n) encrypted messages.

The obvious benefit of such a scheme over a Revocation Scheme is the

ability to broadcast the encrypted message without a header. The cost is the

36



effort, for the users as well as the centre, needed to add or remove anyone from

the group. The workload of the centre can be reduced by updating the group

several users at a time, or “batch re-keying”, as studied in [18].

Luby and Staddon looked at a variety of Revocation Protocols in [19], and

provided various combinatorial bounds. The bounds only apply to information

theoretically secure schemes. As most of our schemes have security based on

computational assumptions, the bounds do not apply. They also defined two

protocols, the “OR Protocol”, which is what we will be focusing on, and the

“AND Protocol”. Both methods use a broadcast key to encrypt the message,

but encrypt the broadcast key in different ways. In the AND Protocol, it

is necessary for a user to have all the keys that were used to encrypt the

broadcast key in order to decrypt the message. With the OR Protocol a user

only needs to have one of them. The major difference between the two is that

the OR Protocol is resilient against any coalition of excluded users, while the

AND Protocol is not.

The Revocation Protocol defined in Chapter 2 is an instance of the “OR-

Protocol”. Any user need only know one of the keys Lij used in the broadcast

to get the session key and hence the message. It is therefore resilient against

arbitrary coalitions of revoked users, since no revoked user has any of the

keys used. However, this says nothing about privileged users conspiring with

revoked users. If any privileged user redistributes the message, or even shares

his private keys with other users, then some users in R may be able to gain

access to the message. This is what Traitor Tracing schemes are designed to

prevent.

Naor, Naor and Lotspiech described two Revocation Schemes in [23] that

will be the basis for a lot of the work we will be doing. The first, the Complete

Subtree Revocation Scheme, has similarities to the Logical Key Hierarchy.

Users are assigned to the leaves of (binary) tree, and keys are assigned to each

node of the tree. Since the receivers are stateless, the keys do not get updated

as happens in LKH. When the centre wants to broadcast to a subset of users

it can choose keys from the tree that only belong to users in the subset. The

details of their scheme are more thoroughly described in Section 3.1, and we

further develop these ideas in the Chapter 4. Asano looked at the Complete
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Subtree Revocation Scheme based on an a-ary tree [1], and we will describe

his work in more detail in Section 3.2.

The second scheme of Naor et al. was the Subset Difference Revocation

Scheme. This was based on a binary tree, much in the same way as the

Complete Subtree Revocation Scheme. The important difference was that

keys were assigned to pairs of nodes on the tree. We give the details of this

scheme in Section 3.3. The methods of Naor et al. were extended to the

public-key environment by Dodis and Fazio in [12], by the use of Hierarchical

Identity-Based Encryption. This would be necessary if the Key-Generation

centre wanted other (untrusted) parties to be able to broadcast.

The Subset Difference Revocation Scheme was generalised in the paper by

Halevy and Shamir [16], to give the Layered Subset Difference (LSD) scheme.

Only a subset of the keys in the Subset Difference Revocation Scheme are

used in LSD, dictated by special “layers” in the tree. By the nature of the

layers, any key that would have been used in the Subset Difference Revocation

Scheme can be replaced by either one or two keys in LSD. This significantly

reduces the storage requirement at the cost of doubling the bandwidth. Two

papers by Asano present methods to slightly reduce the storage requirement

without sacrificing the bandwidth are [2] and [3], as well as [4]. An inter-

esting way of combining schemes in presented in [21]. The presented scheme

(combination of Complete Subtree and LSD) appears to form a good balance

between parameters of the component schemes.

A modification of the Subset Difference Revocation Scheme is given in [30].

While not strictly for stateless receivers, it does improve on the original. The

basic idea is to assign users to several miniature versions of the Subset Dif-

ference as they join, and permanently revoking leaves of departed users. As

soon as one scheme is entirely comprised of departed users, it can be removed

from the system. This is speeded-up by “shifting” users out of sparsely pop-

ulated schemes, by unicasting replacement keys to the users. This requires

the receivers to be stateful, but the smaller schemes mean less storage, and

the flexibility reduces communication costs. Another variation is [32], which

adds the properties of self-healing ([29]) and reliability to the Subset Difference

Revocation Scheme.
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In the paper by Chen and Dondeti [8], both the stateful scheme, LKH,

and the stateless scheme, the Subset Difference Revocation Scheme, are sim-

ulated under different circumstances. The results show that frequent, mi-

nor changes to the system (users entering and leaving the system) favour the

stateful scheme, but with less regular and more dramatic changes the stateless

scheme performs better.

3.1 Complete Subtree Revocation Scheme

We now come to the first of the two schemes put forward by Naor, Naor and

Lotspiech [23]. In this section, we will briefly describe the scheme, as well as

the relevant details from [23]. These include the process for forming a cover

of N \R and a bound on tmax(n, r).

The Complete Subtree Revocation Scheme is the first of many tree-based

Revocation Schemes that we will be looking at. What we mean by “tree-

based” is that each user is assigned a leaf on some rooted-tree, and that the

set Ω, and the functions γ and δ, are defined by the nodes and edges of the

tree. While the LKH scheme was also tree-based, it was not a Revocation

Scheme as we have defined it, since it relied on Stateful Receivers.

To initialise the system, the centre must assign an index to each node

(including leaves) in the tree. The Complete Subtree Revocation Scheme for

n = 2k users is based on the complete binary tree with 2k leaves. The index set

is Ω = {1, 2, . . . , 2k+1 − 1}, and so the corresponding set of establishment keys

is L = {L1, L2, . . . , L2k+1−1}. The set of users who share any key is simply all

the users who are assigned a leaf that is descended from the node for that key’s

index. If the node is vi, then this corresponds to all the leaves of the subtree

rooted at vi. So for any key Li, the function γ(i) first identifies the node on

the tree that index is assigned to, and then returns the users corresponding to

all leaves descended from that node. We formally define the scheme as follows:

Definition 12. A Complete Subtree Revocation Scheme (N , Ω, γf ) on n = 2k

users is defined as follows. Let T be a complete binary tree with 2n− 1 nodes

{v1(= root), . . . , v2n−1}, indexed using breadth first labelling. Let desc(vi) for

i ∈ {1, . . . , 2n − 1} denote the subset of leaves that are descendants of the
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node vi.

N = {u1, . . . , un}
Ω = {1, . . . , 2n− 1}

Let f be a bijection that maps leaves to users:

f : [vn, . . . , v2n−1] → N .

We define γf of any index i as follows:

γf (i) = {f(vl) : l = 2hi, . . . , 2hi + 2h − 1}, where h is the height of node vi,

or equivalently γf (i) = {f(vl) : vl ∈ desc(vi)}.
Note: (1) We are assuming the number of users is a power of 2.

(2) The leaves of a complete binary tree with breadth first labelling are

vn, vn+1, . . . , v2n−1. The set of users is {u1, u2, . . . , un}. So the simplest exam-

ple of f is just:

f(vi) = ui−(n−1).

We will assume f is defined as above unless stated otherwise.

Each user is given all keys on the path from their leaf to the root, so:

|U |max = log2(n) + 1. (3.1)

Because we are dealing with a complete binary tree, the number of users that

share the key for any given node will always be a power of 2. Specifically, if

that node is at a height of h from the leaves then 2h users will share the key

for that node. There are two specific key types of note:

• The key for the root, which is shared by all users

• The key for any leaf, which is only known to one user (each user has one

such key)

The former key ensures that whenever the centre wishes to broadcast to

the entire user set (r = 0), it will only need to use one establishment key

(tmax(n, 0) = 1). The latter keys satisfy the requirement in Theorem 4:

γf (i) = {f(vi)} for i = n, . . . , 2n− 1.
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Figure 3.1: A complete binary tree and ST ({9, 12, 13})

So for any choice of revoked users, at the very least we have the ability to

use one establishment key for each remaining privileged user (tmax(n, r) ≤
n − r). We shall now see how to revoke any subset of users of any size using

significantly fewer subsets in the cover.

Whenever the centre has a message to send and a subset of users, R,

who are to be excluded, it creates a Steiner Tree that connects all excluded

users and the root, ST (R). The keys used in the broadcast are precisely the

ones associated with nodes that just “hang off” ST (R). As we defined in

Section 2.3.2, by “hanging off” we mean any node that is not in ST (R), but

whose parent is. These nodes can be seen to cover N \ R (see Lemma 13).

An example of this is given in Figure 3.1. In this case the keys that would be

used in the broadcast are L5, L7, L8.

In a Complete Subtree Revocation Scheme (as well as later schemes), R is

a subset of users, not leaves. But since we will be working so closely with the

properties of binary trees, for the rest of this chapter we will refer to leaves

directly, rather than “leaves corresponding to users”. Consequently, leaves

that correspond to privileged/revoked users will be referred to as privileged

leaves/revoked leaves.

Another way of describing the above cover is to consider the result of

deleting all nodes and edges of ST (R) from the original tree. This will give a

forest (collection of trees), the leaves of which correspond to all the privileged

users (and only privileged users). Applying γ to the index of the root of each

of these trees gives us the cover of N \ R. The following result was stated in

[23], and we give the complete proof.

Lemma 13. Let (N , Ω, γ) be a Complete Subtree Revocation Scheme with
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n = 2k users, determined by the correspondence between the users and the

leaves of a complete binary tree T . For any R, let C be the set of indices of

all nodes that hang off ST (R). Then γ(C) forms a cover:

⋃
i∈C

γ(i) = N \R,

and t(N ,R) = |C|.

Proof. In order to prove that the union of subsets is a cover, we need to show

that all privileged users are contained in the union, and no revoked users are.

We can define the set of indices used in the cover to be:

{i : vi 6∈ ST (R), par(vi) ∈ ST (R)}.

Consider any privileged user u ∈ N \R. Let vl be the leaf in tree T associated

with that user. Since the only leaves in ST (R) correspond to revoked users, vl

is not in ST (R). As the root is contained in ST (R), on the path from vl to the

root, there must be some node vi such that vi 6∈ ST (R) and par(vi) ∈ ST (R).

Therefore i ∈ C. Since γ(i) is just the set of users who’s leaves are descended

from vi, u ∈ γ(i) for some index i in C. This applies to all privileged users.

Any revoked user’s leaf belongs to ST (R). The path from this leaf to the root

is unique, and ST (R) is comprised of all paths from revoked users’ leaves to

the root, so all nodes on a path from such a leaf to the root are in ST (R).

Therefore no revoked user is in the cover (none of the nodes on the path from

a revoked leaf to the root belong to C). Thus:

⋃
i∈C

γ(i) = N \R.

In order to show that t(N ,R) = |C|, we must also show that the cover

generated is also minimal. Consider any other cover of N \R, C ′. If C ′ ⊂ C,

let k be some index in C but k /∈ C ′. By the definition of C, there is some

leaf, vl, descended from vk and associated with a privileged user. We also have

that all ancestor nodes of vk ∈ ST (R), as ST (R) is a collection of paths to the

root. So no ancestor of vk can hang off ST (R). And since no descendants of

vk are in ST (R), no descendant of vk can hang off ST (R) either. Therefore,

vk is the only node that hangs off ST (R) on the path from vl to the root.
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Since vk /∈ C ′, there is at least one leaf corresponding to a privileged user that

is not descended from any node in C ′. Therefore, C ′ is not a cover.

Alternatively, if C ′ 6⊂ C, let j be some index in C ′, but j /∈ C. There are

two possibilities for j, either vj ∈ ST (R) or vj is descended from vi, where

i ∈ C. Since ST (R) is a collection of paths from leaves in R to the root, if

vj ∈ ST (R) then there is some leaf in R descended from vj. This will lead to a

revoked user in the cover, which is expressly prohibited. The remainder of the

tree T is a forest of complete rooted subtrees. For the root of any such subtree

vi, i ∈ C. So if j is not in ST (R) and j /∈ C, then vj must be descended from

some vi. Since there are privileged leaves descended from vi not descended

from vj, in order for C ′ to be a cover, there must be at least one more index

in C ′ for the portion of T descended from vi than there is in C. Therefore,

|C ′| > |C|, and so γ(C) is a minimal cover.

Any node on ST (R) that has degree 3 (counting edges on ST (R) only, not

on the original complete tree), one path from above and forking in two below,

does not have any nodes hanging off. An internal node on ST (R), with degree

2, only has one child that is in ST (R) and hence leads to revoked user(s). The

other child is not in ST (R) and can only lead to privileged users and it is the

first node that we encounter on this path that we say “hangs off” ST (R). A

node on ST (R) with degree 1 must be a leaf, as all paths on ST (R) only

terminate at leaves. If it is a leaf then it has no descendants, which means

no nodes “hanging off”. The root is an exception to these rules, since it is

the only node in ST (R) without a path entering it from above. So the root

has one node hanging off if it has degree 1 and no nodes hanging off if it has

degree 2. The root will not have degree 0 for a non-trivial ST (R). A more

succinct way of saying the above is that a node in ST (R) will have a node

hanging off if and only if its degree in ST (R) is strictly less than its degree in

the original tree. If the node is in ST (R), then there will be a path from the

root to this node in both trees. The difference in degrees means that (at least)

one of the edges to the child nodes will not be present in ST (R), and this

missing edge gives us a node hanging off. In later chapters, we will be using

the difference in degrees between the two trees when talking about nodes in

ST (R) that have nodes hanging off. Unlike the degree of the node in ST (R),
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we do not have to make different statement for the root (as it has degree one

less).

In [23], Naor et al. used an inductive argument to prove a bound on

tmax(n, r):

tmax(n, r) ≤ r log2(n/r). (3.2)

In their paper they give a sketch proof. The complete proof can be found in

Appendix A.

It is possible to construct examples that give equality in the bound of

Formula (3.2). For r set to a power of 2 less than n, we can construct a

set R of size r such that t(N ,R) = r log2(n/r) (we shall see the reason for

this in Chapter 4). However, it is also simple to see that, for some values

of r, tmax(n, r) is strictly less than r log2(n/r). This follows from the result

Lemma 5, that

tmax(n, r) ≤ n− r < r log2(n/r) for n/2 < r < n.

One of the first things we will do in Chapter 4 is to derive a formula for

tmax(n, r), as well as investigate the properties of taver(n, r). We will also look

into different ways of improving the scheme, by generalising it to an a-ary tree,

to a forest of trees, and deriving more efficient methods of storing keys.

3.2 Complete Subtree on an a-ary tree

In this section, we consider Asano’s generalisation of the Complete Subtree

to an a-ary tree [1]. This variation leads to a much greater storage at the

receiver’s end. As well as giving the definition and some of the bounds on

tmax(n, r), we will also describe the two methods proposed by Asano to reduce

the storage.

The obvious way to generalise the Complete Subtree Revocation Scheme

would be to assign the users to the leaves of the a-ary, have one key for each

node on the tree and each user possesses the keys on the path from their

leaf to the root. Storage is reduced as each user only needs loga(n) = log2(n)
log2(a)

keys, compared to log2(n) for the Complete Subtree. However, since each user

belongs to fewer subsets, more subsets will be required to form the covers. The
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upper bound of tmax(n, r) ≤ n/2 does not hold anymore, instead we can only

guarantee that tmax(n, r) ≤ (a− 1)n
a
. The most keys needed for any cover out

of a group of a leaves descended from the same node is a− 1, and there are n
a

such nodes. Asano proposed a scheme that traded-off storage and bandwidth

in the opposite direction by combining the a-ary tree with the idea of a “Power

Set Method”.

What Asano refers to as the Power Set Method is the scheme described

in Lemma 7. This scheme had the absolute minimum bandwidth as there

was a key for every possible revoked set of users. The flaw was of course the

exponential storage requirement. Asano proposed applying this idea to each

node in the a-ary tree and its children, rather to the whole set of n users. All

internal nodes in the tree have a children. A total of 2a−2 subsets are defined

for each node, all possible non-empty proper subsets of children. Each subset

of children of each node will have its own key, and this key will be given to any

user who is descended one of the children in the subset. Since we are dealing

with an a-ary tree, we can no longer identify children of a node by left and

right. Instead we refer to them in order from left to right as 1st child, 2nd

child, up to ath child. We formally define the scheme as follows:

Definition 14. A Complete Subtree Revocation Scheme, (N , Ω, γf ), on an a-

ary tree with n = ak users is defined as follows. Let T be a complete a-ary

tree with an−1
a−1

nodes, {v1(= root), . . . , van−1
a−1

}, indexed using breadth first

labelling. Let desc(vi) for i ∈ {1, . . . , an−1
a−1

} denote the subset of leaves which

are descended from the node vi.

N = {u1, . . . , un}

Ω =

{
1, . . . ,

n− 1

a− 1

}
× {b1b2 . . . ba : bi ∈ {0, 1},

a∑
i=1

bi 6= 0 or a}

Let f be a bijection that maps leaves to users:

f : [vn−1
a−1

, . . . , van−1
a−1

] → N .

We define γf of any index (i, b1b2 . . . ba), in terms of the children of the node

vi :

γf (i, b1b2 . . . ba) = {f(vl) : vl ∈ desc(jth child of vi), and bj = 1}.
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We also add the following index to Ω:

γf (root, 11 . . . 1) = N .

We leaves out the bits b1b2 . . . ba, that sum to 0 as that would correspond

to a key that no user has. The reason we leave out the bits that sum to a

is because it is redundant. A subset containing all leaves descended from all

the children of a node vi is the same as the subset containing all the leaves

descended from one of the children of the parent of vi, which is already in the

scheme:

γf (i, 111 . . . 1) = γf (par(vi), B),

where B is 1 corresponding to the relationship between par(vi) and vi, and

zero elsewhere. This works for all nodes, except for the root (has no parent),

which is why we add the last index.

The difference applying the Power Set Method makes is that no matter

how many privileged children a node in ST (R) has, there need only be one

index to cover all nodes hanging off. With the simpler a-ary tree scheme any

one node in ST (R) could require up to a− 1 indices for its privileged children

(would need a−1 if there is only one child of the node revoked). Consequently,

each node directly above the leaves can only require 1 index to cover all its

privileged children. As there are only n/a such nodes, we have:

tmax(n, r) ≤ n

a
. (3.3)

This is a clear improvement over the Complete Subtree Revocation Scheme

for any a > 2. Asano also showed that:

tmax(n, r) ≤ r

(
log(n/r)

log(a)
+ 1

)
.

We will derive the exact value of tmax(n, r) in Chapter 4.

The down-side of this scheme is the cost of storage. The number of nodes

on the path from any leaf to the root is loga(n) + 1 = log2(n)
log2(a)

+ 1. Each user

must store 2a−1− 1 keys for each node on the path from their leaf to the root.

On top of this, there is one extra key for the root for all users. That gives:

|U |max = 1 + (2a−1 − 1)(loga(n)) = 1 + (2a−1 − 1)
log2(n)

log2(a)
. (3.4)
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The fact that this is exponential in a is undesirable. In order to make the

amount of data each user must store more manageable, Asano proposed two

Methods of key generation. Both techniques are based on the RSA cryptosys-

tem [27], and work over a suitable public modulus M = (q1, q2).

3.2.1 Compression Method 1

The Broadcast centre chooses (2a − 2)n−1
a−1

+ 1 primes, pi,b1b2...ba , one for every

index (i, b1b2 . . . ba) ∈ Ω. Let B denote b1b2 . . . ba. The centre must publish

both the list of primes and the assignment of pi,B to (i, B) ∈ Ω. It then chooses

a random number K mod M , and sets the establishment key Li,B to be:

Li,B = KT/pi,B mod M,

where T =
∏

pi,B is the product of all the primes. Each user uj is then given

a unique Master Key MKj from which any of their (2a−1 − 1) loga(n) + 1

establishment keys can be generated. Let wj be the product of all primes of

the form pi,B, where uj ∈ γ(i, B). The Master Key MKj for user uj is defined

as:

MKj = KT/wj mod M.

To generate any key Li,B from MKj, uj calculates the product of all primes

assigned to the subsets he/she belongs to, with the exception of pi,B (the

primes are public). Since this is wj/pi,B, they can work out:

MK
wj/pi,B

j mod M =
(
KT/wj

)wj/pi,B
mod M = KT/pi,B mod M = Li,B.

Asano proved that this method is secure against any conspiracy of revoked

users under the assumption that computing pth roots ( mod M) is difficult.

This method requires (2a−1 − 1) loga(n) multiplications and one modular

exponentiation. The need to have access to the primes is an added cost. If the

users only retrieve them from the centre as needed, we create another bottle-

neck on the bandwidth. The user could store only those primes they will use.

As the total number of primes is (2a−2)n−1
a−1

+1, the size of the primes is roughly

O(2an log(2an)). Each user needs only (2a−1 − 1) loga(n) + 1 primes, which

means the storing ofO
(
(2a−1−1

log(a)
log(n) + 1)(log(n) + a + log(log(n) + a))

)
bits.
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CSRS SDRS Method 1 Method 2

tmax(n, r)1 r log(n/r) 2r − 1 r
(

log(n/r)
log(a)

+ 1
)

r
(

log(n/r)
log(a)

+ 1
)

|U |max log(n) O(log2(n)) 1 log(n)
log(a)

PRNG - O(log(n)) - -

Gen. of primes - - O
(

2a log5(n)
log(a)

)
-

No. of multi. - - (2a−1−1) log(n)
log(a)

2a−1 − 1

No. of mod. exp. - - 1 1

Table 3.1: Comparison of methods of Naor et al. and Asano

Asano described how to reduce this overhead by using a representation for the

primes. A prime pi,B corresponding to γ(i, B) is defined to be the (B)th
2 small-

est prime larger than (i−1)X, where (B)2 denotes a binary number represented

by a bit string B and X is a positive integer. If X is chosen large enough, then

each interval ((i− 1)X, iX] will contain the required 2a− 1 primes. This adds

O
(

2a log5(n)
log(a)

)
to the computational complexity (including primality testing),

but the receiver needs only store X, which is roughly (2a− 1) ln(2an log(2an))

in size.

3.2.2 Compression Method 2

The second Method of Asano uses the same ideas, only in a more watered-down

manner. Instead of only one Master Key, each user will be given a Master Key

for each node on the path to the root. This relaxes the computational expense,

and only slightly increases the storage required. The centre needs only choose

2a − 1 primes pB (made public), but must choose n−1
a−1

random numbers Ki

mod M and set:

Li,B = K
T/pB

i mod M,

where T =
∏

pB is the product of all the primes. The Master Keys are indexed

by both the user uj, and the node on the tree vi, and are calculated from:

MKi,j = K
T/wi,j

i mod M,

1These formulae are upper bounds
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where wi,j is the product of all primes pB where uj ∈ γ(i, B). To generate

any key Li,B, the user uj must take his Master Key for that node on the tree

MKi,j, and get the product of all primes for all subsets except for B. This

being wi,j/pB, they work out:

MK
wi,j/pB

i,j mod M =
(
K

T/wi,j

i

)wi,j/pB

mod M = K
T/pB

i mod M = Li,B.

Since a user can only belongs to 2a−1 − 2 subsets (or 2a−1 − 1 for the root),

the user has much less multiplications compared to Method 1. Because there

are fewer primes, they can be smaller and will take less space to store. The

disadvantage of Method 2 over Method 1 is the user is storing loga(n) Master

Keys instead of just 1.

In Chapter 4 we will take a closer look at tmax(n, r) as well as taver(n, r)

for the Complete Subtree based on an a-ary tree. We will also propose a third

alternative for reducing the storage needed.

3.3 Subset Difference Revocation Scheme

This is the second scheme proposed by Naor, Naor and Lotspiech, and in this

section we define the scheme, as well as give the cover algorithm from [23]. Like

the Complete Subtree on an a-ary tree, the scheme does require the user have

considerably more keys than they would with the basic Complete Subtree. We

will describe the method of Naor et al. to reduce the storage. Although it has

the same principle as the Master Key method of Asano, it is very different

(uses a Pseudo Random Number Generator rather than RSA calculations).

The Subset Difference Revocation Scheme is another tree-based Revocation

Scheme, with a lot of similarities to the Complete Subtree Revocation Scheme.

As before we will use a binary tree to define the subsets of users who share the

establishment keys. Whereas with the Complete Subtree Revocation Scheme

(and as we will see later with the Forest of Trees Revocation Scheme) we

assigned keys (or rather indices of keys) to single nodes, this time we will

assign them to pairs of nodes. The tree is a complete binary tree with 2n− 1

nodes, and we will use breadth first labelling of the nodes, vi, i = 1 . . . 2n− 1.

The index set Ω is a set of pairs of such indices, (i, j). The index set does not
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contain every pair of indices, but rather we say that the index pair (i, j) is in

Ω provided the node vi is an ancestor of the node vj (i.e. vi is on the path

from vj to the root). The key corresponding to the index pair (i, j) is Li,j.

Note that with breadth first labelling, the leaves of the tree are labelled

vn, . . . , v2n−1. As with the Complete Subtree Revocation Scheme, each user

will be assigned to one of these leaves. The subset of users γ(i, j) (i.e. all the

users who will have a copy of the key Li,j) will be obtained from the difference

between all the descendants of vi and all the descendants of vj. Since vi is an

ancestor of vj, this is just the descendants of vi who are not descendants of vj.

Definition 15. A Subset Difference Revocation Scheme (N , Ω, γf ) on n = 2k

users is defined as follows. Let T be a complete binary tree with 2n−1 nodes,

{v1(= root), . . . , v2n−1}, indexed using breadth first labelling. Let desc(vi) for

i ∈ {1, . . . , 2n − 1} denote the subset of leaves that are descendants of the

node vi.

N = {u1, . . . , un}
Ω = {(i, j) : (vi, vj ∈ T and desc(vj) ⊂ desc(vi)) or (i, j) = (0, 0)}

Each index pair (i, j) ∈ Ω corresponds to two nodes in the tree T , (vi, vj), with

vj being descended from vi. Let f be a bijection that maps leaves to users:

f : [vn, . . . , v2n−1] → N .

We define γ of any index pair (i, j) in terms of the sets of descendants of the

nodes of T corresponding to i and j:

γ(i, j) =

{
{f(l) : l ∈ desc(root)} if (i, j) = (0, 0)

{f(l) : l ∈ desc(vi) \ desc(vj)} otherwise.

The condition that desc(vj) ⊂ desc(vi) guarantees that vj is descended

from vi. If desc(vi) and desc(vj) have any one leaf in common, then the path

from that leaf to the root must pass through both vi and vj (by the definition

of desc(v)). So the descendants of whichever node is the closer to the root will

contain the lower node’s descendants. We will use this fact in Chapter 4, when

we show that a minimal cover in the Complete Subtree Revocation Scheme is

disjoint.
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As we have said, not all pairs of indices are present in Ω. For any (i, j) ∈ Ω,

vj must be a node on the tree T descended from vi (ignoring the pair (0, 0)

for the moment). This means that vi must be at least one level above the

leaves. So the set of indices {i : (i, j) ∈ Ω} is just {1, . . . , n − 1}. This

is all the nodes with the exception of the leaves. If we fix i, and say that

vi is at height h, then the corresponding set for j, {j : (i, j) ∈ Ω}, is just

{2h′i + j′ : h′ = 1, . . . , h, j′ = 0, . . . , 2h′ − 1}, since we are using breadth first

labelling. The extra index pair, (0, 0), is added so that we can make the

following claim:

Lemma 16. Let (N , Ω, γ) be a Complete Subtree Revocation Scheme, and let

(N , Ω′, γ′) be a Subset Difference Revocation Scheme on the same set of users.

If the same tree was used to define both methods, we have:

{γ(i) : i ∈ Ω} ⊆ {γ′(i′, j′) : (i′, j′) ∈ Ω′}.

Proof. For the Complete Subtree Revocation Scheme, Ω is comprised of one

index for each node on the tree. With the one exception of the root, all nodes

have a parent. Consider any node that is not the root. As we use breadth first

labelling, if the parent node is vi, the left child is node v2i, and it’s sibling, the

right child, is v2i+1. The indices are i, 2i and 2i + 1, respectively. The output

of γ(2i) (CSRS) is simply the set of users corresponding to the leaves that

are descended from v2i.

Consider the output of γ′(i, 2i+1) (SDRS). Since the same tree was used,

this set of users corresponds to those leaves that are descendants of vi, but not

of v2i+1. But in a binary tree all leaves descended from vi must be descended

from one of its two children. If we remove all descendants of v2i+1, we are left

with only those leaves that are descended from v2i:

desc(vi) = desc(v2i) ∪ desc(v2i+1)

which implies desc(v2i) = desc(vi) \ desc(v2i+1).

So by the definition of γ′, we have that:

γ(2i) = γ′(i, 2i + 1).

The exact same argument holds if we picked a right child (γ(2i+1) = γ′(i, 2i)).

We cannot apply the same to γ(root), since the root has no parent. So the
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Cover Algorithm
0: Initialise S = {}, T ′ = ST (R)
1: while T ′ has more than one leaf do
2: Find two leaves in T ′, vi and vj, such that their least common

ancestor, v, has no other descendants in T ′.
3: Let vk be the child of v such that it is an ancestor of vi and vl be

the child of v such that it is an ancestor of vj.
4: if vi 6= vk (i.e. vi is not a child of v) then S = S ∪ {γ(k, i)}.
5: if vj 6= vl then S = S ∪ {γ(l, j)}.
6: Remove everything descended from v from the tree T ′, leaving v

a revoked leaf. This is the updated T ′.
7: end do
8: if the remaining leaf vi is not the root then S = S ∪ {γ(root, i)}.

Table 3.2: Algorithm to find the cover in the Subset Difference Revocation
Scheme.

above does not apply directly to the Subset Difference Revocation Scheme.

But γ(root) = N , as all leaves are descended from the root. Since we have

that γ′(0, 0) = N with (0, 0) ∈ Ω′ the statement holds for all i ∈ Ω.

This also means we have the singletons for every leaf. If vi is a leaf, then

the user assigned to that leaf is f(vi), and corresponding singleton is:

{f(vi)} = γ(par(vi), sib(vi)).

This satisfies the requirement of Theorem 4 and so this scheme is a Revocation

Scheme.

Naturally, the algorithm for finding the cover of N \ R is very different

to that for the Complete Subtree Revocation Scheme. We do start off with

a Steiner Tree ST (R) connecting all revoked users and the root, as before.

The algorithm described in [23] adds subsets to the cover one or two at a time

while pruning ST (R). Table 3.2 contains a description of this algorithm to

find the cover if r 6= 0.

The subtree T ′ gets pruned each pass through the algorithm, but the orig-

inal tree T from the definition of the scheme stays the same. The function of

the tree T ′ is to determine which nodes of T we need to use as indices to find

the cover. In order to find the least common ancestor in Step 2, we use the
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algorithm from Lemma 11. This does not require that the subtree be com-

plete, only that it is finite. The output of the algorithm is the set S, which is

a cover of all privileged users.

Each iteration through the while loop reduces the number of revoked leaves

in T ′ by 1 and increases the size of the set S by at most 2. This happens all the

way until T ′ has just one leaf, when the last step may add one more subset.

Therefore we can state that:

Corollary 17. Let (N , Ω, γ) be a Subset Difference Revocation Scheme, with

n users. For any 1 ≤ r ≤ n:

tmax(n, r) ≤ 2r − 1.

When r = 0, then we can not actually use this algorithm, since there

is no ST (R). But we did add an index to the scheme for this specific case

(γ(0, 0) = N ), so tmax(n, 0) = 1.

3.3.1 Storage

We now show that the storage requirement of each user is (roughly) 4n in

the Subset Difference Revocation Scheme, as compared to log2(n) + 1 with

Complete Subtree Revocation Scheme. This idea was sketched in [23] and we

complete it here. We look at it from the point of view of a single user u and

try to classify all the keys he/she has (the set U). Let’s say user u is assigned

leaf v on the tree. This user will have the key Li,j provided that vi is on the

path from v to the root and vj is descended from vi, but not on the path from

v to the vi. Looking at the subtree rooted at vi, and assuming vi is at a height

h, then there are 2h+1− 1 nodes in this subtree. Out of these, h+1 are on the

path from the leaf v to vi. So there are only 2h+1 − 1 − (h + 1) possibilities

for vj, such that user u holds key Li,j. Since n = 2k, and the scheme is based

on a complete binary tree we have k edges from any leaf to the root. We have

already shown that for any index pair (i, j) ∈ Ω, vi cannot be a leaf. So we
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sum over the k nodes from v’s parent to the root:

|U | =
k∑

h=1

2h+1 − 1− (h + 1)

=
k∑

h=1

2h+1 − h− 2

=
k∑

h=1

2h+1 −
k∑

h=1

h−
k∑

h=1

2

= (2k+2 − 4)− k(k + 1)

2
− 2k

= 4.2k − k2

2
− 5k

2
− 4

So |U | = 4n− log2
2(n)/2− 5 log2(n)/2− 4.

We can get an idea on the improvement of the Subset Difference Revocation

Scheme by comparing the upper bounds on tmax(n, r). For the Complete Sub-

tree Revocation Scheme we had that tmax(n, r) ≤ r log2(n/r). From looking at

the algorithm to find the cover we found that tmax(n, r) ≤ 2r − 1 when using

SDRS. Also, by Lemma 16, we know that any cover found using CSRS can

be replicated with SDRS. This means that tmax(n, r) ≤ n log2(n/r) applies

to both methods. So we can say that in terms of bandwidth, SDRS performs

better (for small values of r, we have 2r − 1 < r log2(n/r)). The tradeoff

for this improvement lies in the large number of keys each user has to store.

A storage requirement of just under 4n is undesirable given that we want to

be able to have a large population of users. CSRS only requires log2(n) + 1

keys to be stored by each user. However, we can reduce the storage needed in

SDRS by sacrificing information-theoretic security for computational security.

3.3.2 Pseudo Random Sequence Generator

Rather than having the keys chosen uniformly at random and independently

from each other, Naor et at. ([23]) suggested that they be generated so that the

users can use some secret information (or labels) to calculate the keys. They

described the following method where each index pair (i, j) ∈ Ω is associated

with a label (LABELi,j), as well as associating a key. The idea is that for
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any index pair (i, j), for which a user has a label, that user will be able to

calculate all labels and keys for the index pairs (i, j′), where vj′ is a descendant

of vj (including the key Li,j). It should be infeasible for anyone to reverse the

calculation, i.e. calculate LABELi,j from LABELi,j′ where vj′ is a descendant

of vj. This could give someone the key corresponding to a subset to which

they do not belong. This is all accomplished with the use of a Pseudo Random

Sequence Generator.

Definition 18. A function G : {0, 1}a 7→ {0, 1}b is a Pseudo Random Sequence

Generator if no polynomial-time adversary can distinguish the output of G on

a randomly chosen input string from a truly random string of similar length.

We call the input to the generator the seed, and typically the output is

longer than the input. For our purposes, we will need the generator to triple

the length of the input. There are two important consequences of the defini-

tion.

If an adversary cannot distinguish between the output of the generator and

a random string, then he cannot invert the generator (in polynomial time).

Suppose he did have the ability to retrieve the input from any string that

was the output of a Pseudo Random Sequence Generator. Given two strings,

of which only one is the output from the generator, he could try to invert

both of them. Since only one was the output of the generator, only one will

return a corresponding input string. This gives him the ability to distinguish

the output and a random string, which is infeasible by definition. As well as

this, given part of the output he can not predict any other part of the output.

This would also allow an adversary to distinguish between the output of the

generator and a random string.

The users will run the generator with one of their labels as input, LABELi,j.

The output will be in the following form:

G(LABELi,j) = LABELi,2j||Li,j||LABELi,2j+1,

where || is the concatenation operator. The middle third is the key corre-

sponding to the index pair (i, j). The two outer thirds are labels for different

index pairs. Since we are using breadth first labelling, the nodes indexed by

2j and 2j + 1 are the children of the node indexed by j. But how do we know
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the user can not generate a key they are not supposed to have? Call the user

u, and the label they are given LABELi,j. They will only be given this label

if u ∈ γ(i, j). From the definition of the Subset Difference scheme, we have

that γ(i, j) is just the set of users whose leaves are in desc(vi) \ desc(vj) (vi is

the node indexed by i, vj the node indexed by j). By the hierarchial nature

of a binary tree we have that desc(vj′) ⊂ desc(vj), where v′j is any descendant

of j. Therefore:

(desc(vi) \ desc(vj)) ⊂ (desc(vi) \ desc(vj′)).

Consequently, if u ∈ γ(i, j) that implies u ∈ γ(i, j′), for any index pair with

j′ descended from j. And these are the only labels/keys that u can generate

with LABELi,j.

The centre generates LABELi,i for each node on the tree (only need it for

the root and internal nodes, not leaves). It then uses the sequence generator

to generate the labels that the users need. Any user u is given the labels

LABELi,j where the i’s are the nodes on the path from the root to u and

j’s are the nodes that just “hang off” the path from i to v (the leaf user u

is assigned to). All keys that u could need can be generated from these (and

none that u should not have since none of the j’s are ancestors of v and all

the i’s are). So if i is at height h then there are h different j’s, so the total

number of labels held by any user is:

1 +

log2 n∑
i=1

i = 1 +
(log2(n) + 1) log2(n)

2
=

1

2
log2

2(n) +
1

2
log2(n) + 1. (3.5)

This results in a Revocation Scheme which is the same in terms of keys

that are used to encrypt any broadcast, but differs in what is generated by

the centre on initialisation and in what is stored by the users. So we have the

exact same bound on the bandwidth, but the amount of storage needed by

any one user is now of the order O(log2(n)) instead of O(n).

Note that any user will only have to run the pseudo-random sequence

generator at most log2(n) times to generate a key from a label. The greatest

separation between a label a user has and the label a user needs would occur

when vj is a child of the root and vj′ is a leaf. This would require log2(n)− 1
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executions of the generator to traverse, plus one extra to get the key from the

label.

This section has mostly been a summary of [23]. In Chapter 6 we will

present our results on these scheme. These are focused on the communication

costs of this scheme: we improve on the bound of tmax(n, r) ≤ 2r − 1 and

investigate taver(n, r).
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Chapter 4

Complete Subtree Revocation

Scheme

In this chapter we will derive the formula for tmax(n, r) for the Complete

Subtree Revocation Scheme, improving on the bound of Naor et al. in [23].

This allows us to calculate exactly the maximum bandwidth given the number

of revoked users. We will also show how to calculate taver(n, r), which gives us

a different perspective on the bandwidth of the scheme. In the later sections,

we show how these measures are easily generalised to the a-ary tree variety.

We also provide a third Compression Method that compliments the existing

two of Asano [1].

We begin with a quick review of the Complete Subtree Revocation Scheme

described in Chapter 3. N is the set of users (|N | = n), Ω is the index set

(each index is a placeholder for an establishment key), T is a complete binary

tree with n leaves and the functions γ and δ determine what users get which

keys. From the user’s point of view, we have:

• User u is assigned a leaf, vj, on a complete binary tree T (f(vj) = u).

• δ(u) corresponds to the keys u is given

• δ(u) = {i : vi ∈ path from vj to the root}

And for a key Li:

• Index in Ω for this key is i

58



{u1} {u2} {u3} {u4} {u5} {u6} {u7} {u8}

v_4 v_5 v_6 v_7

v_2 v_3

v_1

v_8 v_9 v_10 v_11 v_12 v_13 v_14 v_15

T

ST(R)

Node hanging
off ST(R)

Figure 4.1: Example of the Complete Subtree Revocation Scheme.

• Node on tree assigned to this index is vi

• γ(i) is the set of users who are given key Li

• γ(i) = {u : u’s leaf is descended from vi}
In order to find a cover of anyN\R, all the centre does is find all nodes that

hang off ST (R). The cover is the partition of N \R consisting of the subsets

of users that correspond to the subsets of leaves descendant from the nodes

that hang off ST (R). This was proved in Lemma 13, and we demonstrate the

fact in the following example:

Example 19. Let CSRS be a Complete Subtree Revocation Scheme on n = 8

users. The 8 users are assigned to the leaves of a complete binary tree, indexed

using breadth first labelling, as in Figure 4.1. IfR = {3, 6, 7, 8}, then the cover

of N \ R is {γ(4), γ(11), γ(12)}, since v4, v11 and v12 are the only nodes that

hang off ST (R).

The subtree ST (R) is unique, and therefore the cover that you will get

by the above process is unique. However, that does not mean that there is

only one cover for any set of revoked users. On the contrary, if any one node

(v) we use is not a leaf, then we can get the same cover by using the keys

corresponding to the two children of v instead of v, along with the rest of the

nodes. There is no point in doing this as it increases t(N ,R) for no good

reason, but it shows that the cover is almost certainly not unique. Another

point about the cover is that it is disjoint.

Lemma 20. Let (N , Ω, γ) be a Complete Subtree Revocation Scheme. Let C

be a cover for any N \R. Then C is a disjoint cover.
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Proof. Suppose the cover C has two sets γ(i) and γ(j) that have users in com-

mon. This corresponds to the nodes on the tree, vi and vj, having descendant

leaves in common. The path from any of these leaves to the root must go

through both vi and vj, by the definition of a descendant. This means that

one of the nodes is descended from the other. But all the nodes we use to

generate the cover are roots of distinct subtrees hanging off ST (R). Since

each subtree can only have one root, we do not get a node that is descended

from another in the cover. Therefore the cover is disjoint.

If we were to allow overlapping sets, then one set would be contained in

the other because of the hierarchical nature of the binary tree. This would

just add needless redundancy.

4.1 Maximum Bandwidth

We now try to evaluate the performance of this scheme. The number of keys

stored by each user is fixed at log2(n) + 1. As for the bandwidth, we will first

consider the size of the maximum bandwidth: tmax(n, r). We have already have

that tmax(n, r) ≤ r log2(n/r) in Lemma 101. In this section we will derive an

exact formula for tmax(n, r) for the Complete Subtree Revocation Scheme. In

order to do this, we will classify all ST (R) such that t(N ,R) = tmax(n, r),

starting with the simple case when r = 2.

First, we can add a bound on the value of tmax(n, r), which applies to most

tree-based schemes:

Lemma 21. Let CSRS = (N , Ω, γ) be a Complete Subtree Revocation Scheme

with n = 2k users. Then CSRS has:

tmax(n, r) ≤ n/2.

Proof. This bound is evident if we partition the set of users as follows:

N = {u1, . . . , un} =

n
2
−1⋃

i=0

{u2i+1, u2i+2}.
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For any subset P = N \R, P ⊆ N , we have that:

P ∩




n
2
−1⋃

i=0

{u2i+1, u2i+2}


 = P ∩N = P .

Therefore, the sets P ∩ {u2i+1, u2i+2}, for i = 0, . . . , n/2 − 1, form a cover.

To show that it forms a cover using only subsets from the Complete Subtree

Revocation Scheme, we need to show that P ∩ {u2i+1, u2i+2} is either empty

or equal to γ(j), j ∈ Ω, for any i = 0, . . . , n/2− 1. If P ∩{u2i+1, u2i+2} equals

any of {u2i+1}, {u2i+2}, ∅, then this is true. From Theorem 4 we have that

{u} ∈ S, for all u ∈ N (where S is the range of γ).

We must show that {u2i+1, u2i+2} ∈ S also. Consider the value γ(n/2 + i).

To evaluate the function, we first need the descendants of vn/2+i. Since

n/2 + i < n (the label of the leftmost leaf), vn/2+i has descendants, which are

{vn+2i, vn+2i+1}. Applying f to these nodes we get γ(n/2+ i) = {u2i+1, u2i+2}.
Clearly n/2+ i ∈ Ω, as Ω is just {1, . . . , 2n−1} and n/2+ i < n/2+n/2−1 =

n − 1. Therefore, {u2i+1, u2i+2} ∈ S and the subsets P ∩ {u2i+1, u2i+2} (for

i = 0, . . . , n/2− 1) form a cover in the Complete Subtree Revocation Scheme.

Because the range of i is 0, . . . , n/2 − 1, there can be at most n/2 subsets in

the cover. Therefore:

tmax(n, r) ≤ n

2
.

Corollary 22. Let CSRS = (N , Ω, γ) be a Complete Subtree Revocation

Scheme with n = 2k users. Then CSRS has:

tmax(n, r) ≤ min(br log2(n/r)c, n− r, n/2).

Proof. From [23] (and Lemma 101) we know that tmax(n, r) ≤ r log2(n/r).

Since t(N ,R) must always be a whole number, tmax(n, r) ≤ br log2(n/r)c.
From Corollary 6 we know that tmax(n, r) ≤ n − r. The third bound is from

Lemma 21, which we just proved.

The bound in Lemma 21 cannot be extended any further. The subsets

P ∩ {4i + 1, 4i + 2, 4i + 3, 4i + 4} do form a cover, but not using subsets from

the Complete Subtree Revocation scheme. If the size of the intersection is 3,
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r 0 1 ≤ r < n
4

r = n
4

Lowest Bound 1 br log2(
n
r
)c br log2(

n
r
)c = n

2

r n
4

< r < n
2

r = n
2

n
2

< r ≤ n
Lowest Bound n

2
all 3 equal n− r

Table 4.1: Lowest of three bounds of tmax(n, r) for the different ranges of r.

n r tmax(n, r) min(br log2(n/r)c,n− r,n/2)=
25 19 13 min( 14, 16, 13 )= 13
26 19 32 min( 33, 45, 32 )= 32
27 19 51 min( 52, 109, 64 )= 52

Table 4.2: Differences between the bounds and tmax(n, r)

then the subset will not equal γ(i) for any i ∈ Ω. The total number of users

who share any key is always a power of 2 when we use a complete binary tree.

In Table 4.1 we see which of the three bounds are the lowest for the different

values of r. The original bound of Naor et al. was not tight, we do not have

to look at very large values of n before we find a counter-example. For n = 25

and r = 19 we get tmax(n, r) = 13 and br log2(n/r)c = 14. But the improved

bound is not tight either.

In Table 4.2 we present cases where the three bounds are not tight. The

cases shown are those that occur for the smallest values of n and r. The

values of tmax(n, r) are found by experimentation and examples of ST (R) can

be found in Appendix B. The first row in Table 4.2 represents the smallest

example of tmax(n, r) < br log2(n/r)c. Similarly, the second row is the smallest

example of tmax(n, r) < min(br log2(n/r)c, n − r), and the last row is the

smallest example of tmax(n, r) < min(br log2(n/r)c, n − r, n/2). These tables

show the shortcomings of the bounds on tmax(n, r), even for small values of n.

So before we proceed any further we will first try to find an exact formula for

tmax(n, r).

As we are looking at the maximum value of t(N ,R), we need to discover

what circumstances must arise to give the largest possible cover. In other

words, what does ST (R) look like when t(N ,R) is at a maximum, and what
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choice of R gives this state?

To begin with, we will look at the case where r is very small. When r = 0,

we have t(N ,R) = 1. The key for the root is shared by all users, and so is the

only establishment key needed in the broadcast, tmax(n, 0) = 1. When r = 1,

without loss of generality, we can choose the first user to be revoked (u1) to

be the first leaf on the tree. ST (R) is then just the one path from leaf to root,

log2(n) + 1 nodes in total, which means log2(n) nodes hanging off (the last

node is a leaf, which can not have nodes hanging off). So tmax(n, 1) = log2(n).

We can prove a very simple formula for the case of r = 2, which will give

us some insight into the shape of ST (R).

Lemma 23. Let (N , Ω, γ) be a Complete Subtree Revocation Scheme with

n = 2k users. Let R be a set of revoked users with |R| = 2. Then t(N ,R) =

k − 2 + h, where h is the height of the node where the two paths in ST (R)

meet.

Proof. To find t(N ,R) we will count the number of nodes that hang off ST (R).

We have already shown that this is the size of the cover (Lemma 13). ST (R)

is formed of two paths starting at the leaves, until they meet at height h (call

this node v), and then it is just one path to the root. The height is the number

of edges on the path from v to any of the leaves (strictly speaking it is the

maximum number, but in a complete tree all leaves are at the same depth).

This means that there are h + 1 nodes from v to any leaf (inclusive). There

can be no nodes hanging off a leaf, nor can there be any hanging off v as it

has both children in ST (R). So we are left with h− 1 nodes hanging off each

path. Node v is distance k−h from the root (distance from any leaf to root is

k), which means k − h + 1 nodes. The number of nodes hanging off the path

from v to the root is one less than the number of nodes, since the root can

have a node hanging off but v can not. This gives the formula for t(N ,R):

t(N ,R) = (k − h) + 2(h− 1)

= k + h− 2.

So the higher up the two paths meet, the larger t(N ,R) is. If the two paths

meet at the root (height h = k), we get the highest possible size of a cover,
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t(N ,R) = 2k − 2. This suggests that for any value of r, the ST (R) that gives

the highest value of t(N ,R) may be the one which has all forks/splits in the

tree as high as possible.

What we will prove in the following theorems is that when t(N ,R) attains

the maximum, tmax(n, r), then ST (R) only forks/splits at the top of the tree

and only has non-forking paths at the bottom. In the following discussion,

when we use the notion of the degree of a node, unless explicitly stated other-

wise, we are talking about the number of edges connected to a node on ST (R).

The degree of a node in the original complete tree is a lot more straightfor-

ward, as all internal nodes have degree 3, the root has degree 2 and the leaves

have degree 1. Since ST (R) is a subtree of the complete tree then the degree

of a node in ST (R) is less than or equal to the degree in the original complete

tree.

We use the same technique in the following two proofs. We assume there

is some subset R with t(N ,R) = tmax(n, r), but with ST (R) that does not

have the desired property. We show that there exists a slightly different subset

R′ of the same size, but has a larger cover. This contradiction shows that R
must have the desired property.

Lemma 24. Let R be such that t(N ,R) = tmax(n, r) in a Complete Subtree

Revocation Scheme. Then for any internal node v with the same degree in

both ST (R) and the complete binary tree, every node between v and the root

also has the same degree in ST (R) and the complete binary tree.

Proof. ST (R) is a connected tree comprised of the paths of the leaves in R
to the root, and all paths to the root are unique. So for any node in ST (R),

the edge to its parent is also in ST (R) (this is on the path to the root). If

there is a difference between the degree of a node in the complete binary tree

and ST (R), then one of the edges from the node to one of its children must

be absent from ST (R). This gives us a node not in ST (R) hanging off. If the

degrees are the same in both ST (R) and the complete tree, then either both

children are in ST (R) and no nodes hang off, or else the node is a leaf (which

cannot have a node hanging off).

What we need to show is the following: If ST (R) has an internal node v

with the same degree in both trees, but the same does not hold true for v’s
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Figure 4.2: Part of a Complete Binary Tree (ST (R) in thick lines).

parent, then we can create a subset R′ such that t(N ,R) < t(N ,R′). This

would imply that t(N ,R) < tmax(n, r).

Let R ⊆ N be a non-empty subset. Suppose vi is a node in ST (R) with

degree in ST (R) strictly less than its degree in the original complete tree. Let

one of its children be an internal node with the same degree in both trees (the

other child must then be the one that hangs off). In calculating the size of any

cover, we showed (Lemma 13) that what matters is the number of nodes that

hang off and that their orientation (whether it is the left or right child that

hangs off) does not matter. So, without loss of generality, we can choose the

left child of vi (v2i) to be in ST (R), and the right child (v2i+1) to hang off. Since

v2i is an internal node, it must be at height at least 1. Because it has a parent,

vi, it cannot be the root either. So we have 1 ≤ height(v2) ≤ log2(n)− 1.

We will first consider the case where v2i is at height 1 (v2i is the parent

of two leaves). Since the degree of v2i is 3, that means both paths out of v2i

are in ST (R). This means that the two leaves that are children of v2i are

revoked. Let α be one of these leaves. The parent node vi has a node not

in ST (R) hanging off, which means v2i’s sibling, v2i+1, is not in ST (R). So

the two leaves that are descended from v2i+1 are privileged. We will call one

of these β. The size of the cover of all privileged leaves descended from vi is

1. There are only two privileged leaves and these are the only descendants of

v2i+1 (the one node that hangs off ST (R)). So the index for this node, 2i + 1,

is the only index needed for the cover.

Consider the set of leaves R′ = (R\{α})∪{β}. It has the same cardinality
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Figure 4.3: ST (R) and ST (R′) from Lemma 24.

as R, since we have just removed one leaf and added another. But the cover

has changed. Just looking at the four leaves descended from vi, the number of

nodes that hang off ST (R) (in this small section of the tree) is just one, v2i+1.

In ST (R′), there are two: α and β’s sibling (see Figure 4.2). In Lemma 13

we showed that the nodes hanging off ST (R) form a minimal cover. Because

the rest of the leaves in R′ are the same as those in R, the number of nodes

hanging off the rest of ST (R′) is the same as for ST (R). Therefore:

t(N ,R′) = t(N ,R) + 1

i.e. t(N ,R) < tmax(n, r).

It is apparent that the cover of all privileged users in the subtree rooted at

vi is independent of the rest of the tree. If any node that was an ancestor of

vi (including vi itself) was included in the cover then the two revoked leaves

would be included as well, since they are descended from vi. The rest of

the nodes outside the subtree rooted at vi cannot include any of these leaves

because vi is not a descendant of any of them.

We now consider the more general case, where the height of v2i can be

anywhere in the range 1 ≤ height(v2i) ≤ log2(n) − 1. The same argument

holds, although we need to look at more of the tree. As before, we assume

that v2i has the same degree in both ST (R) and the complete tree, while vi’s
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degree in ST (R) is less than that in the complete tree. The children of vi are

v2i and v2i+1. Their children are v4i, v4i+1 and v4i+2, v4i+3, respectively. Define

A to be the set of leaves descended from v4i+1 that are in R. Since we have

a complete binary tree, all nodes at the same level have the same number of

leaves descended from them. This means that the subtrees rooted at v4i+1 and

v4i+3 are identical (since v4i+1 and v4i+3 are at the same depth from the root).

So we can define a set of leaves B to be a copy of the leaves in A. In other

words B is the set of leaves such that ST (A) in the subtree rooted at v4i+1 is

exactly the same as ST (B) rooted at v4i+3. Because we are using breadth first

labelling, we can define the set B explicitly. The labels for the two nodes v4i+1

and v4i+3 initially differ by 2. To get the label for the left child of each node,

we just multiply by 2. The difference between these two labels (v8i+2 and

v8i+6) is 4. Each level we go down, the difference between nodes is multiplied

by two. So if we started with v4i+1 at height h, the left most leaf descended

from v4i+1 will be v2h(4i+1), and the left most leaf descended from v4i+3 will be

v2h(4i+3), giving a difference of 2.2h. All similar descendants of the two nodes

will have labels that differ by the same amount (labels increase by 1 as you go

from left to right on the same level). This means the set B is:

B = {vj+2h+1|vj ∈ A}, where h is the height of v4i+1.

If we define R′ = (R \ A) ∪ B, then it still has the same number of leaves

as R (A and B are the same size). Just like before, there is a difference in

the sizes of the covers. In the portion of the tree that is descended from vi, to

cover R there was one node hanging off ST (R), v2i+1, as well as anything in

the subtrees rooted at v4i and v4i+1. The subtree rooted at v4i is the same in

both ST (R) and ST (R′). The subtree rooted at v4i+1 in ST (R) is the same

as the subtree rooted at v4i+3 in ST (R′). On top of this now we have the

nodes v4i+1 and v4i+2 both hanging off ST (R′), instead of just the one (v2i+1).

Since the rest of the tree remains unchanged we have:

t(N ,R′) = t(N ,R) + 1

i.e. t(N ,R) < tmax(n, r).

This can be seen in Figure 4.3.
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This proves that if t(N ,R) = tmax(n, r) and v is an internal node with the

same degree in ST (R) as in the original complete tree, then the same must

be true of its parent. This argument can be iteratively applied to all nodes on

the path to the root, including the root itself.

Lemma 24 gives a necessary condition for R to give tmax(n, r), but it turns

out that it is not sufficient. We need a generalisation of the above lemma, by

showing that the same claim holds when v1 is not the parent of v2 (or even an

ancestor of v2).

Theorem 25. Let R be such that t(N ,R) = tmax(n, r) using a Complete Sub-

tree Revocation Scheme. Then for any internal node v with the same degree

in both ST (R) and the complete binary tree, every node that is at a greater

height than v (i.e. closer to the root) also has the same degree in ST (R) and

the complete binary tree.

Proof. Assume that the statement of the theorem is false. Let R be such

that t(N ,R) = tmax(n, r) and suppose there exists two nodes vi and vj that

contradict the theorem. Let vi be at height hi and have degree in ST (R) less

than its degree in the complete tree. Let vj be at height hj, where hi > hj

(hi − hj ≥ 1), and have the same degree in ST (R) as in the complete tree.

Let v′j be a child of vj (either one). Define A to be the set of all revoked

leaves descended from v′j. We need to choose a node v′i as follows: it must

be descended from vi, it must not be in ST (R), and it must be at the same

height as v′j. Since vi only has one node not in ST (R) hanging off, v′i must be

descended from this node. We know the height difference between vi and vj is

hi − hj, so the height difference between a child of vi (that is not in ST (R)),

and a child of vj, v′j, is the same. So v′i can be any node that is at a depth

of hi − hj from the node hanging off vi. There are 2hi−hj nodes that satisfy

this requirement, any of which will suffice. Let B be a set of leaves descended

from v′i, defined as follows: for every leaf va in A, there is a leaf vb in B such

that the path from v′j to va is the same as the path from v′i to vb. This means

the subtree ST (A) rooted at v′j is the same as the subtree ST (B) rooted at

v′i. Finally, define R′ = (R \ A) ∪ B.

How does the size of the cover of N \ R′ differ from that of N \ R? To
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Figure 4.4: One node hanging off in ST (R) and several in ST (R′).

answer this all we need to know is where the two subtrees ST (R) and ST (R′)

differ, and how many nodes hang off each tree in these locations. Since we

created R′ by removing the leaves A and adding the leaves B, the differences

in the two subtrees can only be due to the absence/presence of these leaves. In

order to express t(N ,R′) in terms of t(N ,R), we need to make the following

two observations:

1. As A is not present in R′ (and is present in R), instead of having the

nodes that hang off ST (A), ST (R′) only has the one node hanging off

vj.

2. As B is present in R′ (and not in R), ST (R′) does not have a node

hanging off vi (by the definition of B this is where the paths from the

leaves in B meet the rest of the tree), but instead has the nodes hanging

off ST (B) and the path from v′i to vi.

The path from v′i to vi is length hi− hj + 1, but because any node hanging off

v′i would be counted in ST (B), there are only hi − hj nodes hanging off. This

gives:

t(N ,R′) = t(N ,R)− nodes hanging off ST (A) + 1

+ nodes hanging off ST (B)− 1 + hi − hj

= t(N ,R) + hi − hj

> t(N ,R).

This contradicts the assumption that t(N ,R) = tmax(n, r). Therefore, no

internal node with degree in ST (R) less than its degree in the complete tree
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can be at a greater height (closer to the root) than a node with the same

degree in both trees.

We can now find R that gives t(N ,R) = tmax(n, r). Examples can be seen

in Appendix B. In the following proof, we will show that all nodes with both

children in ST (R) (i.e. the same degree in both ST (R) and the complete tree)

must occur in the top of the tree. We will also show that the condition from

Theorem 25 is sufficient to uniquely specify t(N ,R) = tmax(n, r).

Corollary 26. Let CSRS = (N , Ω, γ) be a Complete Subtree Revocation

Scheme with n = 2k users. Let r be an integer, 1 ≤ r ≤ n, and let

j = blog2(r)c. Then CSRS has:

tmax(n, r) = r(k − j)− 2(r − 2j).

Proof. Let R be a subset of N such that t(N ,R) = tmax(n, r). By Lemma 10,

there are exactly r − 1 nodes in ST (R) that have both children in ST (R).

How many nodes have depth less than or equal to j in the complete binary

tree T (or equivalently how many nodes are at a distance j or less from the

root)? This is just the sum of the first j powers of 2,
∑j

i=0 2j = 2j+1 − 1.

There are 2j − 1 nodes with depth ≤ j − 1.

Suppose j = log2(r). This means 2j = r and 2j − 1 = r − 1. So if every

node with depth ≤ j−1 (and only these nodes) have both children in ST (R),

there will be 2j − 1 = r − 1 nodes, which gives r leaves in R. If any node at

depth j or greater had both children in ST (R), a node at depth ≤ j−1 would

only have one child in ST (R) to ensure the number of leaves equals r. These

two nodes would contradict Theorem 25, as we assumed the size of the cover

is tmax(n, r). So for j a power of two, we have that all nodes at depth ≤ j − 1

have both children in ST (R) (and no other nodes do). As a consequence of

this, all nodes at depth j are in ST (R).

Alternatively, if j < log2(r), then having all nodes at depth ≤ j − 1 have

both children in ST (R) is not enough to give us r leaves (2j − 1 < r − 1).

We must have at least one node at depth j with both children in ST (R).

This rules out any node at depth ≤ j − 1 having only one child in ST (R)

(Theorem 25). Neither could we have all nodes at depth j with both children
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in ST (R), as this would imply that:

2j+1 − 1 ≤ r − 1,

or 2j+1 ≤ r.

But since j = blog2(r)c, 2j is the greatest power of 2 less than or equal to r. So

there is at least one node at depth j with only one child in ST (R). This node

rules out any node with both children in ST (R) at depth > j (Theorem 25).

So for j not a power of two, we have that all nodes at depth ≤ j − 1 and

some at depth j have both children in ST (R). Since we need r − 1 nodes in

total, and we have 2j − 1 from the nodes at depth ≤ j − 1, this means that

(r − 1)− (2j − 1) = r − 2j nodes at depth j have both children in ST (R).

Consider the size of the cover of N \R, namely the number of nodes that

hang off ST (R). The paths in ST (R) that have nodes hanging off will start

at either depth j or j + 1. Since the path from the root to any leaf is length

k, these paths will be of length k − j and k − j − 1 respectively. The number

of nodes that hang off is just the length of the path. All r paths are at least

k − j − 1 in length, giving r(k − j − 1) nodes hanging off. The only extra

nodes hanging off come from the fact that there some paths are longer. Since

they are only 1 edge longer (k− j versus k− j − 1), they only have one extra

node hanging off. There are r − 2j nodes at depth j with both children in

ST (R), so there remains 2j − (r − 2j) = 2j+1 − r nodes with only one child,

and consequently a path of length k− j to the leaves. So the size of the cover

is:

t(N ,R) = r(k − j − 1) + 2j+1 − r,

= r(k − j)− 2(r − 2j).

This value of t(N ,R) is not effected by the choice of which r − 2j nodes

picked at depth j that have both children in ST (R). The only parameter that

can change the value of t(N ,R) is the depth at which the nodes fork and by

Theorem 25 this is the same for all R with t(N ,R) = tmax(n, r). Therefore

tmax(n, r) = r(k − j)− 2(r − 2j). (4.1)
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Note the range of r does not include r = 0 in Corollary 26. No power of

two is less than or equal 0, so j is undefined. If the centre does not want to

revoke any users, then there is a key shared by all users (key associated with

the root of the tree), t(N ,R) = 1.

If r is a power of 2 then this formula agrees with the original bound of

Equation (3.2). Suppose r = 2j, then the second part of the equation is zero,

and since k = log2(n), j = log2(r) we get:

tmax(n, r) = r(k − j)− 2(r − 2j) = r(log2(n)− log2(r)) = r log2(n/r).

We now know the exact value of tmax(n, r) for the Complete Subtree Re-

vocation Scheme. We can see output from the formula in Figure 4.5, plotted

against the bound of Naor et al, r log2(n/r). The bound was close to the true

formula of tmax(n, r), but by deriving the formula we have removed any uncer-

tainty in this measure of bandwidth. This will be important in later chapters,

when we wish to compare the performance of different schemes. We would

only be able to make very limited statements about schemes if we just had

bounds on performance measures to compare.

We have classified all possible R with t(N ,R) = tmax(n, r). As a result

of Theorem 25, the shape of ST (R) from the root down is in the form of

a complete binary tree, for as many levels as needed to make r paths. The

bottom part of ST (R) is just single paths that do not split. There is a lot

of freedom in the choice of R. At the last level, where the nodes can still

fork, different choice of nodes give the same size cover, and assuming r is not

a power of 2, we have a choice. The paths that descend from these nodes are

free to go to any leaf descended from them. Some examples of such trees can

be found in the figures in Appendix B.

As we have said, the bound of r log2(n/r) coincides with tmax(n, r) when-

ever r is a power of 2. From the above plot it seems that tmax(n, r) has constant

slope between these points that coincide with r log2(n/r). These points are

the places where j (the floor of log2(r)) goes up by 1, as r increases. This

is a consequence of Formula (4.1), which we see if we consider the difference
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Figure 4.5: tmax(n, r) for the Complete Subtree Revocation Scheme (For-
mula (4.1)) and r log2(n/r), when n = 16.

between consecutive values of tmax(n, r) when j does not increase:

tmax(n, r) = r(k − j)− 2(r − 2j)

tmax(n, r + 1) = (r + 1)(k − j)− 2(r + 1− 2j)

tmax(n, r + 1)− tmax(n, r) = (k − j)− 2.

Since this difference does not contain r, this increment does not change for

any r that gives blog2(r)c = j. So for r in any range that has the same j,

tmax(n, r) will increase by the same amount as r increases, which gives us the

straight line graph. These ranges are where tmax(n, r) is strictly less than the

Formula (3.2). Where r log2(n/r) follows a smooth curve between the points

where r is a power of 2, tmax(n, r) also goes through these points, but through

a more direct route. Because the curve r log2(n/r) always has decreasing slope

(negative second derivative), the straight lines are below the curve. It is for

this reason that we have equality for the bound in Lemma 21 in the range

n/4 ≤ r ≤ n/2. Because tmax(n, n/4) = n/2 and tmax(n, n/2) = n/2, we must

have tmax(n, r) = n/2 for all values of r in between. Similarly, tmax(n, r) = n−r

for n/2 ≤ r ≤ n.
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4.2 Average Bandwidth

In the last section, we were dealing with tmax(n, r). This was the formalising

of an existing measure, and so there was already some work done on it. In

this section we will look at our new measure of bandwidth, taver(n, r), as

calculated for the Complete Subtree Revocation Scheme. The formula (defined

in Formula (2.2)) is:

taver(n, r) =
∑
R⊆N
|R|=r

t(N ,R)(
n
r

) .

There are two principle motivations investigating the average value of

t(N ,R). Firstly, the maximum t(N ,R) is, by definition, an extreme event.

It may not occur in the lifetime of any scheme. Second, it may be that the

centre needs to measure the cost of the broadcasts in terms of the average

length, rather than the maximum. For example, the cost of broadcasting data

over the internet are typically calculated from the traffic sent per month. If

the centre were to use this medium, then the scheme with the lowest average

taver(n, r) would be the most desirable, regardless of tmax(n, r).

In order to derive a formula for taver(n, r), we will first find a more conve-

nient way to sum over the range R ⊆ N , |R| = r. This allows us to express

taver(n, r) in terms of taver(n/2, r′), and so gives us a recursive relation.

We now say a few things about the average value of t(N ,R), but first we

will reiterate the notation. We denote by taver(n, r) the average value of the

size of the minimum cover over all possible subsets of r revoked users from N
using a Complete Subtree Revocation Scheme. For the extreme values of r,

the size of the cover is constant, which makes the average trivial to calculate:

taver(n, 0) = 1 If no users are revoked, we use the key from the root to broad-

cast to everyone.

taver(n, 1) = log2(n) To revoke one user, ST (R) is just the one path, with

log2(n) nodes hanging off.

taver(n, n) = 0 If all users are revoked, we send nothing.

taver(n, n− 1) = 1 If only one user is privileged, we only need the one key.
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The last two cases are common to all Revocation Schemes, as they are con-

sequences of Corollary 6. The first two are specific to the Complete Subtree

Revocation Scheme. These are the few instances where the particular choice

of the r users does not affect the value of t(N ,R), i.e. for any other values of

r, different choices of revoked users can give different sized covers. Say we had

r = n−2 (two privileged users). If the 2 privileged users were siblings then we

can use their shared key for the broadcast, so t(N ,R) = 1. Otherwise, they

do not share a key and we have to use one for each of them, so t(N ,R) = 2.

The fact that the values for t(N ,R) is always the same for these few values

of r (namely, 0, 1, n − 1, n) also means that the maximum coincides with the

average.

We are going to use these “boundary values” to calculate other values of

taver(n, r) with the help of a recurrence relation. Firstly, we need to split

up the
(

n
r

)
subsets into different groupings (or a partition) indexed by a new

parameter i. We will do this in such a way as to allow us to sum over i when

calculating taver(n, r), instead of summing over R.

Definition 27. An (r, i)-subset is a set R, |R| = r, of leaves on a complete

binary tree with n = 2k leaves with the following property: the number of

pairs of distinct sibling leaves vj1 , vj2 such that both vj1 ∈ R and vj2 ∈ R is

exactly i. We define R(r,i)(T ) to be the set of all (r, i)-subsets on a complete

binary tree T .

Consider any subset R ⊆ N , |R| = r. As the leaves of the complete tree

are either revoked or privileged, one level up the parents of leaves fall into one

of three categories: both children are revoked, both children are privileged or

one child is revoked and one is privileged. We will later see why distinguishing

between a revoked left/privileged right pair and revoked right/privileged left

pair is unimportant. All we know about R is that is it a subset of size r from

the n leaves in the tree. This is not enough to be able to say anything about

which pairs of leaves are of which type. But the two parameters allow us to

state two equations about the numbers of pairs of each type in R:

|revoked pairs|+ |mixed pairs|+ |privileged pairs| =
n

2
(4.2)

2× |revoked pairs|+ |mixed pairs| = r. (4.3)
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Equation (4.2) comes from the fact that any complete binary tree with n

leaves has n/2 nodes one level up. Equation (4.3) is specific to the size of the

subset R. The number of revoked leaves in the revoked pairs set and mixed

pairs set have to add up to r. If R is an (r, i) − subset, then we have that

|revoked pairs| = i. This gives us two equations in two unknowns, that can be

solved in terms of n, r and i:

|mixed pairs| = r − 2i

|privileged pairs| =
n

2
− r + i.

As i will be the parameter we will be summing over to calculate taver(n, r)

instead of R, we wish to know how many (r, i) − subsets there are for any

value of i. First we count the number of ways n/2 pairs of siblings can be

partitioned into i revoked pairs and n/2 − r + i privileged pairs (with r − 2i

mixed pairs). This is simply the multinomial coefficient:

(
n/2

(i) (r − 2i) (n/2− r + i)

)
=

(n/2)!

(i)!(r − 2i)!(n/2− r + i)!
.

Corresponding to each such partition, there are 2r−2i subsets R with this

distribution on pairs. This arises from the fact that the mixed pairs can each

be one of two possibilities (privileged user to the left or to the right). This

means that:

|R(r,i)(T )| =
(

n/2

(i) (r − 2i) (n/2− r + i)

)
2r−2i. (4.4)

Of course, this formula assumes that n, r and i are such that there is at least

one (r, i)− subset. We need to know the values of i that can give (r, i)−subsets

for any particular r and n. This is just the range of i such that the three

quantities |revoked pairs|, |mixed pairs|, |privileged pairs| are non-negative.

Putting in the above values, we get three inequalities:

i ≥ 0 r − 2i ≥ 0
n

2
− r + i ≥ 0

Thus i ≥ 0 i ≤ r

2
i ≥ r − n

2
.

These can be combined into the range i ∈ [max(0, r−n/2) . . . br/2c]. These are

all the values of i that can give an (r, i)−subset. Since any subset R, |R| = r,
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is some (r, i)− subset (just count the number of sibling revoked pairs of leaves

to find the i), the values of i partition all such subsets:

{R : R ⊆ N , |R| = r} =
⋃

i∈[max(0,r−n/2)...br/2c]
R(r,i)(T ). (4.5)

We know that {R : R ⊆ N , |R| = r} =
(

n
r

)
, so combining this with Equa-

tion (4.4), we get:

br/2c∑

i=max(0,r−n/2)

(
n/2

(i) (r − 2i) (n/2− r + i)

)
2r−2i =

(
n

r

)
. (4.6)

In summing over i instead of R, we lose a lot of information about the subsets.

It is not possible to calculate the size of the cover of an (r, i) − subset from

just r and i alone. However, it is possible to obtain some useful information

about the size of the cover:

Lemma 28. Let CSRS = (N , Ω, γ) be a Complete Subtree Revocation Scheme

on the binary tree T , with |N | = n users. Let CSRS ′ = (N ′, Ω′, γ′) be a

Complete Subtree Revocation Scheme on the binary tree T ′, with |N ′| = n/2

users, where T ′ is a subtree of T got by removing the n leaves and the connected

edges. Let R ⊆ N be a subset with |R| = r and R ∈ R(r,i)(T ). Then:

tCSRS(N ,R) = r − 2i + tCSRS′(N ′,R′), (4.7)

where |R′| = r − i.

Proof. As R is an (r, i) − subset, we know there are i pairs of revoked users,

n/2 − r + i pairs of privileged users and r − 2i pairs of mixed users. The

mixed pair have specific properties in a Complete Subtree Revocation Scheme

independent of the rest of the tree. As one of the leaves is revoked, that leaf, as

well as its parent, is in ST (R) (ST (R) is the union of paths from all revoked

users to the root). The sibling leaf is privileged, but has a revoked parent.

By definition, this node is hanging off, and will require its own index in the

cover (i.e. an establishment key in the broadcast). Once these indices have

been added to the cover, we can cover the rest of the privileged users in the

smaller scheme CSRS ′. All privileged users in T that were in one of the r−2i

mixed pairs are covered, and so the node one level up (which are leaves in T ′)
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can be considered revoked. The pairs of revoked users in T stay revoked in

T ′ (although there will only be half the number of leaves when you go up a

level). The only privileged leaves in T ′ will be the leaves that are parents of

pairs of privileged users in T . As there are only n/2− (r − i) such leaves, we

have:

tCSRS(N ,R) = r − 2i + tCSRS′(N ′,R′),

where R′ is the set of leaves in T ′ corresponding to nodes in T that are parents

of either mixed or revoked pairs of leaves (|R′| = r − i).

It is this expression of t(N ,R) in terms of the size of a cover in a scheme

with half the number of users that forms the basis of the recurrence relation

for taver(n, r). To derive this relation we combine Equation (4.7) with the

partition in Formula (4.5).

Theorem 29. Let CSRS = (N , Ω, γ) be a Complete Subtree Revocation

Scheme with |N | = n users. Let r be an integer, 0 ≤ r ≤ n. Then CSRS has:

taver(n, r) =

br/2c∑

i=max(0,r−n/2)

(
n/2

(i) (r−2i) (n/2−r+i)

)
2r−2i(r − 2i + taver(n/2, r − i))(

n
r

) .

(4.8)

Proof. For any subset R ⊆ N of |R| = r revoked leaves, let i be the number

of pairs of revoked users that have the same parent. R is an (r, i) − subset,

and by Formula (4.7), we have:

t(N ,R) = r − 2i + t(N ′,R′),

where |N ′| = n/2 and |R′| = r− i. But we can also go the other way around.

We start of with a set R′ ⊆ N ′, |R′| = r− i (same N ′ as above). Choose any

i of these to be extended to a pair of revoked leaves and the other r− 2i to be

extended to a mixed pair. The privileged n/2 − r + i are extended to a pair

of privileged leaves. This gives us an (r, i)-subset of the leaves N . Therefore,

we can enumerate all (r, i)-subsets by first considering all subsets of the type

R′, and for each of these choosing i leaves to be extended to revoked pairs

(choosing I from R′, |I| = i) . This is sufficient to determine all three types
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of pairs. By summing t(N ,R) over R′ and I ′ instead of R, we get:

∑

R∈R(r,i)(T )

t(N ,R) =
∑
R′⊆N′
|R′|=r−i

∑
I⊆R′
|I|=i

(r − 2i + t(N ′,R′))2r−2i,

where N ′ is the set of n/2 leaves and I is the set of those nodes that are

extended to revoked pairs (all remaining nodes in R′ are mixed). The power

of 2 term is needed because each mixed pair can be in one of two orientations.

Swapping a mixed pair has no effect on the size of the cover. Similarly, the

choice of I has no effect on the size of the cover (the leaves in R′ are not

changed at all). So we can replace this sum with a binomial coefficient. Also,

since r and i are fixed, we can do some rearranging:

∑

R∈R(r,i)(T )

t(N ,R) =
∑
R′⊆N′
|R′|=r−i

(
r − i

i

)
(r − 2i + t(N ′,R′))2r−2i

=

(
n/2

r − i

)(
r − i

i

)
2r−2i(r − 2i) +

(
r − i

i

)
2r−2i

∑
R′⊆N′
|R′|=r−i

t(N ′,R′)

=

(
n/2

r − i

)(
r − i

i

)
2r−2i(r − 2i) +

(
r − i

i

)
2r−2i

(
n/2

r − i

)
taver(n/2, r − i)

=

(
n/2

r − i

)(
r − i

i

)
2r−2i(r − 2i + taver(n/2, r − i)).

The product of the two binomial coefficients are just another way of writing

the multinomial coefficient
(

n/2
(i) (r−2i) (n/2−r+i)

)
(choosing a and b from m is the

same as choosing a+b from m and then choosing a from a+b). The definition

for taver(n, r) is a sum over all R ⊆ N of size r. By replacing this with the

partition of Formula (4.5), we get:

taver(n, r) =
∑
R⊆N
|R|=r

t(N ,R)(
n
r

)

=

∑br/2c
i=max(0,r−n/2)

∑
R∈{(r,i)−subsets} t(N ,R)(

n
r

)

=

br/2c∑

i=max(0,r−n/2)

(
n/2

(i) (r−2i) (n/2−r+i)

)
2r−2i(r − 2i + taver(n/2, r − i))(

n
r

) .
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Figure 4.6: tmax(n, r) and taver(n, r) for the Complete Subtree Revocation
Scheme with n = 210. Also plotted is r ln(n/r).

The entire range of values of taver(1024, r) is plotted in Figure 4.6, along

with tmax(1024, r) for comparison. Calculating the values of taver(1024, r) ex-

plicitly, using Formula (2.2), would be practically impossible. It would require

calculating the size of the cover for 21024 different subsets. While the shape of

taver(n, r) is broadly similar to that of tmax(n, r), there are several significant

differences. Whereas tmax(n, r) was a series of straight lines, taver(n, r) is a

smooth curve from r = 0 to r = n. The numerical difference between the two

varies as well. For the very small and very large values of r, the two graphs are

only slightly different. But for all values in between, there is a considerable

gap.

The recurrence relation, Formula (4.8), allows us to calculate taver(n, r)

much more efficiently working out every cover for the
(

n
r

)
possible subsets,

although we do have to work out taver(n
′, r′), where n′ = n/2 and r′ takes on

a range of values. At the first level of recurrence, taver(n, r) is calculated from

taver(n/2, r − i), for i in the range [max(0, r − n/2), . . . , br/2c]. Substituting

r′ for r − i gives us taver(n/2, r′) for r′ in the range [dr/2e, . . . , min(r, n/2)]

(as r − br/2c = dr/2e and r − max(0, r − n/2) = min(r, n/2)). Each value
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of taver(n/2, r′) is calculated from a range of values of taver(n/4, r′′). Fortu-

nately, these ranges overlap, so storing the results will save on the compu-

tation of re-calculating them each time. The range of r′′ is approximately

[dr/4e, . . . , min(r, n/4)]. By summing the length of the ranges over all the val-

ues of taver(n
′, r′), we can find out the computational complexity of working

out taver(n, r). We make an upper bound of this in the following lemma:

Lemma 30. The recursive relation in Formula (4.8) requires less than 3n/4

evaluations of taver(n, r).

Proof. At the highest level, to calculate taver(n, r) we need taver(n/2, r′) for

r′ ∈ [dr/2e, . . . , min(r, n/2)]. We will show that this range can be no longer

than n/4 in length. Suppose r ≥ n/2. This implies dr/2e ≥ n/4. Since the

upper limit of the range is min(r, n/2) = n/2, the range is at most length n/4.

Similarly, if r < n/2, then the range is [dr/2e, . . . , r]. This length is at most

r/2 < n/4.

At lower levels, when we are evaluating the recursive function for n/4 or

lower, we cannot prove a similar bound. However, the recursive function is

defined so that taver(n
′, r′) is only ever called with 0 ≤ r′ ≤ n′ (taver(n

′, r′) is

not defined outside this range). So the range of values of taver(n
′, r′) that can

ever be evaluated is of length n′ at most. We have already bounded the range

for taver(n/2, r′), so that just leaves the powers of two from n/4 to 2. This

means that the total number of evaluations of taver(n
′, r′) needed is bounded

by:

n

4
+

log2(n)∑
i=2

n

2i
<

n

4
+ n

∞∑
i=2

1

2i
=

n

4
+

n

2
=

3n

4
.

A more detailed analysis would show that the number of operations is in

fact bounded by n/2. The important point, however, is that it costs O(n)

operations, compared to O(
(

n
r

)
) = O(min(nr, nn−r)) operations needed to

calculate the average explicitly.

We have also plotted r ln(n/r) in Figure 4.6. It is believed that this serves

as a lower bound for taver(n, r), and it is true for all values of n, r up to 210.

Conjecture 31. Let N be a set of n users. Let CSRS = (N , Ω, γ) be a
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Complete Subtree Revocation Scheme with |N | = n users. Then CSRS has:

taver(n, r) ≥ r ln
(n

r

)
.

This has yet to be proven.

A final note on the Complete Subtree Revocation Scheme. If we look

at the subtrees of a complete binary tree rooted at the two children of the

root, then we get two complete binary trees of depth 1 less. Since all the

nodes in a complete tree represent all the indices in the scheme, a Complete

Subtree Revocation Scheme on n users is comprised of two copies of the same

scheme on two (different) sets of n/2 users, plus a key for all n users. This

is a property common to many tree based schemes, and is something we will

exploit in Chapter 5.

4.3 Complete Subtree with a-ary tree

As mentioned in Chapter 3, there is a generalisation of the Complete Subtree

Revocation Scheme to an a-ary tree, for any integer a ≥ 3. There are in

fact two generalisations, but we will ignore the simple one as it significantly

increased the bandwidth and only slightly reduces storage (compared to the

Complete Subtree on a binary tree). Instead we will focus on the combination

of the Complete Subtree and the Power Set Method as described in [1] and

Section 3.1.

While the structure of an a-ary tree is not very different from that of a

binary tree, some of the concepts we have been using need to be re-evaluated.

We can no longer identify the children of a node as being either left or right,

they must be numbered 1st child, 2nd child up to ath child. This also means

that the sibling of a node is not well defined. Any node (except the root) has

a− 1 ≥ 2 siblings. As before we can define a Steiner Tree ST (R) on a set of

leaves R. In the binary tree any internal node that was in ST (R) either has

one child in ST (R) (and so has a node hanging off), or has both children in

ST (R). There are more possibilities in the a-ary tree as it can have anywhere

from 1 to a children in ST (R). As a result, more than one node can hang off

the same node in an a-ary tree.
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4.3.1 Maximum Bandwidth

The formula for tmax(n, r), and the associated proof, is similar to that of

the binary tree. The most important difference stems from how t(N ,R) is

calculated. The subtree ST (R) is constructed, and the nodes that hang off

are the ancestors of all privileged users/leaves. With the Complete Subtree

on a binary tree, it was simply a matter of one index for every node hanging

off ST (R). Each index would cover all leaves descended from one node in the

tree. When we use an a-ary tree, the indices are more complex. Each node

vi on the tree has several indices, one for every non-empty proper subset of

children, identified by the bit string B. Any particular index (i, B) will cover

the leaves descended from those children of vi that appear as a 1 in the bit

string B. In order to cover N \R, we look at each node in ST (R). If any node

has all its children in ST (R), then we do not need any index for that node. If

any node, vi, has at least one child not in ST (R), then we add the index (i, B)

to the cover where the ith bit of B is 1 if and only if the ith child of vi is not

in ST (R). Each node in ST (R) must have at least one child in ST (R) as the

subtree is just the union of paths from leaves to the root. Since we will never

have an internal node in ST (R) with all children not in ST (R), the index

(i, 11 . . . 1) does not appear in this scheme for any internal node vi. However,

if r = 0 then the root will have all children not in ST (R), which is why the

index (root, 11 . . . 1) is added to the scheme. Whereas with the binary tree,

the size of the cover was the number of nodes that hung off ST (R), with an

a-ary tree, it is the number of nodes in ST (R) with at least one node hanging

off.

In the following lemma, we will present three conditions on R that gives

t(N ,R) = tmax(n, r). We will then show that these specify R enough to

calculate t(N ,R). The techniques used in Lemma 32 are the same as those

used in Lemma 24 and Theorem 25. We assume that the condition on R does

not hold, and then show a subset R′ with a larger cover can be constructed.

Lemma 32. Let CSRSa be a Complete Subtree Revocation Scheme on an a-

ary tree. Let n = ak, and j = bloga(r)c. If t(N ,R) = tmax(n, r) then the

following must be true of R (and ST (R)):
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1. All nodes at depth j−1 or lower (distance j−1 to the root or less) have

all children in ST (R)

2. Nodes at depth j + 1 or greater are either not in ST (R) or only have 1

child in ST (R)

3. A node at depth j will only have all children in ST (R) if all other nodes

at lower depth have either a or a− 1 children in ST (R)

Proof. Proof of 1. Let R ⊆ N be a subset with |R| = r and t(N ,R) =

tmax(n, r). The number of nodes in any level of an complete a-ary tree is a to

the power of the distance to the root. Therefore, there are aj nodes in the tree

at depth j. We also know that aj ≤ r since j = bloga(r)c. So in the complete

tree, there must be less than or equal to r nodes at depth j that are in ST (R).

Suppose the first condition does not hold, that there is at least one node (say

vi1) at depth ≤ j− 1 that has at least one child not in ST (R). There must be

at least one node at depth j not in ST (R). So the number of nodes at depth

j that are in ST (R) is strictly less than r.

Every node with 2 or more children in ST (R) increases the number of

nodes in ST (R) in the next level. Since we have less than r nodes in ST (R)

at depth j and must have exactly r at the level of the leaves, there must be

at least one such node between the nodes at depth j and the level above the

leaves. Let vi2 be the lowest such node in ST (R). As vi2 is the lowest node

with more than one child in ST (R), each of these children of vi2 has only has

one descendant leaf in ST (R). Suppose we define R′ to be R without one of

these leaves. The cover of N \ R′ would still require an index for node vi2 .

The node vi2 is still in ST (R′) (it had more than one child in ST (R)) and

has at least one child not in ST (R′) (the child on the path we removed). All

indices for nodes lower down this path would be gone from the cover. Since

the highest vi2 could be is k − j, there are k − j − 1 less nodes in the cover.

In order to have |R′| = r, we need to also add a leaf to R′. Suppose we add

one of the leaves descended from vi1 . As vi1 is at depth ≤ j − 1, there are at

least k− j nodes that have at least one node hanging off this path. Therefore

t(N ,R′) > t(N ,R), which contradicts the assumption on R.

Proof of 2. Since aj is the greatest power of a less than or equal to r, we
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have that aj+1 > r. So at least one node at depth j has a child not in ST (R).

If any node in depth ≥ j + 1 has more than one child in ST (R), we would

have the same contradiction as above. We cannot have a node hanging off

ST (R) when there is a node lower down the tree with two or more children in

ST (R). Since we must have a node hanging off at least one node at depth j,

all nodes at depth j + 1 and lower that are in ST (R) have exactly one child

in ST (R).

Proof of 3. Suppose the third condition does not hold. We have one node,

vi1 , at depth j with all children in ST (R) and another node, vi2 , at the same

depth with two or more children not in ST (R). We know there are no nodes

with more than one child in ST (R) at depth ≥ j + 1, so each node at depth

j + 1 that is in ST (R) will only have one descendant leaf in ST (R). Define

R′ to be R but with one of the leaves descended from vi1 descended from

one of the children vi2 that is not in ST (R). In ST (R), vi1 had all children

in ST (R), and so did not require an index for the cover. Because one of its

descendant leaves is not present in ST (R′), it now has a child not in ST (R′)

and so must have a index for the cover. Even though we had to add a leaf to

ST (R′) descended from vi2 , since it had two or more children not in ST (R), it

will still have at least one child not in ST (R)′ and so still require an index. So

we get that t(N ,R′) > t(N ,R), which contradicts the assumption on R.

The first and second conditions on ST (R) are the same for the Complete

Subtree Revocation Scheme on a binary tree. ST (R) has the appearance of

a complete tree at the top and individual paths at the bottom. The third

condition is unique to an a-ary tree, however, and would be redundant in a

binary tree. The first condition means all nodes at depth j are in ST (R) and

so automatically have either 1 or 2 (a− 1 or a if a = 2) children in ST (R). In

the case where a > 2, this condition will give us two difference cases for the

structure of ST (R). This will lead to two cases in the formula for tmax(n, r).

Corollary 33. Let CSRSa be a Complete Subtree Revocation Scheme on an

a-ary tree. Let n = ak, and j = bloga(r)c. Then CSRSa has:

tmax(n, r) =





r(k − j − 1) + aj if r ≤ (a− 1)aj

r(k − j − 2) + aj+1 otherwise
. (4.9)
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Proof. Since j = bloga(r)c, we know that r must lie in the range aj ≤ r < aj+1.

We first consider the case when aj ≤ r ≤ (a − 1)aj. We know from the

first condition in Lemma 32 that all nodes at depth j are in ST (R), and

consequently each node must have at least one child in ST (R) (paths only

stop at the leaves). As a result of the second condition there are r nodes at

depth j +1 in ST (R). No node further down the tree has more than one child

in ST (R) and that is the only way that the number of nodes in ST (R) can

increase from level to level.

Suppose there was a node at depth j with all a children in ST (R). By the

third condition in Lemma 32, all other nodes at that level must have at least

a − 1 children in ST (R). That gives a total of a + (aj − 1)(a − 1) nodes at

depth j + 1 in ST (R):

a + (aj − 1)(a− 1) = 1 + (a− 1) + (aj − 1)(a− 1)

= 1 + aj(a− 1).

But, r ≤ (a − 1)aj < 1 + aj(a − 1), which means that there are more than r

nodes at depth j + 1 in ST (R). This contradicts the fact that ST (R) has r

leaves. Therefore, for r in the above range, there are no nodes at depth j with

all a children in ST (R). Each node at this level will then require one index

for the cover, and there are aj of them. From depth j +1 down, ST (R) is just

r separate paths of length k − j − 1. As each node in each path has only one

child in ST (R) (or more importantly, at least one node hanging off), they will

all require indices for the cover. Therefore:

t(N ,R) = tmax(n, r) = r(k − j − 1) + aj.

Conversely, if r > (a−1)aj then there must be some nodes at depth j with

all children in ST (R). Exactly how many there are depends on the difference

between r and (a − 1)aj. We can only have such a node if all other nodes

have at least a − 1 children in ST (R). So we know there are no less than

a− 1 children in ST (R) for each node, meaning at least (a− 1)aj < r nodes

in ST (R) at depth j +1. If each node at depth j had exactly a−1 children in

ST (R), then there would be (a−1)aj nodes at depth j +1 in ST (R). In order

to have r nodes in ST (R) at depth j + 1, we need exactly r− (a− 1)aj nodes
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at depth j to have all a children in ST (R). The remaining aj− (r− (a−1)aj)

nodes at this level will have one child not in ST (R) hanging off. From depth

j + 1, ST (R) is the same as when r ≤ (a− 1)aj, r paths of length k − j − 1.

Therefore:

t(N ,R) = tmax(n, r) = r(k − j − 1) + aj − (r − (a− 1)aj)

= r(k − j − 1) + aj − r + aj+1 − aj

= r(k − j − 2) + aj+1.

The formula we found for the binary case was tmax(n, r) = r(k−j)−2(r−2j)

(Formula (4.1)). If we were to put a = 2 into Formula (4.9) we would get the

same. The condition that r ≤ (a− 1)aj = 2j can only be true when r = 2j as

by the definition of j, r ≥ 2j. If r = 2j, then Formula (4.9) gives:

tmax(n, r) = r(k − j − 1) + aj = r(k − j − 1) + r

= r(k − j)

= r(k − j)− 2(r − 2j),

since r − 2j = 0. For any other value of r we have:

tmax(n, r) = r(k − j − 2) + aj+1 = r(k − j)− 2r + 2j+1

= r(k − j)− 2(r − 2j).

Figure 4.7 shows tmax(n, r) for a binary, a ternary and a quaternary tree.

The binary tree has height 10, n = 210 = 1024, the ternary tree height 6,

n = 36 = 729 and the quaternary tree height 5, n = 45 = 1024. If we

want to use tmax(n, r) to rate the performance the schemes, then the fact

that the ternary tree based scheme has a smaller user set must be taken into

account when comparing the plots. From simple appearances, the ternary

tree scheme seems to perform the best. Its plot for tmax(n, r) goes no higher

than 243. The quaternary tree scheme levels off at 256, just a little higher.

But these plateaus are actually n/3 and n/4 respectively (in accordance with

Formula (3.3)). Relative to the population size, the quaternary tree scheme

performs better than the ternary tree scheme. Both perform better than the

binary tree scheme. This is obvious for the quaternary tree scheme as they
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Figure 4.7: tmax(n, r) for the Complete Subtree on a binary, ternary and qua-
ternary tree.

have the same population and so can be compared directly. And we know that

the plateau for the binary tree scheme is n/2 which is worse than n/3 for the

ternary tree scheme. We shall be looking at how to compare different schemes

on different user sets in Chapter 7. The figure also shows the original upper

bound of Asano of tmax(n, r) ≤ r(loga(n/r) + 1) in the instance of the ternary

tree when n = 36 = 729. The bound quickly diverges from the true maximum

and is only close to tmax(n, r) for small values of r.

4.3.2 Average Bandwidth

In the Section 4.2 we derived a recursive formula for taver(n, r) for the Complete

Subtree Revocation Scheme on a binary tree. We did this by expressing the

cover in the binary tree with n leaves in terms of the binary tree with one less

level, i.e. n/2 leaves. Any revoked subset R ⊆ N would place each parent of

a pair of leaves into one of three types: both revoked, one revoked, or neither

revoked. In terms of the cover it does not matter which leaf is revoked. The

same approach works for an a-ary tree. There are 2a possible variations of a
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leaves descended from the same parent if each leaf can be either privileged or

revoked. To be able to calculate the size of the cover we only need consider

the three types: all revoked, some revoked and none revoked.

In the method described to find the cover of N \R, an index for an internal

node in the a-ary tree will occur in the cover if that node is in ST (R) and has

at least one child not in ST (R). So any node that is a parent of a revoked

leaves will not require an index for the cover. At the other extreme, a parent

of a privileged leaves will not have an index in the cover either. The scheme

only has indices for proper subsets of privileged children of any node, with the

sole exception of the root. If all children of node v are privileged, then we use

the index (par(v), B) (or possibly an ancestor of v even higher up the tree),

where B corresponds to the subset of children of par(v) including only v and

any other sibling that also has only privileged children. The only nodes at the

level above the leaves whose indices appear in the cover are those of the third

category, those with at least one but not all leaves revoked. For each such node,

we add to the cover the index of that node and the bit-string corresponding

to the subset of the privileged children. As all privileged children are covered,

the parent can be considered revoked when it comes to covering the rest of

the tree. So for any subset R ⊆ N , if we define Ar, Sr,Nr to be the sizes of

the sets of nodes at the level above the leaves with all, some and no revoked

leaves respectively, we have:

t(N ,R) = Sr + t(N ′,R′),

where N ′ is the set of n/a parents of leaves and R′ is the set of nodes whose

children are either all revoked or have some leaves revoked: |R′| = Ar + Sr.

In order to derive a recursive relation on taver(n, r), we need to be able to

use the parameters Ar, Sr,Nr to sum over all r subsets from n. There are only

two degrees of freedom for the parameters as Ar + Sr + Nr = n/a. We need

to know how many (Ar, Sr,Nr) triples can give an |R| = r subset, and how

many such subsets there are for each triple. The first part is simply a matter

of placing some bounds on Nr and Sr (we will fix Ar = n/a−Nr − Sr).

Lemma 34. Let T be a complete a-ary tree with n = ak leaves. Let R be a

non-empty subset of leaves of T with |R| = r ≥ 1. Let Ar, Sr and Nr be the

89



number of nodes in the level directly above the leaves with all, some (between

1 and a− 1) and no revoked leaves as children, respectively. Then:

Ar =
n

a
−Nr − Sr (4.10)

Nr ∈
[
max

(
0,

n

a
− r

)
. . .

n− r

a

]
(4.11)

Sr ∈
[
max

(
0,

n− r − a.Nr

a− 1

)
. . . min

(n

a
−Nr, n− r − a.Nr

)]
(4.12)

Proof. We know that (Ar, Sr,Nr) all have to be non-negative as well as

bounded above by n/a. Since there are n/a nodes in the level directly above

the leaves, we have:

n

a
= Ar + Sr + Nr

Hence Ar =
n

a
−Nr − Sr. (4.13)

We will consider the ranges of each parameter separately, starting with Nr.

Nr is bounded above by (n − r)/a, as the number of privileged leaves

descended from the Nr nodes, a.Nr, has to be less than or equal n − r (the

total number of privileged leaves in T ). The very minimum value Nr can take

would be when Ar + Sr takes the maximum value. Since the Ar + Sr nodes

either have all or some children revoked, they must each have at least one

revoked child. Therefore:

Ar + Sr ≤ min
(n

a
, r

)

So that Nr ≥ n

a
−min

(n

a
, r

)
by (4.13)

= max
(
0,

n

a
− r

)

Hence Nr ∈
[
max

(
0,

n

a
− r

)
. . .

n− r

a

]
.

Now we will find the range for Sr. Naturally, Sr ≥ 0. We know that the sum

of the revoked leaves in the Ar subsets and the Sr subsets have to add up to

r. Each Ar subset will have exactly a revoked leaves, whereas the Sr subsets

can have anywhere between 1 and a − 1 leaves. Therefore r must be in the

range:

Sr + a.Ar ≤ r ≤ (a− 1)Sr + a.Ar.
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Substituting in n/a−Nr− Sr for Ar, and expressing the bounds in terms of

Sr, we get:

Sr + a
(n

a
−Nr − Sr

)
≤ r r ≤ (a− 1)Sr + a

(n

a
−Nr − Sr

)

−(a− 1)Sr + n− a.Nr ≤ r r ≤ −Sr + n− a.Nr

Sr ≥ (n− r − a.Nr)

a− 1
Sr ≤ n− r − a.Nr.

Finally, we have bounds on Ar which we need to put in terms of Sr and

Nr. We know Ar must be positive, and also Ar ≤ r/a, as there are a revoked

leaves for every Ar node. However, the latter bound is a weaker statement than

r ≤ (a− 1)Sr + a.Ar, and so is redundant. By substituting in Formula (4.10)

into the former bound, we get:

Ar ≥ 0

i.e.
n

a
−Nr − Sr ≥ 0

So Sr ≤ n

a
−Nr.

All this combined gives the following range for Sr:

Sr ∈
[
max

(
0,

(n− r − a.Nr)

a− 1

)
. . . min

(n

a
−Nr, n− r − a.Nr

)]
.

Lemma 34 gives us bounds on Ar, Sr and Nr from any R ⊆ N , with

|R| = r. However, we need to show that every triple (Ar, Sr,Nr) that satisfies

Formulae (4.10), (4.11) and (4.12) corresponds to a r-subset in order show that

these triples can generate all r-subsets.

Lemma 35. Let T be a complete a-ary tree with n = ak leaves (a ≥ 2). For all

triples (Ar, Sr,Nr) satisfying Formulae (4.10), (4.11) and (4.12), there exists

a subset R with |R| = r, such that the number of nodes one level above the

leaves with all children revoked, some (between 1 and a− 1) children revoked

and no children revoked is Ar, Sr and Nr respectively.

Proof. Let (Ar, Sr,Nr) be a solution to Formulae (4.10), (4.11) and (4.12).

Obviously Sr and Nr are non-negative. And Sr ≤ n/a−Nr, so:

Ar =
n

a
−Nr − Sr ≥ n

a
−Nr − n

a
+ Nr = 0.
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So all three values (Ar, Sr,Nr) are non-negative. By Formula (4.10), all three

sum to n/a (which also means they are each bounded above by n/a). So it is

possible to choose a subset of the n leaves with Ar, Sr and Nr of the nodes

one level above the leaves with all, some and no children revoked respectively.

It remains to show that we can choose a subset with exactly r leaves.

By substituting Nr = n/a− Ar − Sr into the two bounds on Sr:

Sr ≥ (n− r − a.Nr)

a− 1
Sr ≤ n− r − a.Nr,

and expressing them in terms of r, we get:

Sr + a.Ar ≤ r ≤ (a− 1)Sr + a.Ar,

(this is the reverse of the process in Lemma 34). Therefore, there exists Sr

integers i1, . . . , iSr with 1 ≤ ij ≤ a− 1, for j = 1, . . . , Sr, such that:

a.Ar +
Sr∑
j=1

ij = r.

Define R as follows. Choose any Nr nodes at one level above the leaves to

have no revoked children. Choose any Ar from the remaining nodes to have

all revoked children. Let the number of revoked children of the remaining Sr

nodes (Ar + Sr + Nr = n/a) be i1, . . . , iSr. Since a.Ar +
∑Sr

j=1 ij = r, R has

r leaves.

For conciseness, we will use r1 to represent the range in Formula (4.11)

and r2 to represent the range in Formula (4.12).

We know the different (Ar, Sr,Nr) triples that give rise to an R subset

of size r. But in order to be able to use the triples to sum over all subsets

of size r, we need to know how many choices there are for a given triple that

result in an r-subset. It is not as simple as counting the number of solutions

to the equation a.Ar +
∑Sr

j=1 ij = r. For any one solution, we can generate

the subset R by choosing Ar nodes to have all children revoked and Sr nodes

to have i1, . . . , iSr revoked children (choosing from the nodes at height 1). So

for j = 1, . . . , Sr, there are
(

a
ij

)
possibilities for the subsets of children of the

corresponding node, giving
∏Sr

j=1

(
a
ij

)
. We need to work out how many ways

there are to generate R using all possible solutions to a.Ar +
∑Sr

j=1 ij = r. In

order to calculate this factor, we will use the following recursive relation.
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Lemma 36. Let ns(x, y) be the number of ways of picking the subsets S1, . . . , Sy,

Si ⊂ {1, . . . , a} with 1 ≤ |Si| ≤ a− 1 and
∑y

i=1 |Si| = x. Then:

ns(x, y) =





1 if x = y = 0

0 if x ≤ y or x ≥ (a− 1)y
(

a
x

)
if 1 ≤ x ≤ a− 1

, and

min(a−1,x−y+1)∑

i=max(1,x−(y−1)(a−1))

(
a

i

)
ns(x− i, y − 1) otherwise.

Proof. The extreme values of ns(x, y) are trivial to work out. If both x and

y are zero, then the sum of |Si| will equal zero as there are no subsets. This

gives exactly 1 way of satisfying the conditions, ns(0, 0) = 1. Because of the

limitation on the size of each subset, 1 ≤ |Si| ≤ a− 1, the sum of the sizes of

the y subsets must be within y ≤ ∑ |Si| ≤ (a− 1)y. As this sum has to equal

x, for any x outside the range, it is not possible to create a set of subsets with

the properties we desire. Therefore for any x ≤ y or x ≥ (a − 1)y, we have

ns(x, y) = 0. This includes the two cases x = 0, y > 0 and x > 0, y = 0. If

y = 1 we will either have x ≥ a, in which case we cannot choose 1 subset with

|S1| = x (since |Si| ≤ a − 1), or x ≤ a − 1. In the latter case, ns(x, 1) =
(

a
x

)

as we are choosing a set of size x from a.

We have covered all cases where y = 0 or 1. We shall use a recursive

argument to reduce y for any larger values. We can consider one of the subsets

separately from the rest. As the order of the subsets Si is unimportant, without

loss of generality consider the first, S1. We know that 1 ≤ |S1| ≤ a − 1. If

this subset is size i, then there are
(

a
i

)
possible ways of choosing such a subset.

We are also left with counting the number of ways to pick y− 1 subsets whose

sizes add up to x − i, which is just ns(x − i, y − 1). So the total number of

ways of picking y subsets that sum to x and where the first subset is size i

is
(

a
i

)
ns(x − i, y − 1). We need to sum this term over all possible values of

i. The bound 1 ≤ i ≤ a − 1 may not be tight as it could result in x − i

that cannot be made from the sum of y − 1 subsets. We must also have that

93



y − 1 ≤ x− i ≤ (y − 1)(a− 1). In terms of i, these become:

i ≥ 1 i ≤ a− 1

i ≥ x− (y − 1)(a− 1) i ≤ x− y + 1,

and so the formula for ns(x, y), with y ≥ 2, is:

ns(x, y) =

min(a−1,x−y+1)∑

i=max(1,x−(y−1)(a−1))

(
a

i

)
ns(x− i, y − 1).

In the proof for the formula for taver(n, r), we need to express a sum over

all subsets R, with R ⊆ N and |R| = r in terms of its compliment.

Lemma 37. Let S1 be the following set of subsets: {R : R ⊆ N , |R| = r},
where |N | = n. Let S2 be the following set of subsets: {N \ R′ : R′ ⊆
N , |R′| = n− r}. Then S1 = S2.

Proof. Let R be any subset in S1. Consider the subset N \ R. Obviously,

N \R ⊆ N . Since R ⊆ N , we have:

R∩ (N \R) = ∅ (4.14)

Hence |R|+ |(N \R)| = |N |
So |(N \R)| = |N | − |R|
i.e. |(N \R)| = n− r.

Equation (4.14) also implies that R = N \ (N \R). Therefore, R ∈ S2, which

implies S1 ⊆ S2.

Let N \ R′ be any subset in S2. Clearly, N \ R′ ⊆ N . Since R′ ⊆ N , we

have:

R′ ∪ (N \R′) = ∅
Hence |R′|+ |(N \R′)| = |N |

So |(N \R′)| = |N ′| − |R′|
i.e |(N \R′)| = n− (n− r) = r.

Therefore N \ R′ ∈ S1, so S2 ⊆ S1. Coupled with the above, this means

S1 = S2.
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Corollary 38. Let RS = (N , Ω, γ) be any Revocation Scheme on n users. For

any r ≤ n, RS has:

∑
R⊆N
|R|=r

t(N ,N \R)(
n
r

) = taver(n, n− r).

Proof. The result comes directly from Lemma 37:

∑
R⊆N
|R|=r

t(N ,N \R)(
n
r

) =
∑
R⊆N

|R|=n−r

t(N ,R)(
n
r

) by Lemma 37

=
∑
R⊆N

|R|=n−r

t(N ,R)(
n

n−r

) since

(
n

r

)
=

(
n

n− r

)

= taver(n, n− r).

We can now prove the formula for taver(n, r).

Theorem 39. Let CSRSa be a Complete Subtree Revocation Scheme on an

a-ary tree with n = ak users. Then for r ≥ 1, CSRSa has:

taver(n, r) =

∑
Nr∈r1
Sr∈r2

(
n/a

Nr Sr Ar

)
ns(r − a.Ar, Sr)

(
Sr + taver

(
n
a
, n

a
−Nr

))
(

n
r

) .

(4.15)

Proof. The formula for taver(n, r) for any Revocation Scheme is:

taver(n, r) =
∑
R⊆N
|R|=r

t(N ,R)(
n
r

) ,

where N is the set of all users.

For any subset R, t(N ,R) can be expressed in terms of the nodes one level

up from the leaves. Let N ′ be the set of nodes directly above the leaves. Let

Sa, Ss and Sn be those nodes in N ′ with all, some and none of their children

revoked respectively. If R = ∅, then the root will have no children in ST (R),

and a corresponding index in the cover. Otherwise, the only nodes in N ′

corresponding to indices in the cover will be those nodes with some, but not

all children revoked. Since r ≥ 0, we have R 6= ∅, and the only nodes in N ′

that have a corresponding index in the cover are those in Ss. The rest of the
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cover will comprise of nodes that are ancestors of nodes in N ′ that have no

child leaves revoked, i.e. Sn. Consequently, the size of the cover is equal to:

t(N ,R) = |Ss|+ t(N ′, Ss ∪ Sa) = |Ss|+ t(N ′,N ′ \ Sn).

This, combined with Lemmas 35 and 36, gives:

∑
R⊆N
|R|=r

t(N ,R) =
∑

Sn⊆N′
|Sn|∈r1

∑
Ss⊆N′\Sn
|Ss|∈r2

ns(r − a.Ar, Sr)(Sr + t(N ′,N ′ \ Sn)),

where Ar = |Sa|, Sr = |Ss| and Nr = |Sn|. Each of these summations on the

right hand side of the equation can be written as two separate summations.

For the first one, we first sum Nr over r1, and then sum over all subsets

Sn ⊆ N ′ of size Nr. Similarly for the second, we sum Sr over r2, and then

sum over all subsets Ss ⊆ N ′ \ Sn of size Sr. However, nothing inside the

summation depends on the actual subset Ss, just the size |Ss| = Sr. So we

can replace this summation over Ss ⊆ N ′ with
(

n/a−Nr
Sr

)
:

∑
Sn⊆N′
|Sn|∈r1

∑
Ss⊆N′\Sn
|Ss|∈r2

ns(r − a.Ar, Sr)(Sr + t(N ′,N ′ \ Sn))

=
∑

Nr∈r1

∑
Sn⊆N′
|Sn|=Nr

∑
Sr∈r2

∑
Ss⊆N′\Sn
|Ss|=Sr

ns(r − a.Ar, Sr)(Sr + t(N ′,N ′ \ Sn))

=
∑

Nr∈r1

∑
Sn⊆N′
|Sn|=Nr

∑
Sr∈r2

(
n/a−Nr

Sr

)
ns(r − a.Ar, Sr)(Sr + t(N ′,N ′ \ Sn))

=
∑

Nr∈r1
Sr∈r2

∑
Sn⊆N′
|Sn|=Nr

(
n/a−Nr

Sr

)
ns(r − a.Ar, Sr)(Sr + t(N ′,N ′ \ Sn)).

Only the t(N ′,N ′ \ Sn)) term depends on Sn, so we can take the rest out of

the inner most summation. And using the earlier observation on the formula
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for taver(n, n− r) we get:

∑
Nr∈r1
Sr∈r2

∑
Sn⊆N′
|Sn|=Nr

(
n/a−Nr

Sr

)
ns(r − a.Ar, Sr)(Sr + t(N ′,N ′ \ Sn))

=
∑

Nr∈r1
Sr∈r2

(
n/a

Nr

)(
n/a−Nr

Sr

)
ns(r − a.Ar, Sr)Sr

+

(
n/a−Nr

Sr

)
ns(r − a.Ar, Sr)

∑
Sn⊆N′
|Sn|=Nr

t(N ′,N ′ \ Sn)

=
∑

Nr∈r1
Sr∈r2

(
n/a

Nr

)(
n/a−Nr

Sr

)
ns(r − a.Ar, Sr)Sr

+

(
n/a−Nr

Sr

)
ns(r − a.Ar, Sr)

(
n/a

Nr

)
taver

(n

a
,
n

a
−Nr

)

=
∑

Nr∈r1
Sr∈r2

(
n/a

Nr Sr Ar

)
ns(r − a.Ar, Sr)

(
Sr + taver

(n

a
,
n

a
−Nr

))
.

As this is
∑

t(N ,R), in order to get taver(n, r) we just have to divide by
(

n
r

)
.

Therefore:

taver(n, r) =

∑
Nr∈r1
Sr∈r2

(
n/a

Nr Sr Ar

)
ns(r − a.Ar, Sr)

(
Sr + taver

(
n
a
, n

a
−Nr

))
(

n
r

) .

Formula (4.15) gives us another way to compare the bandwidth for the

Complete Subtree Revocation Scheme on different trees. In Figure 4.8 we see

three different schemes that have roughly the same size user set: 243 ∼ 256.

As expected the binary tree has the highest average bandwidth for the whole

range of r. But the quaternary tree gives a lower average bandwidth than

the ternary tree for most values of r, even though the quaternary tree scheme

has a larger user set. As a gets larger and larger, the average bandwidth gets

smaller and smaller. How far this could be done in a practical setting would

be limited by the 2a factor in storage. The problem of finding a satisfactory

trade-off point will be dealt with in Chapter 7.

97



t_max(n,r) (binary)
t_max(n,r) (ternary)
t_max(n,r) (quaternary)

Legend

0

20

40

60

80

100

t

50 100 150 200 250r

Figure 4.8: Top to bottom: taver(n, r) for Complete Subtree Revocation
Scheme with binary tree (n = 28), ternary tree (n = 35) and quaternary
tree (n = 44).

4.3.3 Compression Method

Both methods of Asano go a long way to reducing the storage requirement in

the a-ary tree based Complete Subtree Revocation Scheme, but place a heavy

burden on the user. In Chapter 3 we saw how the user needs access to a large

list of primes. One could argue that as the list of primes is public and would

not require secure storage, the cost is insignificant. On the other hand, it

may be necessary to limit all storage space at the receiver, for example if the

receiver is a mobile device. The option of using a representation for the primes

adds to the computational cost for key derivation by the users. Both Methods

1 and 2 require several multiplications and 1 modular exponentiation. It is

worth noting that these modular exponentiations do not have the same cost

in both Methods.

The computational complexity of raising bx mod M is O(log(x) log2(M)).

In Method 1 the exponent is the product of (2a−1 − 1) loga(n) primes of the

order of O(2an log(2an)), giving an exponent with O(2a log(n)(log(n) + a))

bits. So the exponentiation will require O(2a log(n)(log(n) + a)(log2(M)))

operations. Method 2 uses a Master Key derived from fewer primes that are
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smaller. The exponent is the product of just 2a−1−1 primes of sizeO(a), giving

an exponent with O(2aa) bits. The number of operations is still exponential

in a: O(2aa(log2(M))). The third method we propose has a much lower

computational expense as well as other advantages.

Method 3

In Complete Subtree Revocation Scheme on an a-ary tree, each user has to

store (2a−1 − 1)(loga(n)) + 1 keys. This comes from 2a−1 − 1 keys for each

node on the a-ary tree on the path from their leaf, vl, to the root (2a−1 − 1

being the number of proper subsets of a children of a node, where each subset

contains the ancestor of vl). The Master Keys must be generated in such a

way as to allow a user to calculate a key for a particular node vi and bit string

B, if and only if the child of vi that is an ancestor of vl corresponds to a 1 in

B (naturally vi must be an ancestor of vl also). Method 1 uses a single Master

Key for each user to generate their keys. Method 2 uses loga(n) Master Keys,

one for each node on the path from the leaf to the root, to generate the keys.

Our Method 3 will generate the keys in the third logical manner: there are

individual Master Keys for each bit string B, and these generate all loga(n)

keys on the path from the leaf to the root.

The calculations involved are not the same as the method of Asano, al-

though they do use RSA type calculations. The two methods of Asano allow

establishment keys to be generated directly from the Master Key(s). With

the third method, the Master Keys are assigned to the leaves of the user they

belong to. The centre publishes a function (which we will describe shortly)

that generates a key for a particular node from one of its child’s keys. A user

can then generate the key for any node on the path from his leaf to the root by

generating all intermediate keys. In this sense, this third compression method

has more in common with the use of the Pseudo-Random Number Generator

to create labels for the Subset Difference Revocation Scheme (Section 3.3.2).

An important difference is that with the latter one of the nodes moves further

from the root with each use of the function. Before describing the method, we

will describe the requirements of this function.
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The first requirement is that it be invertible. This is an important differ-

ence to the method of SDRS, and it stems from how the Master Keys will be

used. In SDRS, Master Keys (or labels) are associated with internal nodes.

Users apply a function (PRNG) to get labels further down the tree. With our

method, users will be given Master Keys associated with their leaves, and ap-

ply a function to get keys associated with nodes higher up the tree. These keys

will have to be the same for different users, by nature of the fact that they are

shared keys. In order to create keys with this property, the centre must start

with the shared key and apply the inverse of the function the users apply. We

will use the following notation: the Master Key for the bit string B assigned

to user u is MKl,B (where f(u) = vl or vl is the leaf u is assigned). Establish-

ment keys are indexed by both node and bit string: Li,B is the establishment

key for node vi and bit string B. The intermediate keys that users generate

by applying the function to their Master Keys we will label IK(u, vi, B) (this

is generated by user u and corresponds to the node vi in the tree). The centre

will start at the root and work down, while the users will have Master Keys

corresponding to leaves and work up. We will call the function used by the

centre in generating the Master Key:

MOV E DOWN(IK(u, vi, B)) = IK(u, child(vi), B),

and the function used by the users to generate establishment keys:

MOV E UP (IK(u, vi, B)) = IK(u, parent(vi), B).

Since (some of) the intermediate keys will be available to the users, we

need to ensure MOV E DOWN() remains secret. As MOV E DOWN() is

the inverse of MOV E UP () (which the users have), what we need is a one-

way trapdoor function. Hence the use of RSA calculations. However, the

multiple paths requiring different keys make things more complicated.

Consider the intermediate key of two siblings vi1 and vi2 . Establishment

keys for the Complete Subtree on an a-ary tree are only known to a sub-

set of users of the nodes they are defined on (the subset defined by the

bit string B). If vi1 and vi2 are distinct nodes, they will have distinct de-

scendants. In order for the establishment keys for vi1 and vi2 to be known

100



only by the subsets of descendants of the respective nodes, IK(u1, vi1 , B)

must not be equal to IK(u2, vi2 , B), nor can one be calculated from the

other using MOV E DOWN(). So MOV E DOWN() will generate differ-

ent values for different children of the same node. As a consequence of this,

MOV E DOWN() for different paths cannot commute. For example, if we

start with the intermediate key for vi and then use MOV E DOWN() to

work out the intermediate key of the first child of the second child of vi, it

cannot give the same value as the intermediate key of the second child of the

first child of vi. You do not get to the same node in a tree by taking the

same steps in a different order. The first child of the second child of vi is not

the same node as the second child of the first child of vi. These nodes have

different descendants and so must have different intermediate keys.

Consider also the intermediate key of a node vi that is the parent of two

nodes vi1 and vi2 , where vi1 corresponds to a 1 in B and vi2 corresponds to a 0.

Any user uj1 whose leaf is a descendant of vi1 , can use one of their Master Keys

to generate an intermediate key for vi, as can any user uj2 with leaf descended

from vi2 . However, by the definition of the two nodes vi1 and vi2 , uj1 ∈ γ(i, B)

but uj2 6∈ γ(i, B). Therefore, MOV E DOWN() must generate two different

values for the intermediate key of a given node, one for users in γ(i, B) and

one for users not contained in γ(i, B). Li,B would only be generated from

IK(u, vi, B) where u ∈ γ(i, B). The actual value of Li,B is found by taking

an appropriate hash of IK(u, vi, B) for an added level of protection. We will

now define these two functions for our compression method.

As the scheme is defined, the centre will have an a-ary tree, labelled with

breadth first order. The users are assigned to the leaves of the tree. For

reasons that will be apparent later, the users’ leaves must all be descended

from a single child of the root. This essentially means adding an extra edge

to the root of a complete tree (see Figure 4.9). The centre must choose the

primes q1 and q2 for the public modulus, i.e. M = q1q2. For generating the

Master Keys, it only needs a primes p1, p2, . . . , pa, but they each must be co-

prime to ϕ(M). The centre needs to be able to calculate the list di = p−1
i

mod ϕ(M), i = 1, . . . , a. The primes pi and the modulus M are made public.

We define the two functions as follows: Let vi be the jth child of parent(vi)
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in the a-ary tree. Let vi′ be a child of vi such that user u is assigned to a leaf

that is a descendant of vi′ . Then:

IK(u, vi, B) = MOV E DOWN(IK(u, parent(vi), B))

=





(IK(u, parent(vi), B) + 1)dj mod M

if u ∈ γ(vi′ , B)

(IK(u, parent(vi), B) + 2)dj mod M

otherwise

The definition of MOV E UP () follows directly from the above:

IK(u, parent(vi), B) = MOV E UP (IK(u, vi, B))

=





(IK(u, vi, B)pj mod M)− 1

if u ∈ γ(vi′ , B)

(IK(u, vi, B)pj mod M)− 2

otherwise

Note that to generate the intermediate key for a node vi we use the rela-

tion ship between vi and its child, vi′ , (to decide if we add 1 or 2) and the

relationship between vi and its parent (to pick which exponent we use). The

intermediate keys for the root will be chosen randomly, and all other keys will

be generated from these seeds by applying MOV E DOWN().

Although u is an argument of MOV E DOWN(), the centre does not need

to perform all the calculations to generate a Master Key separately for each

user. There are only two different values for an intermediate key for any

node, one for users contained in γ(i, B) and one for those who are not. That

means that the centre need only generate 2(n − 1) intermediate keys (twice

the number of internal nodes), as compared to n loga(n) if working out each

Master Key separately. As well as giving two different values for each node as

required, this definition of MOV E DOWN() ensures that the intermediate

keys of siblings will also be different. The value of IK(u, vi, B) depends on

the relationship between vi and its parent. Since this will be different for any

sibling of vi, IK(u, sibling(vi), B) will be different as well (a different power

is used in the exponentiation).
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Algorithm for the Generation of Master Key MKl,B

Gen MK(u,B,M ,d,KB):=
0: f(vl) := u
1: vi := first (and only) child of the root

2: IK(u, vi, B) =

{
(KB + 1)d1 mod M if u ∈ γ(i, B)

(KB + 2)d1 mod M otherwise

3: while vi 6= parent(vl) do
4: vi := child of vi that is ancestor of vl

5: IK(u, vi, B) := MOV E DOWN(IK(u, parent(vi), B))
6: end do
7: MKl,B := IK(u, parent(vl), B)
8: return(MKl,B)

Table 4.3: Master Key Generation in Method 3.

Normally RSA encryption does commute, it does not matter which order

you use the exponents you get the same result. However, the addition of +1

(or +2) before exponentiation means this no longer holds. For example, if

M = 17× 23 and p1 = 3, p2 = 5:

((20 + 1)3 + 1)5 ≡ 29 mod M,

((20 + 1)5 + 1)3 ≡ 40 mod M,

whereas (203)5 ≡ (205)3 ≡ 57 mod M.

Now we can describe how the Master Keys are generated. The centre

randomly chooses 2a − 2 elements KB mod M , where B = b1b2 . . . ba, bi ∈
{0, 1} and

∑a
i=1 bi 6= 0 or a. These are the intermediate keys corresponding to

the root for each bit string B. The Master Keys are generated by repeatedly

applying MOV E DOWN(). The algorithm to generate the Master Key for

subset B = b1b2 . . . ba and user u (f(vl) = u) is given in Table 4.3.

The important components of MOV E DOWN(), the exponents di, are

known only to the centre. But the exponents of MOV E UP () are the public

primes. Along with their Master Key, any user can use the algorithm in

Table 4.4 to calculate any establishment key Li1,B, where vi1 is on the path

from their leaf to the root.
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Algorithm for Generating Establishment Keys
0: Gen SK(vl,B,MKl,B,M ,p1, . . . , pa)
1: vi := par(vl)
2: IK(u, i, B) := MKl,B

3: while vi 6= vi1 do
4: IK(u, parent(vi), B) := MOV E UP (IK(u, vi, B))
5: vi := parent(vi)
6: end do
7: Li,B = Hash(IK(u, vi1 , B))
7: return(Li,B)

Table 4.4: Secret Key Generation in Method 3

The algorithm is simply reversing the operations of the Master Key gener-

ating algorithm. Raising a number to the power of any of the numbers in the

list di is undone by raising to the power of the equivalent prime pi. The extra

term {1, 2} that was added in the generation phase is simply subtracted.

Suppose a user wishes to generate an establishment key for an set γ(i, B)

to which they do not belong. If they have an intermediate key for vi, then

the value they have is in the form (x + 2)dj mod M , while the intermediate

key that generates Li,B is (x + 1)dj mod M . All they can do with the public

information is work out x, but working out (x + 1)dj mod M from x requires

either the secret exponent dj or factoring M . If they do not have an inter-

mediate key for the node vi, then they will have the key of an ancestor of vi

which was used to generate IK(u, i, B). But generating IK(u, i, B) from this

ancestor key also requires knowledge of the secret exponents or factors of M .

Figure 4.9 illustrates the Master Key generation process for a small user

set (a = 3, n = a2 = 9) and bit string B = 110. Both intermediate keys

are shown for each internal node. The Master Key for any particular user

will be one of the intermediate keys of its parent, for this value of B it will

be the upper key (as they appear in Figure 4.9) for the first two children

of the parent and the lower key for the third. This means that some users

will share Master Keys. This is something that will happen for particular

bit strings, e.g. u1 and u2 belong to γ(2, B) = {u1} (v2 is their parent) and

γ(1, B) = {u1, u2, u3, u4, u5, u6}. However, the set of Master Keys for a given
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Figure 4.9: Example of Compression Method 3.

user (there will be one for each 2a − 2 bit strings) will be unique.

As we have said, u1 and u2 receive ((KB + 1)d1 + 1)d1 mod M as Master

Keys. The establishment key L2,B is just the hash of this value. User u3

cannot calculate this as his Master Key is ((KB +1)d1 +2)d1 mod M . He can

calculate (KB +1)d1 mod M using the public prime p1. By checking the figure

we can see that all of u1, . . . , u6 can calculate this value, which is exactly the

set γ(1, B). The last three users cannot calculate this value as raising to the

power of p3 will give (K ′
B + 1)d1 mod M . The only establishment key any of

these three users can calculate is L4,B which is the hash of ((KB + 2)d1 + 1)d3 ,

and just like before, u9 cannot calculate this from his Master Key.

If we were to extend this to a tree with 27 users, we would see why

MOV E DOWN() must not commute. One of the keys for the node cur-

rently the leaf for u2 would be (((KB + 1)d1 + 1)d1 + 1)d2 mod M . The node

that is currently the leaf for u4 would have (((KB +1)d1 +1)d2 +1)d1 mod M .

If MOV E DOWN() commuted, then these two intermediate keys would be

the same, even thought they are for completely different nodes.

The above process of generating Master Keys must be repeated for all
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2a − 2 bit strings B (where B is neither all 0’s nor all 1’s). However, it

can happen that several users are given Master Keys that do not generate

any establishment keys. Consider the Master Key for u9 in the example in

Figure 4.9. Since B = 110, u9 belongs to neither γ(4, B) nor γ(1, B). We

have designed the method so u9 cannot generate either establishment keys

from their Master Key (nor any other establishment key). As this results in

a Master Key that serves no purpose for the user, it need not be given to

him, and so gives a slight reduction in storage. This would only happen for

very specific paths from the root. If all ancestors of a given leaf were children

corresponding to the zero bits of B, then the Master Key for that leaf would

be redundant. If the depth of the tree (loga(n)) was greater than a, then there

would always be at least one user with no redundant Master Keys . Since each

bit string must have at least one non-zero bit the 1st child of the 2nd child of the

. . . of the ath child of any node in the tree will generate at least one secret key

from any of its Master Keys. In this case at least one user stores 2a−2 Master

Keys, i.e. no Master Keys are redundant. We do not use the |U |max notation

to represent this as we are not counting establishment keys, but instead we

say the maximum storage for any user is 2a− 2 Master Keys. If loga(n) < a,

each user will have at least 2a−loga(n) − 1 redundant Master Keys. The path

from any leaf will have at most loga(n) different relations between a node and

it’s parent. If all these relations correspond to zero in B the key is redundant.

There are 2a−loga(n)−1 such bit strings B (have to exclude the all zero string).

This gives a slight reduction to 2a − 2 − (2a−loga(n) − 1) = 2a − 2a−loga(n) − 1

Master Keys.

There is still the matter of the extra key for the set of all users. There is

already a key that can be used for this set. Any user can use MOV E UP ()

to work back all the way up to KB. In particular KB, where B = 10 . . . 0,

would be interpreted as the intermediate key for the users whose leaves are

descended from the first child of the root. But as we stipulated that all leaves

be descended from this node, this is all the users. So defining the intermediate

key IK(root, 10 . . . 0) to be K10...0 means all users can generate this key. There

is no extra storage cost associated with this key as users are just using one

of the existing keys. In fact, besides the extra computation, there is no cost
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for users generating keys several levels above the ancestor of all leaves. This

means the centre can use a tree several times bigger than necessary without

adding an extra storage burden to the users. It just means adding a path of

several edges to the root of a complete a-ary tree instead of just one as in

Figure 4.9. This allows for adding more users to the scheme later without

needing to update existing users.

The decision of which of the three methods to use depends largely on the

capabilities of the receivers. We have already discussed the large list of primes

needed for Methods 1 and 2, and the computation needed if a representation

is used instead. We will further analyse the computational complexity of

the modular exponentiation in all three methods. If it turns out that the

requirements of Method 1 are not prohibitive, then it clearly is the most

advantageous method as each user only has 1 Master Key. We know that

n is fixed by the population of users in the scheme. Suppose that a is also

fixed in order to limit the bandwidth. With Method 1, each user must be

capable of the following:

• Storage of (2a−1 − 1) loga(n) + 1 primes of size O(2an log(2an))

(roughly O(2a log(n)(log(n) + a)) bits)

• Storage of one Master Key

• Multiplication of (2a−1 − 1) loga(n) primes

• Exponentiation mod M with exponent of

O(2a log(n)(log(n) + a)) bits

By using a representation of the primes, the user need only store one integer X,

which is O(a + log(a + log(a log(n)))) bits long, but must also do O(2a log5(n)
log(a)

)

extra operations in generating primes.

If these criteria cannot be met, the more appropriate of the other two

methods will vary depending on the values of n and a. For Method 2, each

user must be capable of the following:

• Storage of 2a−1 primes of size O((2a − 1) log(2a − 1))

(roughly O(2a(a + log(a))) bits)
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• Storage of loga(n) Master Keys

• Multiplication of 2a−1 − 1 primes

• Exponentiation mod M with exponent of O(2a(a + log(n))) bits

Finally, Method 3 has the following requirements:

• Storage of a primes of size O(a log(a)) (roughly O(a log(a)) bits)

• Storage of 2a − 2 Master Keys

• No multiplications

• loga(n) exponentiations mod M with exponent ofO(log(a)) bits, which

is equivalent to one exponentiation with exponent of O(log(n) log(a))

bits

In comparing Methods 2 and 3, we see that in terms of storing primes,

multiplications and exponentiations, Method 3 has lesser requirements. The

only area where Method 2 could, and for the most part does, perform better

than Method 3 is in the number of Master Keys to be stored. While it is

true that loga(n) will be less than 2a − 2 for most values of a and n, there

are some non-trivial parameter values with 2a − 2 < loga(n). If a = 2 (there

is no reason why any of the compression methods cannot be applied to the

Complete Subtree Revocation Scheme on a binary tree), then Method 3 has

the lesser storage for all n ≥ 8. If n ≥ 8, then log2(n) ≥ 2 = 22 − 2. For the

ternary case, Method 3 requires fewer Master Keys when n ≥ 2187. This is

a reasonably small value for n, it is conceivable that there could be uses for

a scheme with this many users. Once we get to a = 4 and higher, Method

2 will require fewer Master Keys for all values of n that matter. We would

need n to be greater than 1.1 × 109 for Method 3 to perform better (in the

a = 4 case). Seeing as this is a sixth of the world population, it is unlikely

that a scheme this large would be needed. Even if the parameters are such

that Method 3 requires more Master Keys, the lesser burden on the user with

regard the storage of primes and various calculations could make Method 3

the more efficient method.

108



In this chapter we have given a formula for tmax(n, r) for the Complete

Subtree, an improvement on the existing bound. We have also used a recur-

sive formula to work out taver(n, r) for large values of n. We generalised these

formula to the Complete Subtree Revocation Scheme on an a-ary tree, which

results in schemes with significantly lower bandwidth costs. Finally, we de-

fined a third compression method to reduce the large storage costs of these

schemes, and showed how this method compliments the existing two schemes.

In Chapter 5 we will look at a different variation on the Complete Subtree,

and perform a similar analysis of its performance.
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Chapter 5

Forest of Trees Revocation

Scheme

In this chapter we will discuss some possible improvements on the Complete

Subtree Revocation Scheme. We describe some general methods for combining

different schemes and discuss some of the properties of the resulting schemes.

We give examples of constructions of schemes using these methods that have

some desirable qualities: in this case, a measurably lower tmax(n, r) than the

Complete Subtree Revocation Scheme, but with slightly higher |U |max. First,

we will describe the different schemes that we will use.

When we defined the Complete Subtree Revocation Scheme, we used a

function f that formed a one-to-one mapping from the set of leaves of the

binary tree T to the set of users N . The only f we used was f(vi) = ui−(n−1),

as it was the simplest. We could have instead used f ′(i) = π(f(vi)), where

π is a permutation on N . This would have given rise to a scheme with the

same general properties, i.e. tmax(n, r), taver(n, r) and |U |max would all be the

same. But the sets of users who shared the same key would be different (the

same index i would give two different sets γf (i) and γf ′(i)). On their own both

schemes are the same, but we hope to find a way to combine such schemes to

obtain some improvement over the Complete Subtree Revocation Scheme.

Obviously, we will need a way to represent the various schemes, ideally one

that is more compact than listing all the inputs/outputs to γf ′ . We will keep

the same complete binary tree T (and the same breadth first labelling), as well
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as the function f . This means that the leaves of T (the inputs to f) will always

be vn, . . . , v2n−1. We will use the permutation π on N to differentiate between

the functions γf ′ . In order to represent the scheme clearly and succinctly, we

will use the following representation:

Definition 40. Let N be a set of n users. Let CSRS = (N , Ω, γf ′) be a

Complete Subtree Revocation Scheme on the complete binary tree T with

breadth first labelling {v1, . . . , v2n−1}. The leaf list of CSRS is:

[f ′(vi) : i = n, . . . , 2n− 1].

Since the tree uses breadth first labelling, [vn, . . . , v2n−1] is a list of the

leaves of the tree T . The purpose of f ′ is to map leaves to users, so the leaf

list is all the users listed in the order that they are assigned to leaves on the

tree (reading from left to right). The advantage of this representation is that

from just looking at the list we can see what sets of users share keys. For

example, the Complete Subtree Revocation Scheme on n = 23 users, with γf

(where f(vi) = ui−(n−1)) would have the leaf list [u1, u2, u3, u4, u5, u6, u7, u8].

The singletons are always the same ({ui},∀ui ∈ N ). The sets of pairs of

users who share a key, {u1, u2}, {u3, u4}, {u5, u6}, {u7, u8}, is found by split-

ting the leaf list evenly into 4. The sets of 4 users who share a key are

{u1, u2, u3, u4}, {u5, u6, u7, u8}, and all users share one key assigned to the

root. From this list alone, it is possible to generate all subsets γf (i) in a Com-

plete Subtree Revocation Scheme (the leaf list is only defined for this type of

scheme). We just divide this list evenly into sets of size a power of 2, for all

powers of 2 less than or equal to n.

We will define any other instance of the Complete Subtree Revocation

Scheme to have the function γf∗ , with

f ∗(vi) = π∗(f(vi)),

where π∗ is a permutation on N and f(vi) = ui−(n−1). Figure 5.1 shows two

leaf lists, and the binary tree and subsets of users corresponding to both.

The leaf lists correspond to the functions f and f ∗(vi) = π∗(f(vi)), where

π∗ = (1)(4635872). Note that the trivial subsets (which equate to keys held

by only one user) and the complete set (key held by all users) are always
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[u1,u2,u3,u4,u5,u6,u7,u8]=

{u1} {u2} {u3} {u4} {u5} {u6} {u7} {u8}

{u1,u2} {u3,u4} {u5,u6} {u7,u8}

{u1,u2,u3,u4} {u5,u6,u7,u8}

{u1,u2,u3,u4,u5,u6,u7,u8}

{u1} {u4} {u5} {u6} {u8} {u3} {u2} {u7}

{u1,u4} {u5,u6} {u8,u3} {u2,u7}

{u1,u4,u5,u6} {u8,u3,u2,u7}

{u1,u4,u5,u6,u8,u3,u2,u7}

[u1,u4,u5,u6,u8,u3,u2,u7]=

Figure 5.1: A Forest of two trees. Common subsets are contained in squares.

common to both trees. Any other subsets (non-trivial, proper) may or may

not be common depending on the choice of permutation. In this example

{u5, u6} is common to both trees, but it is the only subset (besides those

mentioned above) that is. None of {u1, u4}, {u8, u3}, {u2, u7} occur in the first

tree and all sets of size 4 differ.

5.1 Combining Schemes

In this section, we will describe two methods of combining Revocation Schemes

to form new schemes. The first method requires that the component schemes

all be defined on the same user set, and forms a new scheme on the same user

set. The second method requires two Revocation Scheme with disjoint user

sets, and forms a union of the schemes defined on the union of the disjoint

user sets (and is for that reason called a disjoint union).

5.1.1 Union of Schemes

If we have two (or more) schemes that have the same user set and the same

index set, then there is a very natural way to combine them:

Definition 41. Let RS1 = (N , Ω, γ1), . . . , RSX = (N , Ω, γX) be X Revocation

Schemes. We define the union of these schemes to be RS = (N , Ω′, γ′) where:

Ω′ = Ω× {1, . . . , X}
γ′(i, j) = γj(i) where i ∈ Ω, 1 ≤ j ≤ X

It is simple to prove that the union of Revocation Schemes is itself a Re-

vocation Scheme.
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Lemma 42. Let RS be the union of the Revocation Schemes RS1, RS2, . . . , RSX ,

each of which have the user set N . Then RS is also a Revocation Scheme.

Proof. Since each component of the union is a Revocation Scheme, for any

user u ∈ N we can find an index i in any of the X schemes such that γj(i) =

γ′(i, j) = {u}. By the definition of a union, all such sets also occur in RS.

Since the user set for RS is also N , all singletons of N occur in RS. Therefore

RS is a Revocation Scheme.

In the example shown in Figure 5.1, we can clearly see all 8 singletons

appearing in either tree. All subsets shown would be in the union of the

two schemes. We can make the following statement about tmax(n, r) of the

resulting scheme.

Lemma 43. Let RS = (N , Ω′, γ′) be the union of the Revocation Schemes

RS1 = (N , Ω, γ1), . . . , RSX = (N , Ω, γX). Then:

tRS
max(n, r) ≤ min(tRS1

max(n, r), . . . , tRSX
max (n, r)). (5.1)

Proof. Let R be any subset of N of size r. By the definition of tmax(n, r) we

have that:

tRS1(N ,R) ≤ tRS1
max(n, r).

Let S be the minimal cover of N \R in RS1 (|S| = tRS1(N ,R)). For every set

s ∈ S there is some index j in Ω such that γ1(j) = s. But we also have that

γ1(j) = γ′(1, j) from the definition of the union. Therefore S is also a cover

of N \ R in RS. It may not be the minimal cover in RS, so we can only say

that:

tRS(N ,R) ≤ |S|
= tRS1(N ,R)

≤ tRS1
max(n, r).

Since this is true for all R ⊆ N , it holds for R such that tRS(N ,R) =

tRS
max(n, r). Therefore:

tRS
max(n, r) ≤ tRS1

max(n, r).

This holds for all the Revocations schemes in the union, therefore:

tRS
max(n, r) ≤ min(tRS1

max(n, r), . . . , tRSX
max (n, r)).
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We could have defined a union of schemes with different index sets, but

for what we will be trying to achieve later, we will need the index sets to be

the same. The definition is not limited to the Complete Subtree Revocation

Scheme, any collection of Revocation Schemes can be used, provided they have

the same user and index set. However, we will only be looking at the unions

of Complete Subtree Revocation Schemes. We will call the union of several

different Complete Subtree Revocation Schemes a Forest of Trees Revocation

Scheme. Strictly speaking there is only one tree, and several permutations on

the assignments of users to the leaves, but it sometimes helps to consider the

different trees generated as in Figure 5.1. These are trees where each node

vi is labelled with the set of users γ(i). The following example shows one

advantage of combining two schemes that are essentially the same.

Example 44. Suppose we wanted to revoke the set R = {u4, u5, u6, u7}, using

the schemes in Figure 5.1. We need to find a cover of N \R = {u1, u2, u3, u8}
using only the subsets in the diagram. With just the first tree we get a cover

of {{u1, u2}, {u3}, {u8}}. The second tree does not do any better own its

own, {{u1}, {u2}, {u3, u8}}. The size of the minimum cover is 3 in both cases.

However, in union of these two schemes, t(N ,R) is only 2. The minimal cover

is {{u1, u2}, {u3, u8}}.
The size of the minimal cover in the combined scheme is not the minimum

of the covers in the two component schemes. Similarly, tmax(n, r) in a union

of schemes is not always the minimum of tmax(n, r) in each individual scheme.

We will see an example of this later.

Suppose we have a union of Revocation Schemes. Assuming that we can

generate a cover of any subset of users in each individual scheme (which we

can for the Complete Subtree Revocation Scheme), how can we find a cover

for the same subset in the larger scheme?

5.1.2 Greedy Algorithm

Table 5.1 contains an explicit algorithm for finding a cover with a union of

schemes (not limited to a Forest of Trees), RS1 = (N , Ω, γ1), . . . , RSX =

(N , Ω, γX). This algorithm first pools together all subsets of privileged users
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Cover Algorithm
0: Initialise: S ′ = {}, S = {}, P = N \R
1: for i from 1 to X do
2: Find all sets γi(j) in scheme RSi that are contained in P and

add to set S ′ (S ′ = S ′ ∪ γi(j))
3: end do
4: while

⋃
s∈S s does not cover N \R do

5: Find the set s ∈ S ′ of largest cardinality such that s ⊆ P and
add it to S (S = S ∪ s)

6: Subtract s from P (P = P \ s)
7: Subtract s from S ′ (S ′ = S ′ \ {s})
8: end do

Table 5.1: Algorithm to find the cover in a union of schemes.

from the various schemes into the set S ′. These are the only subsets that can

be used in the cover as they are strictly contained in N \ R. The set P is

defined to be the set of users who have not yet been covered. The algorithm

repeatedly adds the largest set from S ′ that is contained in P to S, until S is

a cover of N \R.

The algorithm is only of use if it terminates for all input R. For any of

the X Revocation Schemes (named RSi), we know that there exists some j

such that γi(j) = {u}, for any u. This means that γi(j) = {u} ∈ S ′ for all

u ∈ P at the end of the first for loop (i.e. every singleton with a privileged

user will be in S ′). So in the body of the while loop, at the very least we can

add a singleton to S. Therefore the loop will take at most |N \R| steps before

finishing. When it does finish, S is a cover of N \R, as this is the terminating

condition. Additionally, the cover is also disjoint. Each set s chosen to be in

the cover must be strictly contained in the set of those privileged users who

have not yet been placed in the cover. So the set s cannot intersect with any

set that has already been added.

One point of note is that step 2 finds all subsets of privileged users from

the current scheme RSi, and not a cover with RSi, which is what you might

expect. A cover of the privileged users will certainly be contained in the

former, but we need the extra subsets in order to be able to form a disjoint
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cover. The different covers from the different schemes may well be individually

disjoint, but since they all cover the same set of users, they will overlap with

each other. We can run into problems when trying to combine subsets that do

overlap into a cover that does not. This is best illustrated with an example:

Example 45. Suppose we want to use the two trees in Figure 5.1 to re-

voke R = {u2, u3}, but only using a disjoint cover. The first tree gives a

cover of {{u1}, {u4}, {u5, u6, u7, u8}}, while the second tree gives us the cover

{{u1, u4, u5, u6}, {u8}, {u7}}. Now both covers are of size 3, and given that

we cannot uses overlapping sets in the cover, there is no way of generating a

smaller cover with just these sets. But the greedy algorithm above will also

generate the extra subsets {u1, u4}, {u5, u6} and {u5, u6}, {u7, u8} (as well as

the singletons {u5}, {u6}). Using these we can form a cover of size 2: either

{{u1, u4}, {u5, u6, u7, u8}} or {{u1, u4, u5, u6}, {u8, u7}}
This example shows that the greedy algorithm can produce a smaller cover

than just using the minimum cover of the different schemes. Unfortunately,

this does not always happen:

Example 46. Suppose N \R = {u1, u2, u3, u4, u5, u6, u7, u8}, and we have two

different coverings from two different schemes:

c1 = {{u1, u2, u3, u4}, {u5}, {u6}, {u7}, {u8}},
c2 = {{u1, u5}, {u2, u6}, {u3, u7}, {u4, u8}}.

Since the greedy algorithm goes for the largest subset first we will get the cover:

{{u1, u2, u3, u4}, {u5}, {u6}, {u7}, {u8}} (the size of this cover is 5), whereas

the most efficient cover is c2, (t(N ,R) = 4).

To get around this, the centre should compare the result of greedy algo-

rithm to the cover you would get using each individual tree. Should any one

tree give a smaller cover than the output of the algorithm, then it should be

used instead. This would require the loop in Table 5.2 being added to the end

of the algorithm.

This is a good precaution, and guarantees that the cover produced by the

algorithm will be at least as small as the minimum cover in the component

schemes. But the algorithm is still not guaranteed to find the smallest cover.
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9: for i from 1 to X do
10: if |tRSi(N ,R)| < |S| then

assign S to be the cover of N \R with RSi

11: end do

Table 5.2: Check for Cover Algorithm

The above counterexample can be modified to show this. In the example

below, the greedy algorithm results in a cover that is just as small as the

minimum of all the trees, and yet is not the smallest possible.

Example 47. Suppose N \ R = {u1, u2, u3, u4, u5, u6, u7, u8}, and we have 3

different coverings from 3 different schemes:

c1 = {{u1, u2, u3, u4}, {u5}, {u6}, {u7}, {u8}},
c2 = {{u1, u5}, {u2, u6}, {u3}, {u4}, {u6}, {u8}},
c3 = {{u3, u7}, {u4, u8}, {u1}, {u2}, {u5}, {u6}}.

Since the greedy algorithm goes for the largest subset first we will get the cover:

{{u1, u2, u3, u4}, {u5}, {u6}, {u7}, {u8}} (the size of this cover is 5). This cover

is equal in size to the minimum cover of all the component schemes. However,

the most efficient cover is {{u1, u5}, {u2, u6}, {u3, u7}, {u4, u8}}, (t(N ,R) =

4).

One final note on the greedy algorithm. The algorithm was constructed

specifically so that the output would be a disjoint cover. If this requirement is

relaxed, then a less restrictive algorithm can be used. This is done by replacing

line 5 with Find the set s ∈ S ′ such that s∩ P has the largest cardinality, add

it to S. The modified algorithm could have more sets to choose from when

creating the cover S, at the very least it will have all those available in the

original algorithm. Consequently, the modified algorithm will create a cover

at least as small as the original algorithm. Unfortunately, this modification

does not prevent outputting non-minimal covers as in the above example.

Even though we showed that it can find smaller covers than the minimal

of the component schemes, we cannot guarantee that the greedy will output

the minimal cover. In order to be as efficient as possible, the centre should
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choose the component schemes carefully to make finding the cover easier. The

unions we will be looking at will have a very specific structure. In deriving

the formula for tmax(n, r) for the Forest of Trees Schemes we will look at later,

we will discover an easy way to form the cover all the privileged users.

5.1.3 Disjoint Union

The second way of combining schemes forms a different user set. We will

take two schemes whose user sets are non-intersecting and the same size, and

create a new scheme whose user set is their union. We will only combine two

schemes, unlike the previous method, which could combine many.

Definition 48. Let RS1 = (N1, Ω1, γ1), RS2 = (N2, Ω2, γ2) be two Revocation

Schemes with |N1| = |N2| = n and N1 ∩N2 = ∅. We define the disjoint union

of RS1 and RS2 to be RS3 = (N3, Ω3, γ3) where:

N3 = N1 ∪N2

Ω3 = {(1, j)|j ∈ Ω1} ∪ {(2, j)|j ∈ Ω2} ∪ {(3, 0)}
|Ω3| = |Ω1|+ |Ω2|+ 1

γ3(i, j) =





γ1(j) if i = 1

γ2(j) if i = 2

N3 if i = 3.

Again, it is simple to show this results in a Revocation Scheme.

Lemma 49. Let RS3 = (N3, Ω3, γ3) be the disjoint union of the two Revocation

Schemes RS1 = (N1, Ω1, γ1) and RS2 = (N2, Ω2, γ2). Then RS3 is also a

Revocation Scheme.

Proof. Since ∀u ∈ N1, there exists a j with {u} = γ1(j) = γ3(1, j) (by the

definition of γ3). Similarly, there exists a j with {u} = γ2(j) = γ3(2, j), for all

u ∈ N2. Since N3 = N1 ∪N2, all the singletons of N3 occur in RS3.

Suppose RS1 and RS2 are Complete Subtree Revocation Schemes with the

leaf lists [u1, u2, u3, u4] and [u5, u6, u7, u8] respectively. Then the disjoint union

of RS1 and RS2 is just a Complete Subtree Revocation Scheme with leaf list

[u1, u2, u3, u4, u5, u6, u7, u8]. The index of the root is (3, 0) (γ3(3, 0) = N3).
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The indices of the left half of the tree are all in RS1, and those of the right are

in RS2. The property that a complete binary tree has two smaller complete

binary trees rooted at the children of the root can also be applied to Complete

Subtree Revocation Schemes.

Forming a cover in a disjoint union is not as complicated as it is with a

normal union. If R = ∅ then use γ3(3, 0), otherwise you form a cover of N1 \R
with RS1 and N2\R with RS2. We can also describe tmax(n, r) for the disjoint

union, but first we need to prove the following lemma:

Lemma 50. Let RS1 = (N1, Ω1, γ1) and RS2 = (N2, Ω2, γ2) be two Revocation

Schemes, and let RS = (N3, Ω3, γ3) be their disjoint union. Let S be a cover

of N3 \ R where R 6= ∅. Let R1 = R ∩ N1 and R2 = R ∩ N2. If S1 = {s ∈
S|s ⊆ N1} and S2 = {s ∈ S|s ⊆ N2} then S is a minimal cover of N3 \ R if

and only if S1 and S2 are minimal covers of N1 \R1 and N2 \R2 respectively.

Proof. Firstly, we want to show that if S is a cover of N3 \ R then S1 and S2

are covers of N1 \R1 and N2 \R2. Since N1 ∪N2 = N3 and R ⊆ N , we have:

(N1 \ R1) ∪ (N2 \ R2) = (N1 ∪N2) \ (R1 ∪R2)

= N3 \ ((R∩N1) ∪ (R∩N2))

= N3 \ R.

Since R 6= ∅, (N3 \ R) 6= N3. This means that any set s ∈ S is strictly

contained in N3. By the definition of a disjoint union, if s 6= N3 then s ⊆ N1

or s ⊆ N2. So we have:

S1 ∪ S2 = {s ∈ S|s ⊆ N1} ∪ {s ∈ S|s ⊆ N2} = {s ∈ S|s ⊆ N3} = S.

So if S1 is a cover of N1 \R1 and S2 is a cover of N2 \R2 then S is a cover of

N3 \ R, and vice versa, since they cover the exact same set of users. We now

have to show the minimality condition crosses over.

Assume that S1 and S2 are minimal covers of N1 \R1 and N2 \R2 respec-

tively. Suppose that their union S is not the minimum cover of N3 \ R, and

that their exists a smaller cover S ′. S ′ can be partitioned into {s ∈ S ′|s ⊆ N1}
and {s ∈ S ′|s ⊆ N2}, just like S1 and S2 were. Since the sum of the sizes of

these sets add up to |S ′| < |S| and |S| = |S1|+ |S2|, at least one of these sets
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is smaller than its counterpart (S1 or S2). This contradicts the assumption

that S1 and S2 are minimal covers. So if S1 and S2 are minimal covers, S is a

minimal cover.

Similarly, assume that S is a minimal cover of N3 \ R. Suppose that one

of S1 and S2 (the partition of S over N1 and N2) are not minimal covers.

Without loss of generality, say there is a cover S ′1 of N1 \R1 with |S ′1| < |S1|.
If we take the union of S ′1 and S2 we will get a cover of N3 \ R. But since S ′1
and S2 are disjoint:

|S ′1 ∪ S2| = |S ′1|+ |S2| < |S1|+ |S2| = |S|.

Therefore, we get a cover smaller than S. This contradicts our assumption.

So if S is a minimal cover then S1 and S2 are both minimal covers.

Corollary 51. Let RS1 = (N1, Ω1, γ1), RS2 = (N2, Ω2, γ2) be two Revocation

Schemes, and let RS = (N3, Ω3, γ3) be their disjoint union. Then provided

R 6= ∅:
tRS(N3,R) = tRS1(N1,R1) + tRS2(N2,R2).

Proof. This follows immediately since t(N ,R) is just the size of the minimal

cover.

Using this, we can state a formula for tmax(n, r) of a disjoint union Revo-

cation scheme.

Theorem 52. Let RS1 = (N1, Ω1, γ1), RS2 = (N2, Ω2, γ2) be two Revocation

Schemes, and let RS = (N3, Ω3, γ3) be their disjoint union. Then:

tRS
max(2n, 0) = 1 (5.2)

tRS
max(2n, r) = max

0≤r1,r2≤min(r,n)
r1+r2=r

(
tRS1
max(n, r1) + tRS2

max(n, r2)
)
, for all 1 ≤ r ≤ 2n.

Proof. When r = 0, γ3(3, 0) = N3 gives a cover of size 1, which means

tmax(n, r) must be at most 1. Any cover of a non-empty set of users must

be non-empty, so in this case tmax(n, r) must be at least one. Therefore

tRS
max(2n, 0) = 1.

Otherwise, r ≥ 0. Let

t′ = max
0≤r1,r2≤min(r,n)

r1+r2=r

(
tRS1
max(n, r1) + tRS2

max(n, r2)
)
.
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Let S1 be a cover of N1 \ R1 of size tRS1
max(n, r1), where r1 provides the

maximum in the above expression. Let S2 be a cover of N2 \ R2 of size

tRS2
max(n, r2), for r2 = r − r1. So |S1| + |S2| = t′. In Lemma 50 we showed that

because S1 and S2 are minimal covers, S is a minimal cover of

(N1 \ R1) ∪ (N2 \ R2) = N3 \ R.

Therefore tRS(N3,R) = |S| = |S1| + |S2| = t′. But because tRS(N3,R) ≤
tRS
max(2n, r), that means:

tRS
max(2n, r) ≥ t′. (5.3)

Let R be a non-empty subset such that tRS(N3,R) = tRS
max(2n, r). If we

put R1 = R∩N1 and R2 = R∩N2, then by Corollary 51 we have:

tRS
max(2n, r) = tRS(N3,R)

= tRS1(N1,R1) + tRS2(N2,R2)

≤ tRS1
max(n, |R1|) + tRS2

max(n, |R2|)
≤ max

0≤r1,r2≤min(r,n)
r1+r2=r

(
tRS1
max(n, r1) + tRS2

max(n, r2)
)

= t′.

Combining this with Formula (5.3), we get tRS
max(2n, r) = t′.

There is a similar formula for taver(n, r), but first we need the following

result. In Chapter 4 we found a way to express the set {s : s ∈ N |s| = r}
(|N | = n) in terms of subsets from a smaller set |N ′| = n/2. From this we

were able to work out the recursive relation of taver(n, r) for the Complete

Subtree Revocation Scheme. For a disjoint union, we need to write all subsets

of N3 of size r in terms of unions of subsets from N1 and N2. As required for

a disjoint union, the latter two sets have to be the same size.

Lemma 53. Let N1,N2,N3 be three sets with the following properties: N3 =

N1 ∪N2, N1 ∩N2 = ∅ and |N1| = |N2| = n. Then:

{s ⊆ N3 : |R| = r} =

min(n,r)⋃

r1=max(0,r−n)

{R1 ∪R2 :R1 ⊆ N1, |R1| = r1,

R2 ⊆ N2, |R2| = r − r1}.
(5.4)
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Proof. Let LHS be the left-hand side of Formula (5.4), and RHS be the

right-hand side of Formula (5.4). Consider any two subsets R1 and R2 from

RHS. |R1| = r1, for some r1 in the range [max(0, r−n), . . . , min(n, r)]. Since

N1 ∩N2 = ∅ and R1 ⊆ N1, R2 ⊆ N2, we have that R1 ∩R2 = ∅. Therefore:

|R1 ∪R2| = |R1|+ |R2| = r1 + (r − r1) = r.

This subset is contained inN3 asR1∪R2 ⊆ N1∪N2 = N3. SoR1∪R2 ∈ LHS,

for all R1 ∪R2 ∈ RHS, which means LHS ⊇ RHS.

Consider any set R from LHS (R ⊆ N3, |R| = r). This set can be

partitioned into two non-overlapping subsetsR∩N1 andR∩N2, sinceR ⊆ N3

and N3 = N1∪N2 (which are disjoint). We know that |R∩N1| is non-negative

and less than or equal to min(n, r) (since |N1| = n and |R| = r). The same is

true for |R ∩ N2|, and also:

|R ∩ N1|+ |R ∩ N2| = r

|R ∩ N1| = r − |R ∩N2|.

Because |R ∩ N2| ≤ n that implies |R ∩ N1| ≥ r − n. So we have that R is

the union of two subsets R∩N1 ⊆ N1 and R∩N2 ⊆ N2, with |R∩N1| in the

range [max(0, r − n), . . . , min(n, r)] and |R ∩ N2| = r − |R ∩ N1|. But these

sets have all the properties of sets from RHS. Therefore R ∈ RHS for all

R ∈ LHS, which means LHS ⊆ RHS. Coupled with the above, this proves

LHS = RHS.

We now have all the results needed to prove the recursive relation for

taver(n, r) for any disjoint union of two schemes. The proof of the relation is

just a matter of combining Corollary 51 and Lemma 53 with the definition of

taver(n, r).

Corollary 54. Let RS1 = (N1, Ω1, γ1), RS2 = (N2, Ω2, γ2) be two Revocation

Schemes where |N1| = |N2| = n. Let RS = (N3, Ω3, γ3) be their disjoint union

(|N3| = 2n). Then tRS
aver(2n, 0) = 1 and:

tRS
aver(2n, r) =

min(n,r)∑

r1=max(0,r−n)

(
n
r1

)(
n

r−r1

) (
tRS1
aver(n, r1) + tRS2

aver(n, r − r1)
)

(
2n
r

) . (5.5)

for all 1 ≤ r ≤ 2n.
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Proof. The definition of taver(n, r) is:

tRS
aver(2n, r) =

∑
R⊆N3
|R|=r

tRS(N3,R)(
2n
r

) .

If r = 0, then there is only one possibility for R = ∅. As the construction of a

disjoint union has an index γ(3, 0) = N3, we have taver(2n, 0) = tRS(N3, ∅) = 1.

Lemma 53 gives us a way to sum over the subsets of N3 with subsets

from N1 and N2. And by Corollary 51, tRS(N3,R) is equal to the sum of the

minimal covers in N1 and N2. The corollary is applicable in this case because

r 6= 0, which means R 6= ∅. Combining these two we get:

tRS
aver(2n, r) =

min(n,r)∑

r1=max(0,r−n)

∑
R1⊆N1
|R1|=r1

∑
R2⊆N2

|R1|=r−r1

(tRS1(N1,R1) + tRS2(N2,R2))(
2n
r

) .

where R1 = R∩N1 and R2 = R∩N2. A little rearranging of the terms, and

applying the definition of taver(n, r) and we get:

tRS
aver(2n, r) =

min(n,r)∑

r1=max(0,r−n)

1(
2n
r

)
( ∑

R1⊆N1
|R1|=r1

∑
R2⊆N2

|R1|=r−r1

tRS1(N1,R1)

+
∑
R1⊆N1
|R1|=r1

∑
R2⊆N2

|R1|=r−r1

tRS2(N2,R2)

)

tRS
aver(2n, r) =

min(n,r)∑

r1=max(0,r−n)

1(
2n
r

)
((

n

r − r1

) ∑
R1⊆N1
|R1|=r1

tRS1(N1,R1)

+

(
n

r1

) ∑
R2⊆N2

|R1|=r−r1

tRS2(N2,R2)

)

tRS
aver(2n, r) =

min(n,r)∑

r1=max(0,r−n)

1(
2n
r

)
((

n

r − r1

)(
n

r1

)
tRS1
aver(n, r1)

+

(
n

r1

)(
n

r − r1

)
tRS2
aver(n, r − r1)

)

tRS
aver(2n, r) =

min(n,r)∑

r1=max(0,r−n)

(
n
r1

)(
n

r−r1

)
tRS1
aver(n, r1) + tRS2

aver(n, r − r1)(
2n
r

) .
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Note that it is possible to form a disjoint union of a scheme with itself,

provided you relabel the users in one of the schemes. The size of the users

set doubles, and you get all the subsets relating to the original scheme on

both halves of the users set, plus one index for the entire user set. This

is exactly what happens when we double the parameter n in the Complete

Subtree Revocation Scheme.

The scheme with 2n users has its function γ defined by a complete binary

tree with 2n leaves. Earlier we showed that such a tree can be divided into two

complete binary trees, each with n leaves, with one node leftover. This works

the other way around as well, building a tree with 2n leaves from two trees

with n leaves. Additionally, this is done in exactly the same way as we form a

disjoint union. Forming a copy of the user set corresponds to adding another

tree with different leaves, adding an index i such that γ(i) equals the combined

user sets corresponds to the adding a node to be the root connecting the two

subtrees. This is why we can make the above claim. It also gives us another

recursive formula for tCSRS
aver (n, r) (we already know tCSRS

max (n, r) explicitly). The

difference in the two formulae comes from the way the recursion algorithm

“works back” to the smaller scheme. In the earlier relation (Formula (4.8)),

we reduce the scheme with 2n users to a single scheme with n users by removing

the leaves. The relation in this chapter reduces the larger 2n scheme to two

schemes with n users by removing the root. These results will be very helpful

for analysing other tree-based schemes.

The constructions presented are general, but some inferences can be made.

The first union is a way to combine two schemes and get the shortest band-

width. If one scheme has the lower bandwidth for low values of r, and the

other has lower bandwidth for high values of r, then the union will have the

lower bandwidth of the two in each range. It is impossible to calculate the

storage of the union scheme without details of the components, but we know

it is at least slightly lower than the combined storage of the components. At

the very least, the singletons are common to both schemes, so there is at least

one key common to both schemes that does not have to be stored twice. The

disjoint union is a natural way to “grow” a scheme to twice the population

size. We have a formula for tmax(n, r), but as it depends on tmax(n, r) of the
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component schemes, we cannot make any comment on the bandwidth in gen-

eral. The storage of a disjoint union does have the nice property that it will

only ever increase by 1 as n is doubled. The number of keys any user will need

to store is just those that were stored in the component scheme plus the key

shared by the combined user sets. In the next two sections, we will show how

to use these constructions to create efficient schemes.

5.2 Complete Forest

The first scheme to be built using the above constructions is the Complete For-

est Revocation Scheme. Before describing it, we will explain the motivation. A

good place to start looking at combining different schemes is to consider what

causes the Complete Subtree Revocation Scheme to have high tmax(n, r). To

get t(N ,R) = n/2, we simply revoke every second user. This causes t(N ,R)

to be high because no subset of two or more privileged users share a key and

so all keys for the transmission are those at the leaf level. However, if we have

a well-chosen union of Complete Subtree Revocation Schemes, then hopefully

users that are not siblings in one scheme are siblings in at least one other.

Remember that two leaves are siblings if they have the same parent, so two

sibling users will be the only users who have the key associated with their

parent. So we can define such a scheme as follows:

Definition 55. Let RS = (N , Ω′, γ′) be the union of X Complete Subtree

Revocation Schemes, RS1 = (N , Ω, γf1), . . . , RSX = (N , Ω, γfX
). We say that

RS is a Complete Forest Revocation Scheme if for all pairs of users ui1 , ui2 ∈ N
there exists an index i ∈ Ω′ such that:

γf ′(i) = {ui1 , ui2}.

Requiring every pair of users to be siblings (i.e. having the same parent,

or next highest node) in at least one of the trees will require taking the union

of several schemes. It is possible to work out exactly how many schemes

are needed. There are n/2 pairs of leaves in any one tree, and a total of(
n
2

)
= n(n−1)

2
different pairs. So assuming that there is no repetition of pairs,

we would need n(n−1)
2

/n
2

= n− 1 trees. No repetition means that every pair of
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leaves are siblings in exactly one tree. We will now describe how to construct a

family of trees with this property, starting from the simplest case, and building

the trees iteratively. Since we will only be dealing with unions of the Complete

Subtree Revocation Scheme, we will use the leaf list as representation. The

first scheme in the union will always have γf , giving the leaf list [u1, u2, . . . , un].

For the smallest binary tree, n = 2, the condition holds with just the one

tree, [u1, u2]. The only pair of nodes that can be picked are {u1, u2} and they

are siblings. We can better illustrate the general construction by showing how

we go from n = 2 to n = 4. Naturally, the first tree is [u1, u2, u3, u4]. We

now just need 2 trees to pair all leaves from the first half (u1, u2) with those

in the second (u3, u4): [u1, u3, u2, u4], [u1, u4, u2, u3]. All
(
4
2

)
= 6 pairs occur

as siblings in one of these three trees. Also, three is the minimal number of

trees since there are 6 pairs of siblings needed and only 2 pairs of siblings per

tree. Note that when n = 2, we needed 1 (= n − 1) tree and when n = 4 we

needed 3 (= n − 1), in keeping with what we said earlier. We will describe

a construction of n − 1 trees for any n (a power of two), and show that it

is a Complete Forest Revocation Scheme. As the construction uses modular

arithmetic, we will say that (i mod n) returns the least positive residue, i.e.

an integer in the range 1, . . . , n.

5.2.1 Complete Forest Construction Algorithm

Assume that we have RS1 = (N 1, Ω1, γ1), a Complete Forest Revocation

Scheme with n users, comprised of the union of n − 1 Complete Subtree Re-

vocation Schemes. We will now construct RS ′, a Complete Forest Revocation

Scheme with 2n users. We need to form a disjoint union of RS1 with RS1

defined on a different user set. By default, N 1 = {u1, u2, . . . , un}, so define

N 2 = {un+1, un+2, . . . , u2n}. Let γ2 : Ω2 → 2N
2

be a function isomorphic to

γ1. So if we put RS2 = (N 2, Ω2, γ2), then we get a Revocation Scheme identi-

cal to RS1, but with a completely different user set (note that N 1 ∩N 2 = ∅).
Let RS3 = (N 1 ∪N 2, Ω3, γ3) be the disjoint union of RS1 and RS2. RS3 can

also be considered the union of n− 1 Complete Subtree Revocation Schemes

on 2n users, as we have already shown that the 2n user scheme is the same

as getting the disjoint union of the n user scheme with a copy of itself. As
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Treen = [u1, un+1, u2, un+2, . . . , un, u2n ],
Treen+1 = [u1, un+2, u2, un+3, . . . , un, un+1 ],

... =
...

. . .

Tree2n−1 = [u1, u2n, u2, un+1, . . . , un, un+n−1 ].

Table 5.3: Leaf list for trees in Complete Forest Revocation Scheme

it is, RS3 is not enough for a Complete Forest on 2n users (we need at least

2n−1 schemes). The fact that we have two copies of a Complete Forest with n

users only guarantees that any pair of users ui1 , ui2 that are either both picked

from N 1, or both picked from N 2, will correspond to an index in one of the

schemes, γ3(j) = {ui1 , ui2}, for some j ∈ Ω3.

What we need to do now is exactly the same as what we did in the n = 4

case. The user set is divided into two halves: N 1 = {u1, . . . , un} and N 2 =

{un+1, . . . , u2n}. We need to create schemes such that every possible pair of

users, one from each half, are siblings in one scheme. We then have to form

the union of these with RS3. There are no such siblings in RS3, since in that

scheme all siblings are both from the same half. That means all n2 (size of

each half is n) possibilities must be accounted for. Without repetitions, this

will take exactly n trees: n2 pairs of siblings needed, n pairs per tree (trees

are length 2n, which means n2/n = n trees). One way of doing this is to use

schemes with the leaf lists in Table 5.3.

We can define these more explicitly as:

Treek = [a1, a2, . . . , a2n], k = n, . . . , 2n− 1,

a2i−1 = ui, a2i = uj, where j = (i + k mod n) + n, i = 1, . . . , n. (5.6)

What this is saying is that 2n leaves are assigned users in the different

trees as follows:

The users from N 1 are assigned to the odd leaves (1st, 3rd, 5th, . . .), in the

same way for all trees: User ui is assigned leaf v2n−1+2i. The users from N 2 are

assigned to the even leaves (2nd, 4th, 6th, . . .), but in a manner that differs for

each tree. In treek, ui is assigned leaf v2n−2+j where j = (i + k mod n) + n.

This gives a cyclic shift to the left to all the users in N 2 when going from one
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tree to the next. The Complete Forest is then the union of these n schemes

with the n− 1 schemes in RS3, hence the labelling n, . . . , 2n− 1.

We will use induction to prove that these trees satisfy the required condi-

tion.

Lemma 56. Let RS = (N , Ω′, γ′) be the output of the algorithm described in

Section 5.2.1 after k − 1 iterations. Then |N | = 2k, and for all pairs of users

ui1 , ui2 ∈ N there exists an index i ∈ Ω′ such that:

γf ′(i) = {ui1 , ui2}.

Proof. The user set is doubled in size each time the construction is run. Since

we start with the leaf list [u1, u2], of size 2, each iteration multiplies the length

by 2. So n is just 2 times 2 to the power of the number of iterations:

n = 2.2k−1 = 2k.

Let the induction hypothesis be that k − 1 iterations of the construction

create a Complete Forest Revocation Scheme (which we know has n users).

The initial cases of n = 2 and n = 4 have already been proven. We assume

the result is true for n, and use the above construction to show that it is true

for 2n. So we have a union of 2n− 1 Complete Subtree Revocations Schemes,

constructed as outlined in Section 5.2.1. The first n − 1 schemes guarantee

that any pair of users chosen are siblings in one tree provided that they are

chosen from the same half (by the induction hypothesis this is the disjoint

union of two Complete Forest Revocation Schemes).

So it remains to show that pairs of users from different halves are siblings

in some tree. Without loss of generality we will consider two users (ui, uj)

where i is in the range 1 ≤ i ≤ n and j is in the range n + 1 ≤ j ≤ 2n.

Another way to write j is j = j′ + n, where 1 ≤ j′ ≤ n. Because siblings in

the first n− 1 trees are only from the same half, we know we need to look for

this pair in the second lot of n trees. We know that ui will always be in the

(2i− 1)th column of any of these trees, we just need to find which tree has ui

paired with uj. But we can just use Formula (5.6) to find out which tree we
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need:

j′ + n = ((i + k) mod n) + n

j′ = (i + k) mod n

k ≡ j′ − i mod n.

So ui and uj are siblings in Treek, where k = j′ − i mod n, since j = ((i + k)

mod n) + n, which is what the sibling of i in this tree is defined to be.

This is how we construct a Complete Forest Revocation Scheme. This is

not the only way to construct a Forest of n− 1 Complete Subtree Revocation

Schemes such that every pair of users are siblings in one tree. There are many

other ways of finding similar forests. It is equivalent to decomposing the

complete graph on n vertices into n− 1 subgraphs of n/2 disjoint edges. The

n vertices are the n users. Each edge joins two vertices and represents a pair

of siblings. Since each tree has n/2 pairs of siblings, n/2 edges is equivalent

to a tree. The edges need to be disjoint as each user is only assigned one leaf

in any tree. The method above is very simply described, and easy to analyze,

as well as having some desirable qualities when it comes to storage.

5.2.2 Storage

What can we say about the performance of this Complete Forest Revocation

Scheme? Obviously the amount of storage needed has increased when com-

pared to the Complete Subtree Revocation Scheme. It appears to have been

multiplied by a factor of n−1, as it is comprised of n−1 copies of this scheme.

This suggests |U |max = (k + 1)(n − 1) = (k + 1)(2k − 1). However, we have

already shown that there are subsets common to different trees, regardless of

how they are chosen. Namely, the singletons, and the complete set N . Each

user does not need to retain n− 1 keys that serve the same purpose, i.e. have

the same subset of users that share it. These are not the only subsets common

to the different trees. We can work out the exact value of the storage, but

only for the specific construction of the Complete Forest we have described.

Any other construction will not have the properties we will be making use of.
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Lemma 57. Let RS be a Complete Forest Revocation Scheme on n = 2k users,

constructed as we have outlined in Section 5.2.1. Then RS has:

|U |max = 2k(k − 2) + k + 3.

Proof. The algorithm to create the n−1 Complete Subtree Revocation Schemes

works in an iterative manner. We initialise the scheme with the Complete Sub-

tree Revocation Scheme with two users, the leaf list is just [u1, u2]. At the start

of every subsequent step, each existing scheme is replaced with a disjoint union

with itself. We also add new schemes at each step, 2i in step i. There are

k − 1 steps after initialisation needed to create the union of n − 1 schemes

(
∑k−1

i=0 2i = 2k − 1). In order to work out the storage, we are going to find a

general expression for the distinct subsets in the additional schemes at each

iteration.

As we have said, the first tree is [u1, u2]. Consider what happens to this

tree during the construction. In each iteration we form a disjoint union of

the scheme with itself. In terms of the leaf list, it goes from [u1, . . . , ua] to

[u1, . . . , u2a]. The number of users is doubled each time and since it starts at

2, after step i we have 2i+1 users. After k − 1 steps, we get 2.2k−1 = 2k = n

users. This will just be the Complete Subtree Revocation Scheme with γf

where f(vi) = i− (n− 1). This on its own has a storage requirement of k + 1

for each user. To determine the storage for the Complete Forest Revocation

Scheme, we will compare all trees added by the algorithm to this original tree

and see where they differ (more keys stored by any user) and where they are

the same (no extra keys). But, when we add trees, they are not of length

n (except for the last step) so we can not compare the trees as they are.

Fortunately, all trees undergo the same “disjoint union with itself” process

until they are all length n.

Say we are at the ith iteration of the construction. We will already have a

forest of 1 + 2 + 22 + . . . + 2i−1 = 2i − 1 trees, each of length 2i. These trees

have the property that any pair of users from u1, . . . , u2i will be siblings in one

of the trees. Forming the disjoint union with itself allows the same to be said

for any pair of users in u2i , . . . , u2i+1 . The trees that we will add will consist

of pairs of siblings, one from each list. The formula for the leaf list of tree j
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(where 2i ≤ j ≤ 2i+1 − 1) is:

[u1, uj+1, u2, uj+2, . . . , u2i , uj+2i ].

This leaf list can be considered a sequence of pairs in the form:

[um, ul : m ∈ S1 = {1, 2, . . . , 2i}, l ∈ S2 = {2i + 1, 2i + 2, . . . , 2i+1 − 1}],

where every second term is reduced by the appropriate modulus. The first

2i− 1 trees are (extensions of) Complete Forests of length 2i. Each set of size

≤ 2i only has users from either S1 or S2. The only sets with users from both

are sets of size 2i+1 or greater. Since the singletons, {ui}, are always common

to all trees, for each tree added in the ith iteration, each user will need to store

1 new key for each subset of size 2, 22, . . . , 2i. This works out to be i new keys,

for the i subsets that do not occur in the previous trees. Since 2i trees are

added in the ith iteration, and there are k − 1 iterations, the total storage is:

|U |max = k + 1 +
k−1∑
i=1

i2i

= k + 1 + 2k(k − 2) + 2

= 2k(k − 2) + k + 3.

Although this is less than the original estimate of (k + 1)(n− 1), it is still

the same order of complexity, O(n log(n)). However, the distinction of the

amount of storage needed will be very important when we describe a variation

of the Complete Forest.

5.2.3 Bandwidth

In this section, we will find some limits tmax(n, r) for a Complete Forest Revo-

cation Scheme. Some of the bounds arise directly from the union of schemes

(Formula (5.1) and Formula (5.2)), but we also use the specific property of a

Complete Forest (any pair of users are siblings in at least one tree).

The formula for tmax(n, r) for the Complete Subtree Revocation Scheme

is an upper bound for tmax(n, r) in the Complete Forest Revocation Scheme,

since all subsets from one Complete Subtree are contained within it. They

will both be the same for some values of r.

131



Lemma 58. Let CFRS be a Complete Forest Revocation Scheme on n = 2k

users, constructed as we have outlined in Section 5.2.1. Then the following

are true for CFRS:

1. tmax(n, 0) = 1, 2. tmax(n, n) = 0,

3. tmax(n, 1) = log2(n), 4. tmax(n, n− 1) = 1,

5. tmax(n, 2) = log2(n)− 1, 6. tmax(n, n− 2) = 1.

Proof. The first formula is true, as we can cover the whole user set with the

index for the root in any of the n−1 Complete Subtree Schemes. Formula 2 is

true for all schemes, if there are no privileged users then there is no broadcast.

It is certainly true that tmax(n, 1) ≤ log2(n), since a cover of this size can

be made in any of the component schemes. We cannot do any better in the

union of all these schemes. The reason for this can be seen when we use a

disjoint cover. The number of privileged users is n− 1, where n is a power of

2. The only subsets that can be used in the cover have cardinality a power

of 2. Since the cover must be disjoint, that means the sum of the sizes of the

subsets in the cover must equal 2k − 1 exactly. The largest subset that could

be used in a cover is of size 2k−1. This would leave 2k−1−1 users to cover. The

largest subset that we could use in a cover of these remaining users would be

of size 2k−2, leaving 2k−2 − 1. This would continue until we had one subset in

the cover for every power of 2 from k − 1 to 0,
∑k−1

i=0 2i = 2k − 1. This means

that any cover must have at least k = log2(n) subsets.

We can prove the same result even if we allow overlapping subsets in the

cover. Suppose we want to cover 2k − 1 users. First, we add to the cover any

subset of size 2k−1 that does not contain the one revoked user. We want to add

to the cover the subset that includes the most users not already covered. We

can add subsets of size 2k−1, but what is the largest the union of the two can

be? If the two subsets intersect (and one is not contained within the other),

then the intersection must be 2k−2 as the second subset must be in the form of

Formula (5.6). This is the same size union we would get using disjoint subsets.

The same applies to smaller subsets.

A similar argument holds for tmax(n, 2). The sum of the sizes of the subsets

must add up to 2k−2. The process of subtracting the size of the largest subset

will continue as before, only it will stop one step earlier at 21−2 = 0. Therefore,
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any cover of n− 2 users will require at least k − 1 = log2(n)− 1 subsets, and

so tmax(n, 2) ≤ log2(n)− 1. By Lemma 23, t(N ,R) = log2(n)+h− 2, where h

is the height of the least common ancestor of two leaves. Since the ancestor of

two leaves must be height at least one, t(N ,R) ≥ log2(n) − 1, and the same

must be true of tmax(n, 2). Therefore, tmax(n, 2) = log2(n)− 1.

Formula 4 holds for all revocation schemes. We have the condition that

there must be indices such that γ(ij) = {ui} for all u ∈ N . So we can always

cover N \R with one subset when |R| = n− 1: tmax(n, n− 1) = 1. The same

is true when |R| = n − 2 in a Complete Forest Revocation Scheme. Just as

we can find a scheme where any two revoked users are siblings, we can also

find a scheme where any two privileged users are siblings. The index for their

parent is sufficient for the cover. Therefore tmax(n, n− 2) = 1.

This last argument can be generalised to give a bound on tmax(n, r) for any

r:

Lemma 59. Let RS be a Complete Forest Revocation Scheme on n = 2k users.

Then RS has:

tmax(n, r) ≤
⌊

n− r + 1

2

⌋
. (5.7)

Proof. We have from Corollary 6 that tmax(n, r) ≤ n − r, which comes from

the fact that each user owns one key only known by himself and the centre.

In a Complete Forest we have the property that any pair of users are siblings

on one of the trees and hence there is an index in the scheme that covers only

those two users. The centre can therefore divide all privileged users into pairs

(in any order) and use the indices for the subsets of users of size 2 (with one

extra if there is an odd number). This gives:

tmax(n, r) ≤
⌊

n− r + 1

2

⌋
.

Note that tRS
max(n, n − 2) = 1 and Formula (5.7) would still be true of

a Complete Forest Revocation Scheme even if we did not stipulate that it

be the union of Complete Subtree Revocation Schemes. It would be equally

possible to create a scheme with the same property by way of a union of other

schemes. The reason we use the Complete Subtree is because we want to
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minimise tmax(n, r) for all values of r, and these bounds mainly give small

t(N ,R) for large values of r.

Lemma 59 uses the fact that we can combine the covers of two (or more)

pairs of privileged users. Unfortunately, we cannot do the same when we have

more than 1 pair of revoked users. We can find the covers when only one

pair is revoked at a time, and we have the formula in Lemma 58 that says

t(N ,R) = log2(n)− 1 (when |R| = 2), but there is no simple way to combine

the covers. What this means is that although the scheme itself can find a

cover, there is no corresponding formula like those in Lemma 59 for tmax(n, r)

when r = 4, 6, 8, . . .. There is one more bound we can place on t(N ,R). It

uses both formulae for tmax(n, r) of unions of schemes we proved at the start

of the chapter.

Lemma 60. Let RS1 be a Complete Forest Revocation Scheme on n users, and

RS2 be a Complete Forest Revocation Scheme on 2n users, both constructed

as we have outlined. Then RS2 has:

tRS2
max(2n, r) ≤ max

0≤r1,r2≤r
r1+r2=r

(
tRS1
max(n, r1)+tRS1

max(n, r2)
)
, for all 0 ≤ r ≤ 2n. (5.8)

Proof. In order to form a Complete Forest on 2n users, we take the disjoint

union of the scheme on n users with itself. If we call the resulting scheme RS3,

then by Theorem 52 we have:

tRS3
max(2n, 0) = 1

tRS3
max(2n, r) = max

0≤r1,r2≤r
r1+r2=r

(
tRS1
max(n, r1) + tRS1

max(n, r2)
)
, for all 1 ≤ r ≤ 2n.

We combine this with a union of n Complete Subtree Revocation Schemes

(the properties of these schemes do not affect this proof), which we will call

RS4. RS2 is just the union of RS3 and RS4 and by Lemma 43, we have:

tRS2
max(2n, r) ≤ min(tRS3

max(2n, r), tRS4
max(2n, r))

≤ max
0≤r1,r2≤r
r1+r2=r

(
tRS1
max(n, r1) + tRS1

max(n, r2)
)
, for all 0 ≤ r ≤ 2n.

Formula (5.8) can be used to establish a recursive bound on tmax(n, r). In

order to get as close a bound on tmax(n, r) as possible, we will combine this

with the bound of Formula (5.7) and the equations in Lemma 58.
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Let B(n, r), for any n = 2k ≥ 22 and 0 ≤ r ≤ n, be defined as follows:

B(n, r) = min

{⌊
n− r + 1

2

⌋
, X, Y

}
, where

X =





value from Lemma 58 if r ∈ {0, 1, 2, n− 2, n− 1, n}
∞ otherwise

Y = max
0≤r1,r2≤r
r1+r2=r

(
B(n/2, r1) + B(n/2, r2)

)
.

We can show that B(n, r) is an upper bound for tmax(n, r) by looking at

the three possibilities when evaluating it. If B(n, r) =
⌊

n−r+1
2

⌋
, then B(n, r) ≥

tmax(n, r) by Lemma 59. If B(n, r) = X, then we will have B(n, r) ≥ tmax(n, r)

by Lemma 58 (actually have equality). If B(n, r) = Y , then B(n, r) is an upper

bound of tmax(n, r) if B(n/2, r) is an upper bound for tmax(n/2, r). Assuming

that B(n/2, r) ≥ tmax(n/2, r) then:

B(n, r) = max
0≤r1,r2≤r
r1+r2=r

(
B(n/2, r1) + B(n/2, r2)

)

≥ max
0≤r1,r2≤r
r1+r2=r

(
tRS1
max(n/2, r1) + tRS1

max(n/2, r2)
)

≥ tmax(n, r).

So B(n, r) is an upper bound for tmax(n, r) if B(n/2, r) is an upper bound

for tmax(n/2, r). Similarly, B(n/2, r) is an upper bound for tmax(n/2, r) if

B(n/4, r) is an upper bound for tmax(n/4, r). Eventually we get to the case

n = 4, for which it is simple to calculate tmax(n, r) by exhaustive enumeration.

As we can see in Table 5.4, B(4, r) ≥ tmax(4, r) (we actually have equality).

So B(n, r) ≥ tmax(n, r) for all powers of two greater than or equal to 4.

The bound also has the added advantage that we can form a cover of any

N \R in the Complete Forest Revocation Scheme that will be no bigger that

B(n, r), where |N | = n and |R| = r. Both Lemma 58 and Lemma 59 describe

how to form a cover which is at least as small as their respective bounds. If

this cover is greater than B(n, r), then N \R can be partitioned into the two

user set of the component schemes. Repeating this process will eventually

result in a cover which is less than or equal in size to B(n, r).

It is unsurprising that we get equality when n = 4, as all the values are

calculated form the formulae in Lemma 58, which all have equality. When

135



r 0 1 2 3 4
tCS
max(4, r) 1 2 2 1 0

B(4, r) 1 2 1 1 0
tRS
max(4, r) 1 2 1 1 0

Table 5.4: tmax(n, r) for Complete Forest Revocation Scheme and Complete
Subtree Revocation Scheme (n = 4)

r 0 1 2 3 4 5 6 7 8
tCS
max(8, r) 1 3 4 4 4 3 2 1 0

B(8, r) 1 3 2 3 2 2 1 1 0
tRS
max(8, r) 1 3 2 3 2 2 1 1 0

Table 5.5: tmax(n, r) for Complete Forest Revocation Scheme and Complete
Subtree Revocation Scheme (n = 8)

n = 8, these formula are insufficient to calculate tRS
max(8, r) for all r. The

values we get for B(8, r) with equations (5.7) and (5.8) still equal tRS
max(8, r)

(Table 5.5). However, when we get to n = 16 there are some discrepancies.

There is a difference of 1 between B(16, r) and tRS
max(16, r) when r = 4 and

r = 6 (Table 5.6). Unfortunately, this method of calculating a bound on

tRS
max(n, r) will cause any differences to multiply. Each iteration assumes that

for the smaller value of n in Formula (5.8) (i.e. n/2) B(n, r) = tRS
max(n, r),

rather than just being an upper bound.

We do at least get a reasonable upper bound on tRS
max(n, r), and we can

see a clear improvement over the Complete Subtree Revocation Scheme. Just

from Equation (5.7) we get roughly half the bandwidth cost (for large r). The

value of tCS
max(n, r) = min(n/2, n − r) for r ≥ n/4, which is almost twice the

value of bn−r+1
2
c. But an increase in storage by a factor of n is almost certainly

prohibitive.

There are a few reasons why this bound differs from the actual maximum

tRS
max(n, r). The recursive relation (5.8) uses the fact that a Complete Forest

with 2n users contains the disjoint union of two Complete Forest schemes,

each with n users. So any set of privileged users can be split into two sets, and
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r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
tCS
max(16, r) 1 4 6 7 8 8 8 8 8 7 6 5 4 3 2 1 0

B(16, r) 1 4 3 5 6 5 5 5 4 4 3 3 2 2 2 1 0
tRS
max(16, r) 1 4 3 5 5 5 4 5 4 4 3 3 2 2 2 1 0

Table 5.6: tmax(n, r) for Complete Forest Revocation Scheme and Complete
Subtree Revocation Scheme (n = 16)

the cover found in the corresponding schemes. However, the Complete Forest

is the union of these with n other Complete Subtree Revocation Schemes.

Any of these may reduce the size of any cover, including those that give the

maximum in the smaller schemes. The earlier bound of (5.7) uses the fact

that any pair of privileged users are siblings in at least one tree. But it does

not take into account that if we have enough pairs of siblings, we might be

guaranteed that two of the parents of pairs of siblings might be siblings in one

of the trees as well. This would mean that four privileged users share a key

exclusively instead of only two, and hence t(N ,R) is reduced. So whenever

the bound differs from tmax(n, r), even by just one, this will trickle through

the calculations of B(n, r) for all larger values of n.

In this section, we have seen an application of the union, and disjoint union,

of schemes. The resulting scheme does a very low bandwidth cost. This comes

with the cost of prohibitively high storage, making it impractical in most cases.

We also have the problem of not being able to analyse the bandwidth. We

only know bounds on tmax(n, r), we do not know exactly how much of an

improvement the Complete Forest Revocation Schemes is over the Complete

Subtree Revocation Schemes. In the next section, we will construct a variant

on the Complete Forest Revocation Scheme that avoids these problems.

5.3 Partial Forest

We wish to construct a scheme that has lower bandwidth than the Complete

Subtree Revocation Scheme, but without the extremely high storage of the

Complete Forest. Fortunately, there is a clear middle ground between the
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Complete Subtree Revocation Scheme and the Complete Forest of n− 1 Trees

Revocation Scheme. Instead of having the property that any pair of users

chosen from the entire set of users are siblings in one tree we are going to

make a weaker claim that does not require as many trees. We are going to

pick some level in the binary tree between the root and the 2nd last level from

the bottom (nodes at distance 2 from the leaves). We will consider all the

users descended from a particular node at this level to be part of the same

group. We let g be the number of users in this group (g is necessarily a power

of 2). This partitions the set of users into g′ = n/g groups of g (g′ is also a

power of 2). The requirement of the forest is that any pair within a group are

siblings in at least one tree. We say nothing of pairs of leaves chosen from

different groups.

Definition 61. Let RS = (N , Ω′, γ′) be the union of X Complete Subtree

Revocation Schemes, RS1 = (N , Ω, γf1), . . . , RSX = (N , Ω, γfX
), with |N | =

n. Let the subsets N1,N2, . . . ,Ng be a partition of N into g′ equally sized

sets (each of size g, where 2 < g < n). We say that RS is a Partial Forest

Revocation Scheme on g − subsets if for all pairs of users ui1 , ui2 ∈ N such

that ui1 , ui2 are in the same partition Nj, there exists an index i ∈ Ω′ such

that

γ′(i) = {ui1 , ui2}.
Let each partition of g users be a group. First of all, since the number of

users in each group and the number of groups are both whole numbers whose

product is a power of 2 (n = 2k), they must both also be powers of 2. Second,

we can show the requirement can be satisfied by a union of g − 1 schemes

using the same argument to show the same was true for the Complete Forest.

There are
(

g
2

)
distinct pairs of users from any one group, and each scheme

can only have at most g/2 pairs of siblings (again from any one group), so
g(g−1)

2
/g

2
= g − 1.

So how do we go about constructing a Partial Forest? The construction

is a very simple modification of the Complete Forest algorithm. To create a

Complete Forest with 2n users, we first got a Complete Forest with n users.

We took a disjoint union of this with itself. This gives us a scheme with 2n

users comprising of two halves, where each half has all the properties of a
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Complete Forest on n users. More schemes are added to give it the properties

of a Complete Forest on 2n users, but it is just his first operation that we will

use in the Partial Forest.

The construction goes as follows: Construct a Complete Forest on g users

(union of g − 1 Complete Subtree Revocation Schemes). We repeatedly take

a disjoint union of this scheme with itself, doubling the number of users each

time, until we have n users. This is the same process as the construction

for the Complete Forest up until we have g − 1 trees of length g (first log2(g)

steps), and it is only the first half of the process for the rest (taking the disjoint

union, but not adding new schemes). The output is a union of g−1 Complete

Subtree Revocation Schemes with n users.

It is simple to show this results in a scheme that satisfies the requirements

of a Partial Forest. The Complete Forest on g users has the property we

want: any pair of users from the set of size g are siblings in one tree. But

the number of users in this scheme is g and we need the same property to

hold in a scheme with n users, where n is a power of 2 greater than g (if

g = n then the constructed scheme is a Complete Forest Revocation Scheme).

In taking the disjoint union with itself, not only do we get double the users,

but all properties of the first half, {u1, u2, . . . , ug}, are present in the second

half, {ug+1, ug+2, . . . , u2g}. So after log2(g
′) steps we have a disjoint union of

g′ Complete Forest Revocation Schemes on g users. The g′ distinct sets of

g users each have the property required of a Partial Forest because there is

a component Complete Forest on each of the g′ sets of users in the overall

scheme.

In the definition of a Partial Forest, we restricted the values of g to be

greater than 2 and less than n. As has already been said, we do not include g =

n as we wish to distinguish a Partial Forest and a Complete Forest Revocation

Scheme. If g = 1 then the requirement will be satisfied with any revocation

scheme. There are no pairs of users that can be chosen from a group of size

one, so this puts no restriction on the scheme. The case of g = 2 is also trivial,

as the property is satisfied by a single tree if we define the groups to be those

pairs of users who are siblings. There is only one option when choosing pairs

of users from a group of size 2, and by definition those users are siblings. This
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is why we choose the defining node of a group to be at least at a distance 2

from the leaves. We will look at the first interesting case, g = 4.

The construction of the Complete Forest of Trees when n = 4 results in a

scheme with the following leaf lists: [u1, u2, u3, u4], [u1, u3, u2, u4], [u1, u4, u2, u3].

For any n greater than 4 we will need to stretch these schemes. A group will

be a subtree rooted 2 levels above the leaves (so it must have 22 = 4 users).

To get the property that any pair of users from the same group will be siblings

in at least one of the trees, we only need the following trees:

Tree 1 = [u1, u2, u3, u4, u5, u6, u7, u8, . . . , un−3, un−2, un−1, un],

Tree 2 = [u1, u3, u2, u4, u5, u7, u6, u8, . . . , un−3, un−1, un−2, un],

Tree 3 = [u1, u4, u2, u3, u5, u8, u6, u7, . . . , un−3, un, un−2, un−1].

Just looking at the first four columns of leaves, we can see that all
(
4
2

)
pairs

from {u1, u2, u3, u4} occur as siblings in one of the trees. This means that what

would be the worst case distribution for n/2 users with one Complete Subtree

(every second user revoked) would only require t(N ,R) = n/4 or half the

number of subsets. Of course, this is not necessarily the value of tmax(n, r) for

these 3 Trees, as the choice of R that gives tmax(n, r) in one scheme may not

do the same in another. Also, we still have all other values of r to consider.

The formula for tmax(n, r) is relatively straightforward, by the nature of

the construction and Theorem 52.

Theorem 62. Let PFRS = (N , Ω, γ) be a Partial Forest Revocation Scheme

on g − subsets sets, where g.g′ = n and |N | = n. Then:

tPFRS
max (n, 0) = 1 (5.9)

tPFRS
max (2g, r) = max

0≤r1,r2≤min(r,g)
r1+r2=r

(
tCFRS
max (g, r1) + tCFRS

max (g, r2)
)

(5.10)

for all 1 ≤ r ≤ 2g

tPFRS
max (2n, r) = max

0≤r1,r2≤min(r,n)
r1+r2=r

(
tPFRS
max (n, r1) + tPFRS

max (n, r2)
)
, (5.11)

for all 1 ≤ r ≤ 2n and n > g.

where CFRS is the Complete Forest Revocation Scheme on g users.

Proof. A Partial Forest Revocation Scheme on 2 sets, each of size g is com-

prised of the disjoint union of a Complete Forest Revocation Scheme on g users
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(CFRS), with itself. By Theorem 52, we have Formulae (5.9) and (5.10). If

n > g, then we take the disjoint union of the above scheme with itself, several

times, until we have 2n users. This means that for any n > g, a Partial Forest

with 2n users is the disjoint union of a Partial Forest with n users, with itself.

Therefore we can use Theorem 52 to get Formula (5.11).

This gives us a way to calculate tmax(n, r) for a Partial Forest on g −
subsets, but only if we know tmax(g, r′) with a Complete Forest for all 0 ≤
r′ ≤ g. But in the previous section we could only find tmax(n, r) by exhaustive

search, the formulae we found were only upper bounds. That means we can

only calculate tmax(n, r) for a Partial Forest on 4, 8 or 16 − subsets. If we

substituted the upper bound for tmax(n, r) with a Complete Forest, B(n, r),

into Formula (5.10), then we would get an upper bound for tmax(n, r) with a

Partial Forest. This would give us some idea of the performance of the scheme

for larger g.

We can get another bound on tmax(n, r) in the Partial Forest, which stems

directly from the definition. The result is an equation similar to Formula (5.7)

for the Complete Forest.

Lemma 63. Let PFRS = (N , Ω, γ) be a Partial Forest Revocation Scheme on

g − subsets sets, where g.g′ = n, |N | = n and g′ ≥ 2. Then:

tPFRS
max (n, r) ≤

⌊
n− r

2

⌋
+

g′

2
. (5.12)

Proof. Let R be any subset of N of size r that gives t(N ,R) = tmax(n, r). By

the definition of a Partial Forest, we can cover N \ R as follows: Partition

N \R into the various groups in PFRS. In each group, use 1 index per pair

of privileged users (which we can do as it is a Partial Forest), with one extra

if there is a privileged user left over. If t2 is the number of users left over, then

there are t1 = n−r−t2
2

pairs of users in all, which means the size of the cover

can be written as:

t1 + t2 =
n− r − t2

2
+ t2 =

n− r

2
+

t2
2

.

Since n and r are fixed, the size of the cover is dependent on t2. Because there

are only g′ groups, there can be at most g′ users left over. We can go further
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and say that there can be at most g′ users left over when n − r is even and

at most g′ − 1 users left over when n − r is odd. This is because g′ is even

(a power of 2). So summing g′ odd numbers can only give an even number.

When n − r is odd, at least one of the groups must have an even number of

privileged users. Therefore:

t2 ≤ g′ − (n− r mod 2).

So an upper bound for the size of the cover is:

t1 + t2 =
n− r

2
+

t2
2

≤ n− r

2
+

g′ − (n− r mod 2)

2

=
n− r − (n− r mod 2)

2
+

g′

2

=

⌊
n− r

2

⌋
+

g′

2
.

The value of t(N ,R) is less than or equal to t1 + t2 as this is not necessarily

the way to find the minimal cover of N \R. So:

t(N ,R) ≤
⌊

n− r

2

⌋
+

g′

2
.

Since t(N ,R) = tmax(n, r), we have:

tmax(n, r) ≤
⌊

n− r

2

⌋
+

g′

2
.

We can use this to show that the Partial Forest Method has tmax(n, r)

smaller than that of the Complete Subtree Revocation Scheme. For r in the

range n/2 ≤ r ≤ n we have that tCSRS
max (n, r) = n − r. In the same range,

tPFRS
max (n, r) is bounded above by Formula (5.12), or just:

tPFRS
max (n, r) ≤ n− r

2
+

g′

2
.

If we consider these two as functions of r (which is how we plot tmax(n, r)),

then they intersect at

n− r

2
+

g′

2
= n− r

i.e. r = n− g′.
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The line that serves as a bound for tmax(n, r) for the Partial Forest has a

greater slope (−1/2) than that of the Complete Subtree (−1). Therefore

tPFRS
max (n, r) < tCSRS

max (n, r),

for n/2 ≤ r < n − g′. This is a non-empty range, as the biggest g′ can be is

n/4 when we have a Partial Forest on 4− subsets.

So the Partial Forest Revocation Scheme has tmax(n, r) smaller than that

of the Complete Subtree Revocation Scheme, but the reduction is not as good

as that with the Complete Forest Revocation Scheme. The advantage of the

Partial Forest lies in the storage requirement. In calculating the storage for

the Complete Forest, we counted distinct subsets in the trees added at each

step of the construction. We have already shown that the Partial Forest is

just a slight modification of this construction. Namely, we create a Complete

Forest with g users (union of g − 1 Complete Subtree Revocation Schemes),

and add no further schemes. So we can use the same derivation, producing a

sum that stops at g − 1 rather than extending to n− 1.

Corollary 64. Let PFRS = (N , Ω, γ) be a Partial Forest Revocation Scheme

on g − subsets sets, where g = 2l, n = 2k and |N | = n. Then:

|U |max = (k + 1) + g(l − 2) + 2. (5.13)

Proof. In Lemma 57 we saw that each scheme added in step i of the construc-

tion of a Complete Forest increases the storage of every user by i. There are

2i such schemes added in step i. The construction for a Partial Forest mimics

that of a Complete Forest, until there are g− 1 schemes and then no more are

added. This means that there are l − 1 steps in the construction, instead of

k − 1 (
∑l−1

i=0 2i = g − 1). So we have a total storage requirement of:

|U |max = k + 1 +
l−1∑
i=1

i2i

= (k + 1) + g(l − 2) + 2.

So we have gone from a storage ofO(n log(n)) to one ofO(log(n)+g log(g)).

If g is fixed, then the storage has a fixed extra cost on top of that of the

Complete Subtree, no matter how large n is. For g = 4, g = 8 and g = 16 the
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Figure 5.2: tmax(n, r) for Complete and Partial Forests Revocation Schemes,
n = 16. Top to bottom: g = 2 (Complete Subtree), g = 4, g = 8 and Complete
Forest, tmax(16, r) (found by exhaustive search over all R).

extra cost is 2, 10 and 34 respectively. What this means is that for n users,

the storage for the Complete Subtree Revocation Scheme is log2(n) + 1, the

storage for a Partial Forest on 4 − subsets is log2(n) + 1 + 2, on 8 − subsets

is log2(n) + 1 + 10, on 16− subsets is log2(n) + 1 + 34, etc.

Some graphs of tmax(n, r) are plotted in Figures 5.2 and 5.3. Figure 5.2

plots tmax(16, r) of all possible Partial Forests (from the Complete Subtree

to the Complete Forest) for n = 16. All values are calculated by exhaustive

search. We can clearly see the step function that results from Formula (5.12),

but the Partial Forests also performs better than the Complete Subtree outside

the range given above. But the figures are too small to make much comparisons

between the schemes. In Figure 5.3 we have a much larger population, n = 512.

Formulae (5.9), (5.10) and (5.11) were used to find tmax(512, r) for the Partial

Forests, as well as Formula (4.1) for the Complete Subtree. As tmax(512, r)

cannot be calculated for the Complete Forest Revocation Scheme, instead we

have plotted the upper bound B(n, r).

What we see is the step function (Formula (5.12)), get closer to n−r
2

as

g increases. The graphs get close to B(512, r) quite quickly. There is very

little difference between tmax(512, r) for the Partial Forest with g = 16, and
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Figure 5.3: Complete and Partial Forests Revocation Schemes, n = 512. Top
to bottom: tmax(512, r) for g = 2 (Complete Subtree), g = 4, g = 8, g = 16,
and B(512, r) for Complete Forest.

B(512, r). This comparison may not seem fair as we are comparing a upper

bound with a known formula. But at the very least, for large values of r,

tmax(n, r) is not likely to stray too far from B(n, r) = bn−r+1
2
c. We also see a

very distinctive levelling off of the graphs when they reach the highest value of

tmax(512, r). With the exception of g = 4, all graphs remain close to a constant

height for a range of r, when they reach the maximum. In Chapter 4 we showed

that tmax(n, r) = n/2 for the Complete Subtree Revocation Scheme with n/4 ≤
r ≤ n/2 (follows from Corollary 26). To describe the maximum value of

tmax(n, r) in any of the Partial Forests, we need to look at the maximum value

in the underlying Complete Forest.

The values for tmax(n, r) in a Complete Forest on 4 users are given in

Table 5.4. The highest value of tmax(4, r) is 2 when r = 1. So when we

have the disjoint union of n/4 such schemes, we will get the maximum value

of tmax(n, r) when r = 1 × (n/4). Since r = 1 was the only value where

tmax(4, r) = 2, there is only one value of r where we get tmax(n, r) = n/4 in

a Partial Forest on 4 − subsets. In a Complete Forest on 8 users, we have
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two values of r that give the maximum value of tmax(n, r). If r = 1 or 3,

tmax(8, r) = 3. So in the Partial Forest that is comprised of the disjoint union

of n/8 Complete Forests, we get tmax(n, r) = 3n/8 if r = 1×(n/8) or 3×(n/8).

These are the extreme values of r where we get the maximum, but they are

not the only ones. Any r that is the sum of n/8 integers from [1, 3] will give

the same value of tmax(n, r). Starting at r = n/8, the next highest value can

only be r = n/8 + 2, gotten by replacing one of the 1’s in the sum by a 3. As

this is all we can do to r and still have tmax(n, r) = 3n/8, only even values

of r in the range n/8 ≤ r ≤ 3n/8 can satisfy this equation. Hence we get a

sawtooth function:

tmax(n, r) =

{
3n/8 if n/8 ≤ r ≤ 3n/8 and r is even

3n/8− 1 if n/8 ≤ r ≤ 3n/8 and r is odd.

In a Complete Forest on 16 users, the maximum value is tmax(16, r) = 5 for

any of r = 3, 4, 5, 7. So the extreme values of r that give maximum tmax(n, r)

are tmax(n, 3n/16) = 5n/16 and tmax(n, 7n/16) = 5n/16. Any r inside these

two values will also give the same value provided it can be written as the sum

of n/16 integers from [3, 4, 5, 7]. But for how many values of r does his hold?

We can re-phrase the problem by subtracting 3 from each of the integers in

the list, which means we have to subtract 3× (n/16) from the range. So how

many values of r in the range {0, . . . , 4n/16} can be written as the sum of n/16

integers from [0, 1, 2, 4]? There is at least one value that cannot, 4n/16−1. We

can get to within±1 with 4×(n/16−1)+2 = 4n/16−2 and 4×(n/16) = 4n/16,

but any other choice of integers will give a sum < 4n/16−2. It turns out that

this is the only value in the range that is not the sum of n/16 integers from

[0, 1, 2, 4].

Lemma 65. Let g′ be a positive integer. Then ∀r ∈ {0, 1, . . . , 4g′ − 2, 4g′},
∃v ∈ [0, 1, 2, 4]g

′
such that

∑g′
i=1 vi = r.

Proof. Proof by induction on g′. Case g′ = 1 amounts to showing that for

any r ∈ {0, 1, 2, 4} is equal to the sum of one integer from [0, 1, 2, 4]. This is

obvious. Assume hypothesis is true for g′ = k. Need to show true for g′ = k+1.

To do this, we must show that for any r ∈ {0, 1, . . . , 4k + 2, 4k + 4}, ∃v ∈
[0, 1, 2, 4]k+1 such that

∑k+1
i=1 vi = r. But by the induction hypothesis we sum
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up to any r ∈ {0, 1, . . . , 4k− 2, 4k} with k integers from [0, 1, 2, 4]. By adding

an extra element, 0, onto each of these vectors, we get the same sums but with

g′ = k + 1 elements. The remaining cases (r ∈ {4k− 1, 4k + 1, 4k + 2, 4k + 4})
can be treated as special cases:

4 + . . . + 4︸ ︷︷ ︸
k−1

+1 + 2 = 4k − 1

4 + 4 + . . . + 4︸ ︷︷ ︸
k

+1 = 4k + 1

4 + 4 + . . . + 4︸ ︷︷ ︸
k

+2 = 4k + 2

4 + 4 + . . . + 4︸ ︷︷ ︸
k

+4 = 4k + 4.

Any r ∈ {0, . . . , 4n/16 − 2, 4n/16} can be written as the sum of n/16

integers from [0, 1, 2, 4], which means any r ∈ {3n/16, . . . , 7n/16 − 2, 7n/16}
can be written as the sum of n/16 integers from [3, 4, 5, 7]. So tmax(n, r) for

the Partial Forest on 16− subsets is at its highest for these values.

These points and Formula (5.12) explains how the Partial Forests schemes

have smaller tmax(n, r) than the Complete Subtree Revocation Scheme. But

as we increase the size of the Partial Forest (increase g, and hence the number

of Complete Subtrees schemes, g−1), there is less and less of an improvement.

For example, the height of the step function Formula (5.12) over that of the

Complete Forest is dependent only on g′ which is halved each time we double

g. While the improvements in tmax(n, r) are getting less and less for larger

Partial Forests, the costs in storage grow exponentially. Since |U |max = (k +

1) + g(l − 2) + 2, the storage grows with 2ll where l = 1, 2, . . . is the height

of the nodes defining the groups. We can see this growth in Table 5.7. We

will discuss how to go about finding a good middle ground for this trade-off

in Chapter 7 when we compare all schemes.

The one remaining factor to consider when comparing these schemes is

the complexity of finding a cover. The Complete Subtree Revocation Scheme

has a very straightforward algorithm, but the algorithm given at the start of

the chapter (for any union of schemes) is more complex. What may cause

problems is the fact that in order to cover any N \ R, the centre needs to

compile the set of all indices i ∈ Ω such that γ(i) ∈ N \ R. For large R,
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l 1 2 3 4 5 6 7 8 9
g 2 4 8 16 32 64 128 256 512

|U |max n = 16 5 7 15 39 n/a n/a n/a n/a n/a
|U |max n = 512 10 12 20 44 108 268 652 1548 3596

Table 5.7: Storage for Partial Forests on g = 2l − subsets

this set will be manageable, but if R is small then the set of privileged users

is large. The set of indices we need for just one of the schemes will be O(n)

(it will be most of the nodes in a tree that has 2n − 1). Granted that most

subsets will be duplicated in the various schemes, but the combined set will

still be quite large. It will be searching through this list (which is done several

times in the algorithm) that will require the bulk of the time taken to find the

cover. So for the Partial Forests Methods with high g and the Complete Forest

Revocation Scheme, we require a centre with either the ability to operate on

very large sets, or that can tolerate a long delay before broadcasting if the

scheme is to be used with small numbers of revoked users.
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Chapter 6

Subset Difference Revocation

Scheme

The main drawback of the Complete Subtree Revocation Scheme is the high

bandwidth, with the broadcast key being encrypted as many as n/2 times.

From r = n/4 to r = n/2 we have tmax(n, r) = n/2 (by Formula (4.1)).

The second technique of Naor et al. [23] looks to reduce this at the cost of

increasing the storage required. The Subset Difference Revocation Scheme

(SDRS) increases the number of subsets available, compared to the Complete

Subtree Revocation Scheme, in order to reduce the number needed for any

cover.

To show exactly how much of an improvement the Subset Difference Re-

vocation Scheme is, we will derive the formula for tmax(n, r), as we did for the

Complete Subtree Revocation Scheme. To do this, we will first specify the

range of r for which the bound of Naor et al., tmax(n, r) ≤ 2r − 1, achieves

equality. This gives rise to a type of Steiner Tree, a Special Subtree, that is

pivotal in finding t(N ,R) = tmax(n, r) for all r. In the second section, we will

define a type of subset R ⊂ N , an M -type subset, which has the property

that ST (R) consists of Special Subtrees. This definition aids in counting the

size of covers. The problem of maximising t(N ,R) over all M -type subsets

can be re-stated as finding j-tuples of integers with certain properties. It is by

finding these tuples that we derive tmax(n, r). We will also modify the recur-

sive formula of taver(n, r) for disjoint unions (Formula (5.5)) to apply to the
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Subset Difference Revocation Scheme.

Here is a quick review of the Subset Difference Revocation Scheme. N is

the set of users (|N | = n), Ω is the index set (each index is a placeholder for

an establishment key), T is a complete binary tree with n = 2k leaves and

the functions γ and δ determine which users get which keys. From the user’s

point of view, we have:

• User u is assigned a leaf, vl, on a complete binary tree T (f(vl) = u).

• δ(u) corresponds to the keys u is given

• δ(u) = {(i, j) : vi ancestor of vl and vj, vj not ancestor of vl}

And for a key Li,j:

• Index in Ω for this key is (i, j)

• This index pair corresponds to nodes vi and vj on tree T

• γ(i, j) is the set of users who are given key Li,j

• γ(i, j) = {u : u’s leaf is descended from vi but not from vj}

When we say that keys are given to the user, this can be either explicitly,

or implicitly as described in Chapter 3. The main focus of this chapter will

be the bandwidth costs rather than the storage costs.

6.1 Maximum Bandwidth

We have already seen from Corollary 17 that in the SDRS, tmax(n, r) ≤ 2r−1,

for all 1 ≤ r ≤ n. For the case r = 0, we have that tmax(n, 0) = 1, since we

added an extra index for this specific case, γ(0, 0) = N . Also, all subsets that

you would find in the Complete Subtree Revocation Scheme are present in the

Subset Difference Revocation Scheme (Lemma 16), which means the formula

for tmax(n, r) with that scheme (Formula (4.1)) serves as an upper bound for

this one. Thus:

tSDRS
max (n, r) ≤ tCSRS

max (n, r) = r(k − j)− 2(r − 2j),
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where n = 2k, j = blog2(r)c.
What about the recurrence relations that we found for the disjoint union

of schemes in Chapter 5 (Formulae (5.2) and (5.5))? The Subset Difference

Revocation Scheme is defined on a binary tree, so it would seem likely that

the scheme on 2n users consists of the disjoint union of the scheme on n users

with itself (as was the case for the Complete Subtree Revocation Scheme).

Unfortunately, this is not the case. Let RS = (N3, Ω3, γ3) be the disjoint

union of a Subset Difference Revocation Scheme on two different user sets

(of the same size), (N1, Ω1, γ1) and (N2, Ω2, γ2). Let T1 and T2 be the two

trees that the schemes are defined on. Then the subsets in the disjoint union,

{γ(i, j) : (i, j) ∈ Ω3}, are:

• γ1(i, j) = desc(vi) \ desc(vj), where vj is a descendant of vi on tree T1

• γ2(i, j) = desc(vi) \ desc(vj), where vj is a descendant of vi on tree T2

• γ1(0, 0) = N1, from first scheme

• γ2(0, 0) = N2, from second scheme

• γ3(3, 0) = N3, from disjoint union

The above subsets do occur in the Subset Difference Revocation Scheme on

2n users, but they do not form the complete list. The only subset mentioned

above with users from both N1 and N2 is N3. However, the Subset Difference

Revocation Scheme defined for N3 contains several subsets with users from

both N1 and N2. Consider the case where vi is the root (of the tree with

2n leaves), and vj is any node/leaf that is not vi’s child (must have 2n ≥ 4).

Clearly desc(vi) = N3, as all leaves are descended from the root. The size

of desc(vj) can be at most a quarter of the total number of users (number of

descendants of the root is 100%, descendants of a child of the root is 50%,

descendants of a grandchild of the root is 25%, . . . ). As desc(vi) \ desc(vj)

must have more than half the users, there will be users in the subset from

both halves N1 and N2. But desc(vi) \ desc(vj) 6= N3 as there will be at least

one user in desc(vj).

So the Subset Difference Revocation Scheme (SDRS) on 2n users cannot

be formed by taking the disjoint union of SDRS on n users with itself. But
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the fact that the two size n schemes are contained in the size 2n schemes

means that Formulae (5.2) and (5.5) serve as upper bounds (on tmax(n, r) and

taver(n, r) respectively). While it may be possible to modify the formula to

work in this case, we will derive an explicit formula for tmax(n, r), just as we

did for the Complete Subtree Revocation Scheme. As before, we will look at

what choice of R gives t(N ,R) = tmax(n, r).

But before we do that, we need to describe how to calculate t(N ,R) for

any R. The size of the cover of N \ R turns out to be related to how many

nodes hang off ST (R), but not as directly as it was for the Complete Subtree

Revocation Scheme. If we look at the appearance of one of the subsets output

from γ in the Subset Difference Revocation Scheme (Figure 6.1), we can see

that it can simply be all the leaves descended from one node (subset γ(l, j)).

But the other subset in that diagram, γ(k, i), is the set of all leaves descended

from two nodes (the right child of vk and the left-most grandchild of vk).

This gives us another way to describe the subset γ(i, j): If we consider the

path from node vi to vj, then γ(i, j) is the set of all leaves descended from

all nodes that hang off this path, including the node that hangs off vi and

excluding any node that hangs off vj. Certainly each such leaf belongs to

γ(i, j), since it is descended from vi and not descended from vj. We see

here the improvement of the Subset Difference Revocation Scheme over the

Complete Subtree Revocation Scheme. In the Complete Subtree Revocation

Scheme, each node hanging off ST (R) requires an index in the cover. In the

Subset Difference Revocation Scheme several nodes hanging off ST (R) will

only require one index in the cover provided they all hang off the same path.

We formally define this type of path as follows:

Definition 66. Let R be some subset of leaves of a complete binary tree T

(so ST (R) is a subtree of T ). A path from vi to vj is a Special Path if the

following hold:

• vi and vj are in ST (R), with vi 6= vj

• vj is a descendant of vi

• All nodes from vi to par(vj) (which can be the same node) have one

node not in ST (R) hanging off
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gamma(k,i) gamma(l,j)

v

v_k v_l

v_i

v_j

Figure 6.1: Examples of subsets in the Subset Difference Revocation Scheme.

• Either vi is the root or par(vi) does not have a node hanging off

• vj is either a leaf or a node of degree 3 in ST (R).

The set of leaves descended from the nodes hanging off the nodes from vi to

par(vj) is Si,j.

The node vj is a null Special Path if one of the following hold: vj is the root

and has both children in ST (R), vj is a leaf and par(vj) has both children in

ST (R), or vj is an internal node and both vj and par(vj) have both children

in ST (R).

In a Special Path from vi to vj, vi, . . . , vj′ = par(vj) is a maximal path in

ST (R) with each node joined to a node not in ST (R), i.e. we cannot extend

vi, . . . , vj′ to a longer path with the same property. As a result, we can make

the following statement:

Lemma 67. Let R be a subset of leaves of a complete binary tree. Then the

nodes of ST (R) are partitioned into Special Paths and null Special Paths.

Furthermore, any node which is not a null Special Path belongs to a unique

Special Path.

Proof. A null Special Path is either a node of degree 3 (or a leaf) whose parent

does not have a node hanging off or else is the root with degree 2. One of the

following must be true of any other node, v, in ST (R):
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1. v has a node not in ST (R) hanging off (either because it is an internal

node with degree 2 or the root with degree 1)

2. v is a degree 3 node (or a leaf) whose parent does have a node hanging

off

Suppose v is in the form of the first case. Each node in ST (R) has at most

one parent in ST (R) (each node in a tree has at most one parent and all paths

to the root are in ST (R)). Since v is a node in a binary tree and has a node

not in ST (R) hanging off, it has exactly one child in ST (R). If this child of

v or the parent of v also has a node hanging off, then the same will apply to

them. Therefore, there is some unique maximal path of nodes each with one

child not in ST (R) that contains v. The parent of the node closest to the root

on this path is either the root or has a sibling in ST (R). The node furthest

from the root on this path has a child with no vertex hanging off. Therefore

v belongs to a unique Special Path.

Otherwise, v is a degree 3 node (or a leaf) whose parent does have a node

hanging off. By the same argument, par(v) belongs to a unique maximal path

of nodes each with one child not in ST (R). Since v can only have one parent,

v belongs to a unique Special Path.

Special Paths are terminated by a degree 3 node or a leaf. In a binary tree,

the only other possibility is a node of degree 2, in which case it has another

node hanging off (which means the path does not terminate at that node).

Although it does not have any node hanging off, we need to define the degree

3 node (or leaf) vj to be part of the Special Path. Each other node on the

path has a node hanging off. If we were to define a Special Path to consist

of only those nodes with one child not in ST (R), then we would not know

which node hangs off par(vj) and which is in ST (R). So this node is in the

Special Path. As we defined in Section 2.3, the length of a path is the number

of edges in the path. As the degree 3 node is included, the length is therefore

equal to the number of nodes that hang off. We use Si,j to denote the set of

leaves descended from the nodes that hang off the Special Path from vi to vj

(including vi but not vj). One of the first things we will prove is that this set

is equal to γ(i, j).
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Before discussing Special Paths any further, we need to prove the relation

between the number of Special Paths in ST (R) and the size of the minimal

cover. There are a number of results we have to prove first, before we prove

this relation. As well as the above mentioned equality between the set of

leaves descended from a Special Path from vi to vj and γ(i, j), we must then

prove that there are no nodes common to two distinct Special Paths. We also

prove the same for the subsets in a minimal cover, i.e. any cover in a Subset

Difference Revocation Scheme is disjoint. The consequence of these results is

that t(N ,R) is equal to the number of Special Paths in ST (R).

Lemma 68. Let SDRS = (N , Ω, γ) be a Subset Difference Revocation Scheme

defined on tree T . Let vi to vj be a Special Path. Then

{f(vl) : vl ∈ Si,j} = γ(i, j)

Proof. Let vl be a leaf such that f(vl) ∈ γ(i, j). Then vl is a descendant of vi,

but not of vj. Since both vl and vj are descendants of vi, the least common

ancestor of these two nodes is either vi or some descendant of vi. This node

cannot be vj (or any node that is a descendant of vj) as vl is not descended

from vj. So, it must be on the path from vj’s parent to vi. The least common

ancestor has one child that is an ancestor of vl and one child that is on the

path from vi to vj. Therefore, vl is a descendant of a node that hangs off the

Special Path from vi to vj, i.e. vl ∈ Si,j. Conversely, if vl ∈ Si,j, then it is a

descendant of a node that hangs off the Special Path from vi to vj. The leaf

is clearly a descendant of vi. But it cannot be a descendant of vj as it has an

ancestor which is a sibling of an ancestor of vj. Therefore f(vl) ∈ γ(i, j). So

γ(i, j) = {f(vl) : vl ∈ Si,j}.

The fact that the sets of leaves descended from Special Paths are disjoint

follows naturally from the definition.

Lemma 69. Let RS = (N , Ω, γ) be a Subset Difference Revocation Scheme

defined on tree T . Let vi1 to vj1 and vi2 and vj2 be two distinct Special Paths.

Then Si1,j1 ∩ Si2,j2 = ∅.

Proof. ST (R) is a collection of paths from leaves to the root. If any node is

in ST (R), then all nodes on the path to the root are also in ST (R). Con-

sequently, if a node, vi, hangs off ST (R), then all nodes from par(vi) to the
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root are in ST (R). This means there can be no other node hanging off ST (R)

on the path from vi to the root, as it would require a node not in ST (R) on

this path. Neither can any node descended from vi hang off ST (R). If there

were such a node, then all the ancestors of that node, including vi, would be

in ST (R). Since vi hangs off ST (R), it is not in ST (R). Therefore, there can

be at most one node hanging off ST (R) on the path from any leaf to the root

(exactly one if that leaf is not in R, and none if it is not in R).

Suppose there is a leaf vl ∈ Si1,j1 ∩ Si2,j2 . So each of the Special Paths

corresponding to Si1,j1 and Si2,j2 has a node hanging off that is an ancestor

of vl. But there can be only one node hanging off ST (R) on the path from

vl to the root, so this must be the same node for both Special Paths. So

these two paths, vi1 , . . . , par(vj1) and vi2 , . . . , par(vj2), have a node in common.

This contradicts Lemma 67, which says any node in ST (R) can only belong

to at most one Special Path. Therefore there is no vl ∈ Si1,j1 ∩ Si2,j2 and

Si1,j1 ∩ Si2,j2 = ∅.

It is important that we establish that any cover of the Subset Difference

Revocation Scheme is a disjoint cover. The following Lemma shows that the

union of two subsets of the Subset Difference Revocation Scheme which are

not disjoint, is itself a subset of the Subset Difference Revocation Scheme. In

the proof, whenever we say two nodes on a binary tree are directly related, we

mean that one is a descendant of, or equal to the other. We also use the fact

that:

γ(i, j) = desc(i) \ desc(j)

which implies γ(i, j) ⊂ desc(i).

From Lemma 20, we know that if the sets of descendants of two nodes in a

binary tree intersect, then one is contained in the other. Specifically, if j is

descended from i (or if j = i) then desc(j) ⊆ desc(i). If i and j are not related

then desc(i) ∩ desc(j) = ∅.
In the proof, we consider two subsets in the Subset Difference Revocation

Scheme: γ(i1, j1) and γ(i2, j2). We will look at all the possibilities for the dif-

ferent relative positions of the four nodes i1, j1, i2 and j2. For each possibility,

we need to show either γ(i1, j1) ∩ γ(i2, j2) = ∅ or γ(i1, j1) ∪ γ(i2, j2) = γ(i, j),
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where γ(i, j) is some other subset in the Subset Difference Revocation Scheme.

The order we look at the different possibilities is:

1. desc(i1) ∩ desc(i2) = ∅

2. desc(i1) = desc(i2)

3. desc(i1) ⊃ desc(i2)

(a) desc(i2) ⊆ desc(j1)

(b) desc(i2) ∩ desc(j1) = ∅
(c) desc(i2) ⊃ desc(j1)

i. desc(j1) ⊇ desc(j2)

ii. desc(j1) ⊆ desc(j2)

iii. desc(j1) ∩ desc(j2) = ∅

4. desc(i1) ⊂ desc(i2)

Lemma 70. Let SDRS = (N , Ω, γ) be a Subset Difference Revocation Scheme.

For any (i1, j1), (i2, j2) ∈ Ω, γ(i1, j1)∩γ(i2, j2) 6= ∅ implies γ(i1, j1)∪γ(i2, j2) =

γ(i, j), for some (i, j) ∈ Ω.

Proof. Let us first consider the case when i1 and i2 are not directly related.

No path from i1 to a leaf goes through i2 and vice versa. This means that

desc(i1) ∩ desc(i2) = ∅. Therefore, γ(i1, j1)∩ γ(i2, j2) = ∅, as both subsets are

contained in the respective set of descendants, i.e. we have γ(i1, j1) ⊂ desc(i1)

and γ(i2, j2) ⊂ desc(i2). So if γ(i1, j1) and γ(i2, j2) intersect, then either i1 =

i2, i1 is a descendant of i2 or i2 is a descendant of i1.

Suppose i1 = i2. If the two nodes j1 and j2 are also equal, then the

subsets are the same (γ(i1, j1) = γ(i2, j2)). If j1 is a descendant of j2 then

desc(j1) ⊆ desc(j2). If we let i = i1 = i2, then we get:

γ(i2, j2) = γ(i, j2) = desc(i) \ desc(j2)

⊆ desc(i) \ desc(j1)

= γ(i, j1) = γ(i1, j1).
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Hence, with j = j1, we have γ(i1, j1) ∪ γ(i2, j2) = γ(i, j). The same argu-

ment can be made if j2 is the descendant of j1, the only difference is that

γ(i1, j1) ∪ γ(i2, j2) = γ(i, j), with j = j2. If j1 is not a descendant of j2, and

j2 and is not a descendant of j1 then desc(j1) ∩ desc(j2) = ∅. Hence:

γ(i1, j1) ∪ γ(i2, j2) = (desc(i1) \ desc(j1)) ∪ (desc(i2) \ desc(j2))

= desc(i) \ (desc(j1) ∩ desc(j2))

= desc(i).

If i is the root then γ(i1, j1) ∪ γ(i2, j2) = γ(0, 0), otherwise we can write the

union as γ(i1, j1) ∪ γ(i2, j2) = γ(par(i), sib(i)). Thus the result holds when

i1 = i2.

Suppose now that i2 is a descendant of i1. If j1 = i2, or i2 is a descendant

of j1 then desc(i2) ⊆ desc(j1). Since:

γ(i1, j1) = desc(i1) \ desc(j1) and desc(i2) ⊆ desc(j1)

we have γ(i1, j1) ∩ desc(i2) = ∅
So γ(i1, j1) ∩ γ(i2, j2) = ∅.

Hence, we may suppose that j1 is a descendant of i2 or j1 and i2 are not

directly related. If the latter is the case, then γ(i2, j2) ⊆ desc(i2) ⊆ γ(i1, j1).

So, γ(i1, j1) ∪ γ(i2, j2) = γ(i1, j1).

We are left with the option of j1 being a descendant of i2. If j1 and j2 are

related (either they are the same or one is descended from the other), then we

set j to be the node furthest from the root. That way:

desc(j1) ∩ desc(j2) = desc(j)

so that γ(i1, j1) ∪ γ(i2, j2) = (desc(i1) \ desc(j1)) ∪ (desc(i2) \ desc(j2))

= (desc(i1) ∪ desc(i2)) \ (desc(j1) ∩ desc(j2))

= desc(i1) \ desc(j) = γ(i1, j).

If j1 and j2 are not related then desc(j2) ⊂ γ(i1, j1) since j2 ∈ desc(i1) but j2 /∈
desc(j1). Similarly, desc(j1) ⊂ γ(i1, j1) since j1 ∈ desc(i2) but j1 /∈ desc(j2).

Therefore:

γ(i1, j1) ∪ γ(i2, j2) =





γ(0, 0)) if i is the root

γ(par(i), sib(i)) otherwise
.
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Therefore, the result is true when i2 is a descendant of i1. Because i1 and i2

are just any nodes in the binary tree, without loss of generality, the result is

also true when i1 is a descendant of i2.

Corollary 71. Let SDRS be a Subset Difference Revocation Scheme. Any

minimal cover of N \R in SDRS is disjoint.

Proof. If there is any pair of subsets in the cover of N \R with a non-trivial

intersection, then by Lemma 70, there exists one subset in the scheme that

is equal to their union. Therefore, no minimal cover can have intersecting

subsets, i.e. a minimal cover must be disjoint.

Finally, we show that each subset in a minimal cover corresponds to a

Special Path in ST (R), and also there can be no Special Path in ST (R) that

does not correspond to one of the subsets.

Lemma 72. Let RS = (N , Ω, γ) be a Subset Difference Revocation Scheme

defined on the complete binary tree T . Then for any R ⊆ N , t(N ,R) is equal

to the number of Special Paths on the tree.

Proof. Let γ(i1, j1), . . . , γ(iα, jα) be a minimal cover of N \R. By Lemma 68,

we know that for any Special Path Si,j, γ(i, j) = {f(vl) : vl ∈ Si,j}. But

we need to show that the paths corresponding to the subsets in the cover are

Special Paths.

Suppose that for one of the sets in the cover, γ(i1, j1), the path Si1,j1 is

not a Special Path. Since γ(i1, j1) is in the cover, each node on the path from

vi1 to par(vj1) has one child not in ST (R). If Si1,j1 is not a Special Path

then either vj1 is not a leaf nor a node of degree 3, or else the parent of vi1

has a child not in ST (R). In the former case, vj1 must have a node hanging

off. In order for the descendant leaves to be covered, there must be another

subset in the cover, γ(i2, j2), where i2 is an ancestor of (or the same node as)

j1. If j1 and j2 are the children of i2, then all nodes descended from i1 are

privileged and can be covered with one index instead of two (this contradicts

the assumption that the cover was minimal). Otherwise, if i2 is an ancestor of

j1, then there will be an intersection of the two subsets γ(i1, j1) and γ(i2, j2),
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which contradicts Corollary 71. The only option left is that j1 = i2. By the

nature of γ, we have:

γ(i1, j1) ∪ γ(i2, j2) = {desc(i1) \ desc(j1)} ∪ {desc(i2) \ desc(j2)}
= {desc(i1) \ desc(j1)} ∪ {desc(j1) \ desc(j2)}
= desc(i1) \ desc(j2) = γ(i1, j2).

This also contradicts the assumption that the cover was minimal.

So, if Si1,j1 is not a Special Path then we must have that the parent of vi1

has a node hanging off. The above argument still applies, this time the extra

node hanging off occurs above i1, rather than below j1. There must be some

subset in the cover, γ(i2, j2), that includes the leaves descended from the extra

node hanging off. We must have i2 an ancestor of i1 to cover these leaves, and

j2 = i1 for the same reasons as in the earlier case. Therefore, we get:

γ(i1, j1) ∪ γ(i2, j2) = {desc(i1) \ desc(j1)} ∪ {desc(i2) \ desc(j2)}
= {desc(j2) \ desc(j1)} ∪ {desc(i1) \ desc(j2)}
= desc(i2) \ desc(j1) = γ(i2, j1),

which again contradicts the assumption that the cover was minimal.

This proves that each subset in a minimal cover corresponds to a Special

Path in ST (R). But to prove that t(N ,R) equals the number of Special

Paths, we must prove that there can be no more Special Paths in ST (R).

Suppose we had a Special Path in ST (R), Siα+1,jα+1 , distinct from the α Special

Paths, Si1,j1 , . . . , Siα,jα for the α subsets in the cover. By the definition of a

Special Path, the leaves in Siα+1,jα+1 are privileged. None of these leaves can

be descended from any of the α Special Paths, since these sets are disjoint

(Lemma 69). So there are privileged leaves not contained in the cover, and

so Si1,j1 , . . . , Siα,jα (which equals γ(i1, j1), . . . , γ(iα, jα)) is not a cover. This

contradictions the assumption on the α subsets. Therefore:

t(N ,R) = |{Si,j : Si,j is a Special Path on ST (R)}|.

This means that the size of the minimal cover, t(N ,R), is the number of

maximal paths of nodes in ST (R) where each node has one node hanging off
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that is not in ST (R). To find R, with t(N ,R) = tmax(n, r) and |R| = r, we

want to choose R so that ST (R) has as many Special Paths as possible. This

suggests that these paths be as short as possible. The shortest Special Path

are in the form Si,j, where vi is vj’s parent, i.e. length 1. Also, we need to

minimise the number of null Special Paths, i.e. those with no nodes not in

ST (R) hanging off. These do not increase t(N ,R) at all and can be in the

form of two nodes of degree 3, where one is the parent of the other, a node of

degree 3 being the parent of two leaves in ST (R), or the root having degree

2 (the root can be the first node in a Special Path, provided it has only one

child in ST (R)). We formalise these ideas in the following Lemma. We show

that the combined number of Special Paths and null Special Paths is always

constant for a given r. This is a useful result since the size of a minimal cover

is just the number of Special Paths in ST (R).

Lemma 73. Let R be a non-empty subset of leaves of a complete binary tree

T , |R| = r. Then the sum of the number of Special Paths in ST (R) and the

number of null Special Paths in ST (R) is 2r − 1.

Proof. By Lemma 10 we have that the number of nodes in ST (R) with both

children in ST (R) is |R| − 1 = r − 1. Obviously, the number of leaves in

ST (R) is |R| = r. Since there is no overlap between the two types of nodes

(leaves do not have children), the set S defined to be the set of all nodes with

both children in ST (R) and all leaves has |S| = 2r − 1.

From Lemma 67 we know that all nodes in ST (R) are partitioned into

Special Paths and null Special Paths. So each node of S belongs to a Special

Path or is a null Special Path. Since null Special Paths are just individual

nodes on the subtree with no node hanging off, distinct null Special Paths will

be distinct nodes in S. Furthermore, each Special Path contains exactly one

node in S. The furthest node from the root in a Special Path (vj) is either

a leaf or a node with both children in ST (R). Therefore, there is a one-to-

one correspondence between nodes in S and the set of Special Paths and null

Special Paths. So the total number of Special Paths in ST (R) and the total

number of null Special Paths in ST (R) add up to the size of S which equals

2r − 1.
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The implication for the Subset Difference Revocation Scheme follows di-

rectly:

Corollary 74. Let RS = (N , Ω, γ) be a Subset Difference Revocation Scheme

defined on the complete binary tree T . Then for any R ⊆ N , R 6= ∅:

t(N ,R) = 2r − 1−# null Special Paths in ST (R).

Proof. By Lemma 72, t(N ,R) is the number of Special Paths in ST (R). By

Lemma 73, 2r− 1 equals the number of Special Paths and null Special Paths.

Therefore, t(N ,R) = 2r − 1− number of null Special Paths in ST (R).

6.1.1 Special Subtrees

Corollary 74 gives us a very obvious way to describe a subset R that gives

t(N ,R) = tmax(n, r), namely a subset such that ST (R) has the minimum

number of null Special Paths. If ever we have a subtree ST (R) with no null

Special Paths, then we clearly have t(N ,R) = tmax(n, r):

Definition 75. Let R be a non-empty subset of leaves of a complete binary tree

T . If ST (R) has no null Special Paths, then we call ST (R) a Special Subtree.

If a Special Subtree on T contains r leaves, and there exists no Special Subtree

on T with greater than r leaves, then we call the Special Subtree a Maximal

Special Subtree.

One immediate property of Special Subtrees is that they have 2r−1 Special

Paths (Lemma 73). So the bound of Naor of tmax(n, r) ≤ 2r − 1 is only tight

when ST (R) is a Special Subtree. We will use Special Subtrees to find the

range for which Naor’s bound is tight. We do this by first working out the

number of leaves in a Maximal Special Subtree, which is also the greatest value

of r such that tmax(n, r) = 2r − 1. We then observe that any subset of leaves

of a Maximal Special Subtree define a Special Subtree, proving the result for

all lower (positive) r. Also, Special Subtrees will be used to find ST (R) such

that t(N ,R) = tmax(n, r) for values of r outside this range.

Lemma 76. Let R be a non-empty subset of leaves of a complete binary tree

T of height h. If ST (R) is a Maximal Special Subtree, then:

|R| = 2b
h−1

2
c.
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Proof. Since ST (R) is a Maximal Special Subtree, ST (R) has no null Special

Paths. By the definition of a null Special Path, this means that all the following

must be true of ST (R):

1. The root has degree 1 in ST (R)

2. If vj is an internal node of degree 3, then par(vj) is the root, or a node

of degree 2

3. All leaves in ST (R) have a parent of degree 2 (or degree 1 if it is the

root).

Since the root has degree 1, all r leaves are descended from one of the children

of the root, which is at height h − 1. The second condition means that all

degree 3 nodes are separated by a path of length at least 2. By the third

condition, the same is true of degree 3 nodes and leaves. By the exact same

argument as Lemma 9, any such binary tree with r leaves must have height

2dlog2(r)e. Since all r leaves are descended from a node at height h − 1, we

have:

2dlog2(r)e ≤ h− 1

So that dlog2(r)e ≤
h− 1

2

i.e. log2(r) ≤
⌊

h− 1

2

⌋

which implies r ≤ 2b
h−1

2
c.

To prove the result, we will construct a Special Subtree with this many leaves.

Because this meets the bound on r, there can be no more leaves and so the

Special Subtree is Maximal.

Construct ST (R) by combining the following paths from the root:

1. Start with a single path from the root to the left child of the root if h is

odd, and the left-most grandchild of the root if h is even (call this node

v).

2. From v, add two paths: one to the left grand-child of v, one to the left

child of the right child of v.
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3. From both of these end points, add two similar paths (one to the left

grandchild, one to the left child of the right child).

4. Continue adding such pairs of paths until the only endpoints of ST (R)

left are leaves.

Clearly, this gives rise to an ST (R) where the root has degree 1. Since all

nodes of degree 3 have two nodes of degree 2 as children, we never have a

pair of nodes vj, par(vj) where both nodes have degree 3. And because v is

chosen to be at an even distance from the leaves, and each of the paths added

are length 2, the parents of the leaves will be degree 2. So there are no null

Special Paths in ST (R) and ST (R) is a Special Subtree.

The number of leaves in this tree can be calculated from the number of

degree 3 nodes along any path (same for each path). This is h−1
2

= bh−1
2
c if h

is odd, h−2
2

= bh−1
2
c if h is even. By the nature of the construction of ST (R),

if one path from the root to a leaf has a degree 3 node at a certain level, then

all paths in ST (R) have a degree 3 node at that level. Since one degree 3

node means the next level down will have one more node in ST (R) than the

current level, all nodes being degree 3 means the next level will have twice the

number of nodes in ST (R). Therefore the number of leaves is |R| = 2b
h−1

2
c.

Since there can be no Special Subtree with more than 2b
h−1

2
c leaves, ST (R) is

a Maximal Special Subtree.

The subtree ST (R) described in Lemma 76 will have the appearance of a

complete tree in that in certain levels of the tree, all nodes at that level will

have two children. However, these levels alternate with levels where each node

only has one child (in a complete tree, all internal nodes have two children).

Examples of these types of subtrees can be found in Figure 6.2. This type

of subtree is not only important in determining tmax(n, r) for the range of r

in Lemma 78, but for all r. The following Lemma allows us to obtain Spe-

cial Subtrees from subsets of leaves of any existing Special Subtree (including

Maximal Special Subtrees).

Lemma 77. Let R be a subset of leaves of a complete binary tree T such that

ST (R) is a Special Subtree. For any non-empty subset R′ ⊆ R, ST (R′) is

also a Special Subtree.
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Figure a

k odd n = 2  = 2
k 5

k even n = 2  = 2
k 6

Figure b Figure c

Figure 6.2: Maximum number of Special Paths in ST (R)

Proof. Let ST (R) be a Special Subtree and let R′ ⊆ R. Suppose ST (R′)

is not a Special Subtree. Since R′ ⊆ R, that means ST (R′) is a subtree of

ST (R). So the degree of any node in ST (R′) is less than or equal to the degree

of the same node in ST (R). Conversely, any node in ST (R) must have degree

greater than or equal to the degree of the node in ST (R′). Since ST (R′) is

not a Special Subtree, we have either the root with degree 2, a parent of a leaf

with degree 3, or a parent of a node of degree 3 with degree 3 itself. Since the

degree of the nodes in ST (R) have to be greater than or equal than those in

ST (R′) we would also have a null Special Path in ST (R). This contradicts

the assumption on ST (R). Therefore, ST (R′) is a Special Subtree.

Corollary 74 said that we must have tmax(n, r) = 2r− 1 when there are no

Special Paths in ST (R), i.e. ST (R) is a Special Subtree. Using both Lemmas

76 and 77 we can give the range of r for when this happens.

Lemma 78. Let SDRS be a Subset Difference Revocation Scheme with n = 2k

users. Then SDRS has:

tmax(n, r) = 2r − 1,
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if and only if 1 ≤ r ≤ 2b
k−1
2
c.

Proof. We know tmax(n, 0) = 1, so obviously tmax(n, r) 6= 2r− 1 for r = 0. By

Corollary 17 (and also Corollary 74), tmax(n, r) ≤ 2r − 1 for all r > 0.

A Special Subtree is defined to be a Steiner Tree with 2r−1 Special Paths.

Since t(N ,R) is the number of Special Paths in ST (R), t(N ,R) = 2r − 1 if

and only if there exists a subset R, with |R| = r, such that ST (R) is a Special

Subtree. By Lemma 76, the most leaves that can be in a Special Subtree is

2b
k−1
2
c (there are n = 2k users, so the complete binary tree has height k). This

means that tmax(n, r) < 2r−1 for r > 2b
k−1
2
c. Also from Lemma 76, there exists

a Maximal Subtree with r = 2b
k−1
2
c leaves. A Maximal Special Subtree has

the property of a Special Subtree that it has 2r − 1 Special Paths. Therefore

tmax(n, r) = 2r − 1 for r = 2b
k−1
2
c. By Lemma 77, for any 1 ≤ r < 2b

k−1
2
c,

we can choose any r leaves of the Maximal Special Subtree and get a Special

Subtree. This gives tmax(n, r) = 2r − 1 for 1 ≤ r ≤ 2b
k−1
2
c.

Figure 6.2 shows examples of the construction in Lemma 76, both when

k is odd and even. There are many different possible ST (R), where R has

t(N ,R) = 2|R| − 1, and the above construction can be modified to generate

them. Whenever we have a degree 2 node, either the left child or the right

child can be in ST (R). This gives us several different choices of R that have

the same sized cover. But whenever k is even, there is a more important

degree of freedom. In the construction, the degree 3 node closest to the root

is distance 2 away. Because of this, the output of the construction, as shown

in Figure 6.2b, has a length 2 Special Path at the root of the tree. This is 1

edge longer than the shortest possible Special Path, all other Special Paths in

ST (R) have length 1. This length 2 Special Path has to appear somewhere

in the tree, but shifting it lower down the tree does not change the size of the

cover. In Figure 6.2c we have the length 2 Special Paths terminated by the

leaves. It is this extra node which allows us to extend the result of Lemma 78.

Corollary 79. Let SDRS be a Subset Difference Revocation Scheme with

n = 2k users, k even. Then SDRS has:

tmax(n, r) = 2r − 2,

if 2b
k−1
2
c < r ≤ 2b

k−1
2
c+1.

166



Proof. By Lemma 78 we have that tmax(n, r) < 2r − 1 for all r > 2b
k−1
2
c, or

tmax(n, r) ≤ 2r−2 as the size of any cover must be a whole number. Since the

binary tree has even height, the two children of the root are at an odd height.

Define ST (R) to be comprised of two of the Maximal Special Subtrees (as

constructed in Lemma 76) rooted at the two children of the root, as well as

the two edges from these children to the root. R is the set of leaves of these

Maximal Special Subtrees. Since each Maximal Special Subtree has 2b
k−2
2
c

leaves:

|R| = 2.2b
k−2
2
c = 2b

k−2
2
c+1 = 2b

k−1
2
c+1, since k is even.

By Lemma 67, all nodes in ST (R) are partitioned into Special Paths and null

Special Paths. The root of ST (R) is a null Special Path as both its children

are in ST (R). Since ST (R) from both children of the root down are Maximal

Special Subtrees, the rest of ST (R) is just Special Paths. The number of

Special Paths in any Special Subtree is 2r′ − 1, where r′ is the number of

leaves in that Special Subtree. Since there were 2b
k−2
2
c leaves in each Maximal

Special Subtree, the total number of Special Paths in ST (R) is:

2.2b
k−2
2
c − 1 + 2.2b

k−2
2
c − 1 = 2.2b

k−1
2
c+1 − 2.

So for r = 2b
k−1
2
c+1, we have tmax(n, r) = 2r−2. For any 2b

k−1
2
c < r < 2b

k−1
2
c+1,

we can remove any 2b
k−1
2
c+1 − r leaves from either Maximal Special Subtree.

By Lemma 77, and the fact that we are only removing 2b
k−1
2
c+1 − r < 2b

k−1
2
c

leaves, we will still have two Special Subtrees rooted at the children of the

root. So the number of Special Paths is still 2r − 2.

So we know what tmax(n, r) looks like for very small r. It is also simple

to describe tmax(n, r) for r = n/2. When we looked at the Complete Subtree

Revocation Scheme, the maximum t(N ,R) over all R ⊆ N occurred when

every second user was revoked. If R is comprised of every second user as they

appear in the binary tree, then all nodes in the level above the leaves have

degree 2 in ST (R). Since all nodes in this level are in ST (R), no node in

any higher level will have a node not in ST (R) hanging off. We have n/2

nodes in the level above the leaves. Each node is degree 2 in ST (R), and the

parent of each node is a node of degree 3. This gives us n/2 Special Paths.
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Figure 6.3: Examples of ST (R) two levels above the leaves.

Therefore t(N ,R) = n/2. For any Revocation Scheme we have tmax(n, r) ≤
n−r (Corollary 6), so tmax(n, n/2) = n/2. We can extend this to n/2 < r ≤ n.

The union of R and any other r − n/2 leaves, gives R′ with |R′| = r and

n/2− (r − n/2) nodes of degree 2 in ST (R)′. This gives n− r Special Paths,

and so t(N ,R) = tmax(n, r) = n− r for n/2 ≤ r ≤ n, as was the case for the

Complete Subtree Revocation Scheme.

One immediate difference between Complete Subtree and Subset Difference

is that the former cannot cover 3 privileged users in a tree of 4 with one subset,

while the latter can. In the third diagram in Figure 6.3 we see an example

of this. This means that the choice of R that gave tmax(n, r) = n/2 for

n/4 ≤ r ≤ n/2 with the Complete Subtree Revocation Scheme, will not do

the same for the Subset Difference Revocation Scheme. In fact, a consequence

of the formula for tmax(n, r) that we will derive is that r = n/2 is the only

point where tmax(n, r) = n/2.

6.2 Maximising t(N ,R) over all M(R)

We are now going to define a function on subsets of N , that on input of R
will output a subset, R′, with the same number of leaves, but with ST (R′)

different from ST (R) in such a way that t(N ,R′) cannot be less than t(N ,R).

As the function will be defined for all subsets of N , it can be applied to those

subsets that give t(N ,R) = tmax(n, r). This will allow us to classify some (but

not all) subsets R that give the maximum t(N ,R). The covers of such N \R
will have properties derived from the function that will make it easier to count

the size of the cover (and so giving us a formula for tmax(n, r)).

Definition 80. Let T be a complete binary tree with 2n−1 nodes {v1, . . . , v2n−1},
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Definition of M(R)
Initialise: R′ = R

0: Let S be the set of triples of nodes in ST (R′), (vi, vj, vk), such that:
(vi, vj) is a Special Path with vj degree 3
vk is the child of vj and is either a leaf or a node of degree 3

1: while S 6= ∅ do
2: Let (vi, vj, vk) ∈ S
3: Add leaves to R′ such that ST (R′) from the left child of vj’s sibling

down is the same as ST (R′) from vk down
4: Remove those descendants of vk in R′ from R′

5: Update S
6: end do

Table 6.1: Definition of function M(R).

indexed using breadth first labelling. Let N = {vn, . . . , v2n−1} be the set of

leaves of T . The function M : 2N → 2N for input R ⊆ N is defined in Ta-

ble 6.1. The resulting subset R′ is the output M(R) of M . Any subset in the

range of M is an M -type subset, i.e. R′ is an M -type subset if there exists a

subset R with M(R) = R′.

We can give a more descriptive explanation of what M(R) does. The only

types of nodes that can terminate a Special Path are a leaf, the root or a node

of degree 3. If we consider two Special Paths on the same path from any leaf

to the root, then neither the root nor a leaf can occur between them. Provided

that no other Special Path exists between these two paths, then they must be

separated by at least one node of degree 3. The purpose of this function is to

create a set R′ such that all Special Paths on ST (R′) on a path between the

root and a leaf are separated by just one node of degree 3. For any input R,

if there are any instances of two (or more) such nodes separating two Special

Paths, the Special Path higher up the tree is moved down by a rearrangement

of the leaves.

In order for the function to be of use, M(R) must be defined for all inputs

R. For this to be true, the algorithm must always terminate, and to prove

this we will show that each pass through the while loop results in changes to

the Steiner Tree that cannot be repeated indefinitely.

169



Lemma 81. Let R be any non-empty subset of leaves of a complete binary tree

T . Let R′ be the result of one pass through the while loop of the algorithm

in calculating M(R). Then t(N ,R′) ≥ t(N ,R). Furthermore, if t(N ,R′) =

t(N ,R) then all null Special Paths in ST (R′) have a corresponding null Special

Path in ST (R) that is at the same height, with the exception of one null Special

Path that is distance two closer to the root in ST (R′) than in ST (R).

Proof. We are interested in the difference in the numbers of (and positions of)

the null Special Paths and Special Paths between ST (R) and ST (R′). Since

these paths are defined by the degrees of the nodes, we need to specify the

nodes that have different degrees in the two subtrees. Since the cental while

loop is executed, we know that there must be 3 nodes (vi, vj, vk) in ST (R)

such that vi, . . . , vj is a Special Path, vk is a child of vj and either a leaf or a

node of degree 3. The most obvious difference is vj: it is chosen so that it is

a degree 3 node in ST (R), but one of its children (vk) has no descendants in

ST (R′), so it has degree 2 in ST (R′). There is also a difference in the degrees

of par(vj). This node is in a Special Path in ST (R), and since it is not the

node furthest from the root (which is vj) it must have a node hanging off, and

so it has degree 2 in ST (R). However, both vj and its sibling have descendants

in R′, so par(vj) must have degree 3 in ST (R′). Strictly speaking, all nodes

descended from vk and the left child of vj’s sibling have different degrees in the

two trees. But because the portion of ST (R) descended from vk is replicated

below the left child of vj’s sibling in ST (R′), all null Special Paths and Special

Paths are replicated as well. The portions of both trees descended from vk

and from the right child of vj’s sibling are exactly the same, as is the rest of

the subtrees not descended from vi.

We can now describe the difference in the Special Paths between the two

subtrees. Since there are only three nodes with different degrees in the two

trees, par(vj), vj and its sibling, we can consider two different portions of the

subtrees independently: above par(vj), and below vj and sib(vj). Each node

above par(vj) up to vi has a node hanging off ST (R) (there is a Special Path

from vi to vj). But in ST (R′), vi to vj is no longer a Special Path since par(vj)

has degree 3. We will only have that vi to par(vj) is a Special Path in ST (R′) if

vi 6= par(vj). Otherwise, we have a null Special Path at vi = par(vj), because
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vi = par(vj) has degree 3 in ST (R′) and par(vi) is unchanged from ST (R)

where did not have a node hanging off. So along this path one Special Path

in ST (R) can correspond to either a Special Path or a null Special Path in

ST (R′).

There are also two possibilities for the nodes below vj and sib(vj). In

ST (R), we know vj had degree 3 and vk either had degree 3 as well, or is

a leaf (and so vk is a null Special Path in ST (R)). Since par(vj) is degree

2, sib(vj) is not in ST (R) (neither are any of its descendants). The different

cases occur depending on whether sib(vk) has a node not in ST (R) hanging off

or not. Suppose sib(vk) does have a node hanging off. Since vj = par(sib(vk))

had degree 3, sib(vk) is the highest node of a Special Path that terminates

at some descendant node. In ST (R′), vj is degree 2. Whereas in ST (R) the

highest node of the Special Path was sib(vk), in ST (R′) it is vj. The degree

3 node in ST (R), vk, is moved to the left child of sib(vj) in ST (R′). Where

this was a null Special Path in ST (R), it is a Special Path in ST (R′), since

sib(vj) only has one child in ST (R′). The net result is that one null Special

Path and one Special Path in ST (R) become two Special Paths in ST (R′).

Alternatively, suppose sib(vk) does not have a node hanging off, either

because it has degree 3 in ST (R), or is a leaf. Either way, this node will be

a null Special Path in ST (R) (as is vk). In ST (R′), vj has degree 2, as does

the parent of the degree 3 node, the left child of sib(vj) (where vk is moved

to). This results in two Special Paths in ST (R′), from vj to sib(vk) and from

sib(vj) to the left child of sib(vj), where there were two null Special Paths in

ST (R).

We have considered all the nodes that have different degrees in ST (R) and

ST (R′), and all possible differences in the Special Paths and null Special Paths.

Because no other nodes have different degrees, all other Special Paths and null

Special Paths are the same in both trees (or in the case of those descended from

vk, at the same height). In terms of numbers of Special Paths, above par(vj),

ST (R′) can either have one less, or the same number of Special Paths as

ST (R), and below this node ST (R′) can have either 1 or 2 more Special Paths

than ST (R). So by Lemma 72, t(N ,R′) ≥ t(N ,R). If t(N ,R′) = t(N ,R),

then we must have that in ST (R) vi is the parent of vj and vk’s sibling has a
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Figure 6.4: Example of ST (M(R))

node hanging off ST (R) (vk is the null Special Path). In ST (R′) we have that

par(vj) is the null Special Path, and both children of par(vj) are in Special

Paths. So where there was a null Special Path at vk in ST (R), there is one

at par(vj) in ST (R′). All other null Special Paths are at the same heights in

both trees. Therefore, either t(N ,R′) > t(N ,R) or there is one null Special

Path distance two closer to the root in ST (R′) than in ST (R), the rest being

at the same height.

Figure 6.4 shows an example of the case when t(N ,M(R)) = t(N ,R).

There are five Special Paths and two null Special Paths in both ST (R) and

ST (M(R)). The root is a null Special Path in both trees, since both children

of the root are in both subtrees. The second null Special Path in ST (R) is vk,

and in ST (M(R)) is vi, two edges closer to the root. Neither this change to

the structure of ST (R′), nor increasing the number of Special Paths in ST (R′)

can continue indefinitely, and so we get the following result.

Corollary 82. Let R be any non-empty subset of leaves of a complete binary

tree T with n = 2k leaves. The algorithm to calculate M(R) in Table 6.1

terminates with output such that:

t(N ,M(R)) ≥ t(N ,R)

Proof. The algorithm to calculate M(R) terminates when the set S is empty.

S is the set of triples (vi, vj, vk) where vi, . . . , vj is a Special Path and vk is

a degree 3 node (or leaf) that is a child of vj (so vk is a null Special Path

descended from the end node of a Special Path). As shown in Lemma 81, each

pass through the central while loop does one of two things. ST (R′) at the end
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of the pass will differ from ST (R′) at the start of the pass in that it will have

either more Special Paths, or one null Special Path distance 2 closer to the

root. Since the sum of the number of Special Paths and null Special Paths is

2r−1 (Lemma 73) and the number of leaves in R′ does not change in any pass

through the loop, more Special Paths in the subtree means less null Special

Paths in the subtree. So there can only be at most 2r − 1 passes through the

loop that increase the number of Special Paths, since after that there will be

no nodes vk that are null Special Paths and so S will be empty.

The number of times the while loop does not increase the number of Special

Paths is also bounded. Once a null Special Path, v, is high enough in ST (R′)

that there are no Special Paths on the path from v to the root, v cannot be

a node in the form of vk for any triple in S. If the number of Special Paths

stays the same in a pass through the while loop, then some null Special Path

is replaced in ST (R′) with one distance 2 closer to the root. After at most

bk
2
c iterations applied to one null Special Path, it would be high enough in

ST (R) that it could not be in the form of vk. The algorithm does not pick

triples from S in a way that “moves up” a given null Special Path, but selects

them at random. However, since the number of null Special Paths in ST (R′)

is bounded by 2r−1, the number of passes through the central while loop that

do not increase the number of Special Paths is bounded by (2r−1)bk
2
c. So the

total number of passes through the while loop before S is empty is bounded

above by 2r − 1 + (2r − 1)bk
2
c = (2r − 1)(bk

2
c + 1). Therefore, the algorithm

to calculate M(R) terminates for any input R. The number of Special Paths

does not decrease in any one pass through the loop (Lemma 81), so it will not

decrease for several passes. Therefore:

t(N ,M(R)) ≥ t(N ,R)

We can now describe the properties common to all M -type subsets. If

there are any null Special Paths in ST (M(R)), then they will occur at the

top of the subtree, i.e. on the path from any one null Special Path to the root,

there are only other null Special Paths and no Special Paths. If there were

any Special Paths between a null Special Path and the root, then there would

be some null Special Path descended from the end node of a Special Path
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somewhere between the two. This cannot be the case for any output of the

function M as the algorithm only terminates when there are no such nodes.

So along any path from the root to any leaf in M(R), if the root has degree 2

we must have nodes of degree 3 all the way until the first Special Path. If the

root has degree 1 (i.e. not a null Special Path) then there are no null Special

Paths in ST (M(R)). Plus, all Special Paths below the null Special Paths are

separated by exactly one node of degree 3.

The function M can be applied to all non-empty subsets R ⊆ N . If

we apply it to any subset with t(N ,R) = tmax(n, r) then we will also have

t(N ,M(R)) = tmax(n, r). We cannot have t(N , M(R)) > tmax(n, r) since

tmax(n, r) is the maximum, nor can we have t(N ,M(R)) < tmax(n, r) by Corol-

lary 82. So there exists an M -type subset that has maximum t(N ,R), i.e. a

subset where all Special Paths in ST (R) are separated by exactly one node of

degree 3.

As mentioned earlier, the size of the cover of an M -type subset can be

counted more easily than with general subsets. This is shown in the following

Lemma, which is a combination of preceding results.

Lemma 83. Let SDRS be a Subset Difference Revocation Scheme with n = 2k

users, defined on the complete binary tree T . Let R be any subset of N . Then

t(N ,M(R)) = 2r−j, where j is the number of Special Subtrees in ST (M(R)).

Proof. By the definition of the function M , all paths from the root to any leaf

in M(R) have null Special Paths first, and then Special Paths. For some leaf

vl, let v be the first node in the first Special Path on the path from the root

to vl. The node v is also the first node in a Special Path for all descendants of

v in M(R), not just vl. All descendants of v in ST (M(R)) have the Special

Path containing v on the path from their leaf to the root because v only has

one child in ST (M(R)). If there were any Special Path above v, then that

Special Path would also be on the path from the root to vl, contradicting the

definition of v. By the nature of the Steiner tree of an M -type subset, and

because v is in a Special Path, there are only Special Paths descended from

v along any path. This makes the portion of ST (M(R)) descended from v a

Special Subtree. By Lemma 73 and the definition of a Special Subtree, there

are 2r1 − 1 Special Paths in ST (M(R)) descended from v, where r1 is the
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number of leaves in M(R) descended from v. Let set1 = {vi1 , vi2 , . . . , vij} be

the set of all nodes in ST (M(R)) with the same properties as v, i.e. a node

in a Special Path in ST (M(R)) whose parent is a null Special Path. Since

the number of leaves in ST (M(R)) is just |R|, the number of Special Paths

descended from all the nodes in set1 is just 2|R| − |set1| = 2|R| − j. Because

all Special Paths in ST (M(R)) must occur below some null Special Path in

the subtree, every Special Path in ST (M(R)) must be descended from some

node in set1. Therefore:

t(N ,R) = 2r − j

So the size of the cover of N \R in a Subset Difference Revocation Scheme,

whereR is an M -type subset, is just 2|R|minus the number of Special Subtrees

in ST (R). Since there is at least one M -type subset, M(R), that will have

t(N ,M(R)) = tmax(n, r), in order to calculate tmax(n, r) we can just determine

M(R) such that ST (M(R)) has the minimum number of Special Subtrees. To

do this, we will need the following notation:

Definition 84. Let R be a subset on leaves of a complete binary tree T . We

define three functions as follows:

• L(h) is the number of leaves in T descended from a node at height h

• C(h) is the number of leaves descended from a node at height h such

that the Steiner Tree of those leaves, with this node as root, forms a

Maximal Special Subtree

Finally, for k, r, j positive integers with j ≤ r ≤ 2k, let Hk,r,j be the set of

ordered j-tuples (h1, . . . , hj) with the property that 1 ≤ hi ≤ k for i = 1, . . . , j

and
j∑

i=1

L(hi) = 2k and

j∑
i=1

C(hi) ≥ r. (6.1)

Let jk,r be the minimum value of j such that Hk,r,j 6= ∅.
There is a correspondence between j-tuples in Hk,r,j and M -type subsets.

By showing how to create the latter from the former, and using Lemma 83,

we get another expression for t(N ,R).
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Lemma 85. Let SDRS be a Subset Difference Revocation Scheme on n = 2k

users, defined on the complete binary tree T . Let (h1, . . . , hj) ∈ Hk,r,j. Then

there exists an M -type subset, R, with |R| = r and t(N ,R) = 2r − j.

Proof. Let (h1, . . . , hj) ∈ Hk,r,j. Define the set of nodes of T , set1, as follows:

for i from 1 to j, add to set1 the left most node at height hi that does not

have any descendants in common with the descendants of any nodes already

in set1. The fact that
∑j

i=1 2hi = 2k (since (h1, . . . , hj) ∈ Hk,r,j) means that

the sum of the number of leaves descended from j nodes at heights h1, . . . , hj

equals the number of leaves in T . So we will only be able to pick the j nodes

as described if there were no “gaps”, i.e. leaves in T that are not descendant

from any of the nodes in set1. We will use induction to show that there are

no gaps to the left of any of the nodes added to set1.

Consider the first node added. Since set1 is empty, we just add the left

most node at height h1. The left most child of T is a descendant of this node,

so there is no gap to the left of this node (no leaf in T not a descendant of

the node). Assume this is true for the first x nodes added to set1, i.e. we have

added x nodes to set1, and there is no gaps to the left of any of the sets of

descendants. We know that
∑j

i=1 2hi = 2k and because the heights are ordered

we know hi ≥ hx+1 for x + 1 ≤ i ≤ j, which implies 2hx+1 divides 2hi for i in

the same range. Therefore, we have both:

j∑
i=1

2hi = 2k ≡ 0 mod 2hx+1 and

j∑
i=x+1

2hi ≡ 0 mod 2hx+1

Hence
x∑

i=1

2hi ≡ 0 mod 2hx+1 .

This last summation is just the number of leaves descended from the x nodes

in set1. Because there are no gaps between these descendants, all these leaves

are all the descendants of a certain number of nodes at height hx+1. Therefore,

the next node added to set1 will be the next node in this level, and there will

be no gap between these leaves and the descendants of the first x nodes in

set1. By induction, there will be no gap to the left of any of the descendants

of the nodes in set1 when we have added all j nodes. And because the sum of

the number of leaves descended from the j nodes equals the number of leaves
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in T , there can be no gap to the right of the final node either. Therefore all

leaves in T are descended from some node in set1.

To construct ST (R) from set1, we just make each node in set1 the root

of a Special Subtree. The number of leaves we can have in ST (R) descended

from these nodes and still have Special Subtrees is bounded by
∑j

i=1 C(hi).

But because (h1, . . . , hj) ∈ Hk,r,j, we have that r ≤ ∑j
i=1 C(hi), and so it is

possible to add r such leaves. If r is strictly less than the sum of the C(hi)’s,

then it does not make a difference which node(s) in set1 has less than C(hi)

leaves in ST (R) so long as there is at least one leaf descended from each node

in set1 (possible since j ≤ r). So all j nodes in set1 are in ST (R), and because

there is no leaf in T that is not descended from one of these nodes, all ancestors

of the nodes in set1 are null Special Paths (they must have both children in

ST (R)). Because there are only Special Paths descended from the nodes in

set1, ST (R) is an M -type subset. So by Lemma 83, t(N ,R) = 2r − j.

As a consequence of Lemma 85, for a j-tuple in Hk,r,j with j = jk,r, the

minimum value of j such that Hk,r,j is non-empty, 2r − j is the maximum

possible value of t(N ,R). To prove this, we need to show that it is possible

to create an M -type subset out of a j-tuple.

Corollary 86. Let SDRS be a Subset Difference Revocation Scheme on n = 2k

users, defined on the complete binary tree T . For all 1 ≤ r ≤ n/2:

tmax(n, r) = 2r − jk,r

Proof. By the definition of jk,r, there is some tuple (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

that satisfies Formula (6.1). From Lemma 85, there exists some M -type subset

R with |R| = r and t(N ,R) = 2r − jk,r. Suppose there was a subset R′ with

|R′| = r and t(N ,R′) > t(N ,R). If we calculate the subset M(R′), then from

Lemma 83 we have a description of ST (M(R′)), namely all Special Paths are

in Special Subtrees rooted at a number of nodes, say j, in T . Let (h′1, . . . , h
′
j)

be the heights of these nodes. All nodes above these are null Special Paths.

Because all leaves in M(R′) are in one of these Special Subtrees, we have

r ≤ ∑j
i=1 C(h′i). Since all leaves in T are descended from one of the nodes

we have
∑j

i=1 L(h′i) = 2k. Therefore, if we order (h′1, . . . , h
′
j) then we get a
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j-tuple in Hk,r,j. From Lemma 83, t(N ,M(R′)) = 2r − j. But we know

t(N ,M(R′)) ≥ t(N ,R′) > t(N ,R) = 2r − jk,r.

Therefore j < jk,r. This contradicts the fact that jk,r is the minimum such

that Hk,r,j is non-empty. Therefore tmax(n, r) = 2r − jk,r.

So the problem of finding tmax(n, r) can now be re-stated as the problem of

finding jk,r. If we find the minimum tuple that satisfies Formula (6.1), then we

will have found tmax(n, r). Dealing with the j-tuples is much more manageable

than trying to maximise t(N ,R).

The formulae for L(h) and C(h) come straight from their definition, and

Lemma 76:

L(h) = 2h and C(h) = 2b
h−1

2
c.

We have some useful properties of the two functions that stem directly from

their formulae:

L(h + 1) = 2L(h), L(h + 2) = 4L(h),

C(h + 1) =

{
2C(h) if h even

C(h) if h odd
, C(h + 2) = 2C(h).

These give rise to some constraints on the minimum j.

Lemma 87. Let jk,r be the minimum value of j such that Hk,r,j 6= ∅. Let

H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

. Any even integer occurs at most once in H.

Also, if jk,r > 1, then h1 is odd.

Proof. Suppose there is some even integer hi1 that occurs twice in H. Define

H ′ to be the sorted tuple of the other jk,r − 2 integers and hi1 + 1 (H ′ is a

jk,r − 1-tuple). Since hi1 is even we have:

2L(hi1) = L(hi1 + 1) and 2C(hi1) = C(hi1 + 1).

So
∑

h∈H′
L(h) =

∑

h∈H

L(h) = 2k

and
∑

h∈H′
C(h) =

∑

h∈H

C(h) ≥ r.
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Therefore H ′ ∈ Hk,r,jk,r−1. But this contradicts the fact that jk,r is the mini-

mum j such that Hk,r,j is non-empty. Therefore any even integer in H must

occur only once.

Suppose jk,r > 1 and h1 is even. Because h1 is the smallest integer in H,

if h1 occurs an odd number of times in H we have:

∑

h∈H

L(h) ≡ 2h1 mod 2h1+1.

We know
∑

h∈H L(h) = 2k, since H ∈ Hk,r,jk,r
. Because jk,r > 1, there is at

least two terms in the sum, and since h1 is the smallest, 2h1 < 2k which implies

h1 + 1 ≤ k. So
∑

h∈H L(h) ≡ 0 mod 2h1+1. Therefore, h1 must occur an even

number of times in H. But we have just shown that any even integer can only

occur once. Therefore, the smallest integer, h1, is odd.

This describes some of the properties of a j-tuple in Hk,r,j when j is mini-

mum. In order to further pin down the value of j, we need the following, more

general object:

Definition 88. For k, r, j positive integers with j ≤ r ≤ 2k, let H′
k,r,j be the

set of ordered j-tuples (h1, . . . , hj) with the property that 1 ≤ hi ≤ k for

i = 1, . . . , j and
j∑

i=1

L(hi) ≤ 2k and

j∑
i=1

C(hi) ≥ r. (6.2)

Let j′k,r be the minimum value of j such that H′
k,r,j 6= ∅.

Since the only difference between H′
k,r,j and Hk,r,j is a more relaxed con-

straint on the sum of the L(hi)’s in H′
k,r,j, we have that Hk,r,j ⊆ H′

k,r,j. Any

j-tuple that satisfies Formula (6.1) also satisfies Formula (6.2). There is no

direct correlation between tuples in H′
k,r,j and M -type subsets (like there is

for tuples in Hk,r,j). However, we can prove that if H′
k,r,j is non-empty, then

so is Hk,r,j.

Lemma 89. Let H ′ = (h′1, . . . , h
′
j) ∈ H′

k,r,j. Then there exists some j-tuple

H ∈ Hk,r,j.

Proof. If
∑

h∈H′ L(h) = 2k, then H ′ = H ∈ Hk,r,j. Otherwise, we write the

difference 2k −∑
h∈H′ L(h) in binary, that is as the sum of distinct powers of
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two. Suppose 2i is the smallest power of two in this expansion. This gives us:

2i + higher powers︸ ︷︷ ︸
2k−∑

h∈H′ L(h)

+ 2h′1 + 2h′2 + . . . + 2h′j︸ ︷︷ ︸∑
h∈H′ L(h)

= 2k.

We know that 2i occurs only once in the binary expansion of 2k−∑
h∈H′ L(h).

In order for the left hand side of the above equation to add up to 2k, there

must be a collection of terms in the sum of L(h) that add up to 2i:

2i = 2h′1 + . . . + 2h′a for some 1 ≤ a ≤ j.

Define H = (h1, . . . , hj) as follows:

hi =





h′i + 1 if 1 ≤ i ≤ a

h′i if a < i ≤ j
.

The difference between L(hi) and L(h′i) is just L(hi) = 2hi = 2h′i+1 = 2.2h′i =

2L(h′i) if 1 ≤ i ≤ a. Otherwise L(hi) = L(h′i). Since
∑a

i=1 L(h′i) = 2i, we have

that:

a∑
i=1

L(hi) = 2.
a∑

i=1

L(h′i) = 2i +
a∑

i=1

L(h′i)

Hence

j∑
i=1

L(hi) = 2i +

j∑
i=1

L(h′i).

So not only do we have that
∑

h∈H L(h) ≤ 2k, but we also know that the binary

expansion of 2k −∑
h∈H L(h) has one less term than that of 2k −∑

h∈H′ L(h).

Since C(h) is non-decreasing in h,

j∑
i=1

C(hi) ≥
j∑

i=1

C(h′i) ≥ r.

So H ∈ H′
k,r,j (from the definition, H is obviously a j-tuple). By repeating the

same process, we will eventually reach the stage where 2k −∑
h∈H L(h) = 0,

in which case H ∈ Hk,r,j.

Corollary 90. Let j′k,r be the minimum value of j such that H′
k,r,j 6= ∅. Let

jk,r be the minimum value of j such that Hk,r,j 6= ∅. Then:

j′k,r = jk,r
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Proof. The only difference between Hk,r,j and H′
k,r,j is that the former requires

that
∑

h∈H L(h) = 2k, while the latter only requires that
∑

h∈H L(h) ≤ 2k.

Therefore Hk,r,j ⊆ H′
k,r,j. So for the minimum j such that Hk,r,j is non-empty,

H′
k,r,j is also non-empty and so jk,r ≥ j′k,r. But by Lemma 89, for the minimum

j such that H′
k,r,j is non-empty, Hk,r,j is also non-empty. Therefore, jk,r ≤ j′k,r

and so jk,r = j′k,r.

We could replace jk,r in the formula tmax(n, r) = 2r − jk,r with j′k,r and

work out tmax(n, r) by finding the minimum value of j such that there exists

a j-tuple that satisfies Formula (6.2). However, we are going to use H′
k,r,j and

Corollary 90 to prove existence results for Hk,r,j. The following results are

proved using the same method. We assume there exists some j-tuple in Hk,r,j

with a certain property. We then construct a j − 1-tuple in H′
k,r,j−1, proving

that j 6= j′k,r. And from Corollary 90 we also have that j 6= jk,r. Therefore,

no tuple in Hk,r,jk,r
can have that property.

Lemma 91. Let jk,r be the minimum value of j such that Hk,r,j 6= ∅. Let

H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

. Then hjk,r
− h1 ≤ 4.

Proof. Since all H ∈ Hk,r,jk,r
are ordered tuples, we have that h1 = min(H)

and hjk,r
= max(H). If jk,r = 1, then the result is obviously true (hjk,r

= h1).

Otherwise, by Lemma 87 we have h1 = 2h − 1 (h1 must be odd). Suppose

hjk,r
− h1 ≥ 5, which means hjk,r

≥ 2h + 4. Since:

∑

h∈H

L(h) = 2k ≡ 0 mod 22h+1,

we must have either (2h− 1, 2h− 1, 2h− 1, 2h− 1) or (2h− 1, 2h− 1, 2h) as

sub-tuples of H, so we can write H in the form:

H = (2h− 1, 2h− 1, h∗, . . . , hjk,r
), where h∗ ∈ {2h− 1, 2h}.

By definition, C(h∗) = 2h−1 = C(2h − 1) for both possible values of h∗. Let

H ′ be the sorted jk,r − 1 tuple consisting of all the integers in H, but with

hjk,r
− 1, hjk,r

− 2 and hjk,r
− 2 in place of hjk,r

, h∗, 2h− 1 and 2h− 1. Because

hjk,r
− 1 ≥ 2h + 3, we have:

C(hjk,r
− 1) ≥ C(2h + 3) = 2b

2h+2
2
c = 2h+1 = 4.2h−1 = 4.C(2h− 1)

> C(h∗) + 2.C(2h− 1).
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Since 2C(hjk,r
− 2) = C(hjk,r

), it follows that:

C(hjk,r
− 1) + 2.C(hjk,r

− 2) > C(hjk,r
) + C(h∗) + 2.C(2h− 1)

Hence
∑

h∈H′
C(h) >

∑

h∈H

C(h) ≥ r.

Now:

L(hjk,r
− 1) + 2.L(hjk,r

− 2) = 2hjk,r
−1 + 2.2hjk,r

−2 = 2hjk,r = L(hjk,r
).

Since both L(2h− 1) and L(h∗) are non-zero:

L(hjk,r
− 1) + 2.L(hjk,r

− 2) < L(hjk,r
) + L(h∗) + 2.L(2h− 1)

Hence
∑

h∈H′
L(h) <

∑

h∈H

L(h) = 2k.

Therefore, H ′ ∈ H′
k,r,jk,r−1, and so the minimum value of j such that H′

k,r,j is

non-empty is at most jk,r − 1. But by Corollary 90, Hk,r,jk,r−1 must also be

non-empty. This is a contradiction, as jk,r is defined to be the smallest integer

j such that Hk,r,j is non-empty. Therefore any jk,r-tuple in Hk,r,jk,r
must have

hjk,r
− h1 ≤ 4.

Lemma 92. Let jk,r be the minimum value of j such that Hk,r,j 6= ∅. Let

H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

. Then hjk,r
− h1 6= 3.

Proof. Suppose hjk,r
− h1 = 3. Since h1 and hjk,r

are distinct, we cannot have

jk,r = 1. By Lemma 87, h1 must be odd, h1 = 2h − 1 and so hjk,r
= 2h + 2.

Since: ∑

h∈H

L(h) = 2k ≡ 0 mod 22h,

2h− 1 must occur an even number of times in H. So we can write H as:

H = (2h− 1, 2h− 1, . . . , 2h + 2).

Let H ′ be the sorted jk,r− 1 tuple consisting of all the integers in H, but with

2h + 1 and 2h + 1 in place of 2h− 1, 2h− 1 and 2h + 2. Since 2.L(2h + 1) =

L(2h + 2) we have:

2.L(2h + 1) < L(2h + 2) + 2.L(2h− 1)

Hence
∑

h∈H′
L(h) <

∑

h∈H

L(h) = 2k.
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And from the properties of C(h), we have that C(2h + 1) = C(2h + 2) and

C(2h + 1) = 2.C(2h− 1), so:

2.C(2h + 1) = C(2h + 2) + 2.C(2h− 1)

Hence
∑

h∈H′
C(h) =

∑

h∈H

C(h) ≥ r.

Therefore, H ′ ∈ H′
k,r,jk,r−1, and so the minimum value of j such that H′

k,r,j is

non-empty is at most jk,r − 1. But by Corollary 90, Hk,r,jk,r−1 must also be

non-empty. This is a contradiction, as jk,r is defined to be the smallest integer

j such that Hk,r,j is non-empty. Therefore, any jk,r-tuple in Hk,r,jk,r
must have

hjk,r
− h1 6= 3.

The consequence of Lemmas 91 and 92 are that for (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

we must have hjk,r
− h1 = 0, 1, 2 or 4. What we want to show is that there

always exists a jk,r-tuple in Hk,r,jk,r
with hjk,r

− h1 ≤ 2. Since this is not

the same as showing there is no tuple with the property hjk,r
− h1 = 41,

the proof will be different to the previous two. We need to show a tuple

with hjk,r
− h1 = 2 can be constructed from one with hjk,r

− h1 = 4. If our

constructed tuple was in H′
k,r,jk,r

, then there would be no guarantee that the

difference between h1 and hjk,r
would remain the same when translated into

a tuple in Hk,r,jk,r
. Therefore, we need to construct the tuple so that it is in

Hk,r,jk,r
.

Lemma 93. Let jk,r be the minimum value of j such that Hk,r,j 6= ∅. Then

there exists some jk,r-tuple H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

with hjk,r
− h1 ≤ 2.

Proof. Let H ′ = (h′1, . . . , h
′
jk,r

) be any jk,r-tuple in Hk,r,jk,r
. By Lemma 91

h′jk,r
− h′1 ≤ 4, and by Lemma 92 h′jk,r

− h′1 6= 3. So h′jk,r
− h′1 = 0, 1, 2 or 4.

If h′jk,r
− h′1 ≤ 2, then the result is already true. Assume h′jk,r

− h′1 = 4. By

Lemma 87, and the fact that jk,r ≥ 2 (h′1 and h′jk,r
are distinct), h′1 must be

odd: h′1 = 2h− 1, h′jk,r
= 2h + 3. We also must have 2h− 1 occurring an even

number of times in order to have
∑

h∈H′ L(h) = 2k.

Suppose 2h− 1 occurs 4 or more times in H ′:

H ′ = (2h− 1, 2h− 1, 2h− 1, 2h− 1, . . . , 2h + 3).

1There are such tuples, see Figure 6.5.
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Let H be the sorted jk,r− 1-tuple consisting of all the integers in H ′, but with

four 2h + 1 in place of 2h + 3 and four 2h− 1. Since L(2h + 3) = 4.L(2h + 1)

we have: ∑

h∈H

L(h) <
∑

h∈H′
L(h) = 2k.

Also, 2.C(2h + 1) = C(2h + 3) and 2.C(2h + 1) = 4.C(2h− 1) so:

∑

h∈H

C(h) =
∑

h∈H′
C(h) ≤ r.

So H ∈ H′
k,r,jk,r−1, and the minimum value of j such that Hk,r,j 6= ∅ is at most

jk,r − 1. This contradicts Corollary 90. Therefore, 2h − 1 only occurs twice

in H ′. The only way for
∑

h∈H′ L(h) = 2k = 0 mod 22h+1 is to have 2h in H ′

(but only one occurrence by Lemma 87):

H ′ = (2h− 1, 2h− 1, 2h, . . . , 2h + 3).

Let H be the sorted jk,r-tuple consisting of all the integers in H ′, but with

three 2h + 1 and 2h + 2 in place of two 2h− 1, 2h and 2h + 3. Since:

2.L(2h− 1) + L(2h) + L(2h + 3) = 2.22h−1 + 22h + 22h+3 = 22h+3 + 22h+1

and 3.L(2h + 1) + L(2h + 2) = 3.22h+1 + 22h+2 = 22h+3 + 22h+1

we have
∑

h∈H′
L(h) =

∑

h∈H

L(h) = 2k.

Also:

2.C(2h− 1) + C(2h) + C(2h + 3) = 2.2b
2h−2

2
c + 2b

2h−1
2
c + 2b

2h+2
2
c

= 3.2h−1 + 2h+1 = 3.2h + 2h−1

and 3.C(2h + 1) + C(2h + 2) = 3.2b
2h
2
c + 2b

2h+1
2
c

= 3.2h + 2h = 4.2h

which implies
∑

h∈H′
C(h) >

∑

h∈H

C(h) ≥ r.

Therefore, H ∈ Hk,r,jk,r
. We already showed that 2h − 1 could only occur

twice, and 2h once, in H ′. We defined H to be the integers in H ′ without

(2h−1, 2h−1, 2h, 2h+3) and with (2h+1, 2h+1, 2h+1, 2h+2). So if we use

the notation H = (h1, . . . , hjk,r
), then h1 must be 2h + 1. Since hi ≤ 2h + 3

for all hi ∈ H ′, hjk,r
≤ 2h + 3. So hjk,r

− h1 ≤ 2.
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Roots of Special Subtrees circled

t(N,R)=2r-7 t(N,R)=2r-7

h7-h1=1 h7-h1=4

Figure 6.5: Two choices of R with t(N ,R) = tmax(n, r)

Lemma 91 shows that for any H ∈ Hk,r,jk,r
, hjk,r

−h1 ≤ 4. If there is such a

jk,r-tuple with hjk,r
−h1 = 4, then the simple manipulation in Lemma 93 gives

us a tuple where the greatest difference in the integers is less than or equal 2.

How this relates back to tmax(n, r) is shown in Figure 6.5. In both diagrams,

we have a complete binary tree of 64 users with 13 users revoked. ST (R) is

shown as thick lines. Both revoked sets have properties of an M -type subset

(going from leaf to root we have a Special Subtree and then nodes with both

children in ST (R)). On the left we have the roots of the Special Subtrees

(H = (3, 3, 3, 3, 3, 3, 4)) are in two adjacent levels (hjk,r
− h1 = 4 − 3 = 1).

On the right the difference in heights between the highest and lowest root is

4 (H ′ = (1, 1, 2, 3, 3, 5), h′jk,r
− h′1 = 5− 1 = 4). We can see from the diagram

that in both cases t(N ,R) = 19 = 2(13) − 7, which agrees with the formula

t(N ,R) = 2r − (number of Special Subtrees). We will show later that both

of these examples give t(N ,R) = tmax(n, r). What the diagram on the right

shows is that we will not always get the range of the roots to be less than 4

for tmax(n, r). We are not trying to classify all subsets that give t(N ,R) =

tmax(n, r), but we merely want to give sufficient conditions.

We know that there exists some tuple in H ∈ Hk,r,jk,r
with hjk,r

− h1 ≤ 2.

And from Lemma 87, either jk,r = 1 or the smallest integer in H is odd. Either

way, we can write H in the form:

H = (h1, . . . , hjk,r
) = (2h + 1, . . . , 2h + 1︸ ︷︷ ︸

α

, 2h + 2︸ ︷︷ ︸
ε

, 2h + 3, . . . , 2h + 3︸ ︷︷ ︸
β

), (6.3)

where α, β ≥ 0 and ε ∈ {0, 1}. The fact that H ∈ Hk,r,jk,r
means that the sum

185



of α + ε + β = jk,r and:

α.22h+1 + ε.22h+2 + β.22h+3 = 2k (6.4)

α.2h + ε.2h + β.2h+1 ≥ r. (6.5)

Since there exists some tuple in Hk,r,jk,r
with a corresponding α, β and ε, in

order to find jk,r, we just need to find the minimum α + β + ε subject to the

above constraints (jk,r is the minimum value such that there is some solution).

There is some ambiguity in this notation. If H is a tuple of the same

integer repeated (i.e. h1 = hj), then this can be represented by α occurrences

of 2h+1, or β of 2h′+3. In order to remove this ambiguity, we stipulate that

α 6= 0. We will use Formulae (6.4) and (6.5), to work out α, β and ε. But

first, we need to find the value of h.

Lemma 94. Let H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

be any tuple with hjk,r
−h1 ≤ 2.

If H is written in the form of Formula (6.3), then h is the maximum value

such that a feasible solution of Formulae (6.4) and (6.5) exists.

Proof. Let h = h1 and (α, β, ε) = (α1, β1, ε1) be the solution to Formulae (6.4)

and (6.5) that minimises α +β + ε. If we assume the statement of the Lemma

is false, then there exists another solution h = h2, (α, β, ε) = (α2, β2, ε2), with

h2 ≥ h1 + 1 and α1 + β1 + ε1 ≤ α2 + β2 + ε2. By Formula (6.4):

α12
2h1+1 + ε12

2h1+2 + β12
2h1+3 = 2k

α1 + 2ε1 + 4β1 = 2k−2h1−1. (6.6)

Similarly α2 + 2ε2 + 4β2 = 2k−2h2−1

h2 ≥ h1 + 1 so α2 + 2ε2 + 4β2 ≤ 2k−2(h1+1)−1

= 2k−2h1−3 =
2k−2h1−1

4

Substituting back in (6.6) gives α2 + 2ε2 + 4β2 ≤ α1 + 2ε1 + 4β1

4
i.e. 4α2 + 8ε2 + 16β2 ≤ α1 + 2ε1 + 4β1.

We know α1 > 0, so adding 3α1 + 2ε1 to the right hand side of this inequality
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gives:

4α2 + 8ε2 + 16β2 < 4α1 + 4ε1 + 4β1

Hence 4α2 + 4ε2 + 4β2 < 4α1 + 4ε1 + 4β1

and α2 + ε2 + β2 < α1 + ε1 + β1.

This contradicts the assumption that α1 + ε1 +β1 is minimised. Therefore, the

triple (α, ε, β) that minimises α + ε + β subject to Formulae (6.4) and (6.5)

must solve them for the maximum h such that a feasible solution exists.

Corollary 95. Let H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

be any tuple with hjk,r
− h1 ≤

2. If H is written in the form of Formula (6.3), then h = k − u − 2 where

2u < r ≤ 2u+1.

Proof. If we multiply Formula (6.5) by 2h+1, we get:

α2h + ε2h + β2h+1 ≥ r

α22h+1 + ε22h+1 + β22h+2 ≥ r.2h+1

Formula (6.4) α22h+1 + ε22h+2 + β22h+3 = 2k

Subtract the two ε22h+1 + β22h+2 ≤ 2k − r.2h+1

So that ε + 2β ≤ 2k−2h−1 − r.2−h

i.e. ε + 2β ≤ 2k−h−1 − r

2h
.

Let u be such that 2u < r ≤ 2u+1. Suppose h ≥ k − u− 1. Then:

2k−h−1 − r

2h
≤ 2u − r

2k−u−1
< 0.

Since ε + 2β ≤ 2k−h−1−r
2h , and ε and β are both non-negative, the fact that

2k−h−1−r
2h < 0 means there are no feasible solutions for ε and β.

Let h = k − u− 2 (so k − h− 1 = u + 1). This gives:

2k−h−2 − r

2h
=

2u+1 − r

2k−u−2
≥ 0.

Since this fraction is greater than or equal to zero, we have at least on solution:

ε = 0 and β = 0. Therefore, h = k − u− 2 is the maximum value such that a

feasible solution to Formulae (6.4) and (6.5) exists. By Lemma 94:

h = k − u− 2.
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Now that we know h, we can place a condition on the values of α, β and ε.

Lemma 96. Let H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

be any tuple with hjk,r
−h1 ≤ 2.

If H is written in the form of Formula (6.3), then ε + 2β ≥ ε1 + 2β1, where

(α1, β1, ε1) is any other solution to Formulae (6.4) and (6.5).

Proof. Suppose (α, β, ε) is the minimum solution to Formulae (6.4) and (6.5).

Let (α1, β1, ε1) be any other solution (so α1 + β1 + ε1 ≥ α + β + ε) but with

ε1 + 2β1 > ε + 2β. Therefore:

(ε + 2β) + γ = (ε1 + 2β1), for some γ > 0

So 2β − 2β1 = −γ + (ε1 − ε)

or β − β1 =
−γ + (ε1 − ε)

2
. (6.7)

Because (α, ε, β) and (α1, ε1, β1) both solve Formula (6.4), we have:

α.22h+1 + ε.22h+2 + β.22h+3 = 2k

α1.2
2h+1 + ε1.2

2h+2 + β1.2
2h+3 = 2k

Hence α.22h+1 + ε.22h+2 + β.22h+3 = α1.2
2h+1 + ε1.2

2h+2 + β1.2
2h+3

Thus α + 2ε + 4β = α1 + 2ε1 + 4β1

i.e. α + 2(ε + 2β) = α1 + 2(ε1 + 2β1)

So α + 2(ε + 2β) = α1 + 2(ε + 2β + γ)

Subtracting 2(ε + 2β) gives

α = α1 + 2γ

or α− α1 = 2γ (6.8)

Combining Equation (6.7) and Equation (6.8) gives:

α + β − (α1 + β1) = 2γ +
−γ + (ε1 − ε)

2
.

If ε = ε1, then:

α + β − (α1 + β1) =
3γ

2
> 0

So α + β + ε− (α1 + β1 + ε1) > 0

i.e. α + β + ε > α1 + β1 + ε1.
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Otherwise, ε1 = 1 − ε, either because ε = 1 and ε1 = 0 or ε = 0 and ε1 = 1.

This gives:

α + β − (α1 + β1) = 2γ +
−γ + (1− ε− ε)

2

=
3γ

2
+

1

2
− ε1

α + β + ε− (α1 + β1) =
3γ + 1

2
> 1 since γ > 0

α + β + ε− (α1 + β1) > 1

α + β + ε− (α1 + β1 + ε1) > 0 since ε ≤ 1

α + β + ε > α1 + β1 + ε1.

In both cases, we have α+β+ε > α1+β1+ε1, which contradicts the assumption

on both solutions. Therefore, if α, β, ε is the solution to Formulae (6.4) and

(6.5) that minimises α + β + ε, then α, β, ε maximises ε + 2β.

Corollary 95 and Lemma 96 are enough to uniquely determine α, β and ε.

Theorem 97. Let H = (h1, . . . , hjk,r
) ∈ Hk,r,jk,r

be any tuple with hjk,r
−h1 ≤ 2.

If H is written in the form of Formula (6.3), then:

α + ε + β = 22u+3−k − δ − 3m,

where 2u < r ≤ 2u+1, and 2u+1− r = 2k−u−1.m+2k−u−2.δ + r′, with δ ∈ {0, 1}
and 0 ≤ r′ < 2k−u−2.

Proof. By Lemma 96, α, β, ε are solutions to Formulae (6.4) and (6.5) that

maximise ε+2β. Since ε ∈ {0, 1}, this means it is enough to maximise β inde-

pendent from ε (ε+2β is maximum when β is maximum). From Corollary 95,

and the fact that h = k − u− 2, the constrains on α, β, ε can be written as:

ε + 2β ≤ 2k−h−1 − r

2h

ε + 2β ≤ 2u+1 − r

2k−u−2
(since k − h− 1 = u + 1)

2β ≤ 2u+1 − r

2k−u−2
(since we are maximising β).

β must be the greatest integer that satisfies this inequality. By re-writing

2u+1 − r in the form 2u+1 − r = 2k−u−1.m + 2k−u−2.δ + r′, with δ ∈ {0, 1} and

189



0 ≤ r′ < 2k−u−2, we get:

2β ≤ 2u+1 − r

2k−u−2

β ≤ 2k−u−1.m + 2k−u−2.δ + r′

2k−u−1

β =

⌊
2k−u−1.m

2k−u−1
+

2k−u−2.δ + r′

2k−u−1

⌋
(since β ∈ N)

=

⌊
m +

δ

2
+

r′

2k−u−1

⌋

= m +

⌊
δ

2
+

r′

2k−u−1

⌋
(since m ∈ N)

= m,

since r′ < 2k−u−2 which implies r′
2k−u−2 < 1

2
and δ ∈ {0, 1} which implies δ

2
≤ 1

2
.

With the value of β fixed, the value of ε that maximises ε + 2β is:

ε =

⌊
2u+1 − r

2k−u−2

⌋
− 2β

=

⌊
2k−u−1.m + 2k−u−2.δ + r′

2k−u−2

⌋
− 2m

=

⌊
2k−u−1.m

2k−u−2
+

2k−u−2.δ

2k−u−2
+

r′

2k−u−2

⌋
− 2m

= 2m + δ +

⌊
r′

2k−u−2

⌋
− 2m

= δ since r′ < 2k−u−2.

Now that we have the values of ε and β, we can use Formula (6.4) to work out

α:

α.22h+1 + ε.22h+2 + β.22h+3 = 2k

α + 2ε + 4β = 2k−2h−1

α + 2ε + 4β = 2k−2(k−u−2)−1

α + 2ε + 4β = 22u−k+3

α = 22u−k+3 − 2ε− 4β

So α + ε + β = 22u−k+3 − ε− 3β

= 22u−k+3 − δ − 3m.
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Range of r tmax(n, r) Proof
r = 0 1

1 ≤ r < 2b
k−1
2
c 2r − 1 Lemma 78

2b
k−1
2
c ≤ r < 2d

k−1
2
e 2r − 2 Corollary 79

2d
k−1
2
e ≤ r < 2k−1 Formula (6.9) Corollary 98

2k−1 ≤ r < 2k 2k − r Corollary 6

Table 6.2: Complete formulae for tmax(n, r)

Corollary 98. Let SDRS be a Subset Difference Revocation Scheme with

n = 2k users. Let r be the number of revoked users, 2d
k−1
2
e ≤ r ≤ 2k−1.

Let u be the integer such that 2u < r ≤ 2u+1. Then SDRS has:

tmax(n, r) = 2r − (22u−k+3 − δ − 3m), (6.9)

where 2u+1−r = 2k−u−1.m+2k−u−2.δ+r′, with δ ∈ {0, 1} and 0 ≤ r′ < 2k−u−2.

Proof. By Corollary 86 tmax(n, r) = 2r−jk,r. By Lemma 93, there exists some

jk,r-tuple H ∈ Hk,r,jk,r
with hjk,r

− h1 ≤ 2, and so H can be written in the

form of Formula (6.3). In this form jk,r = α+ ε+β. The formula for α+ ε+β

for such a jk,r-tuple, as proved in Theorem 97, is:

α + ε + β = 22u−k+3 − δ − 3m

By Formula (6.3) tmax(n, r) = 2r − (22u−k+3 − δ − 3m).

If we return to the example in Figure 6.5, we can see how this formula is

applied. In the example we had n = 64 = 26, and r = 13. Since 23 < r ≤ 24,

we have u = 3. The value of 2u+1−r = 3, and we want to write this in the form

of 2k−u−1.m+2k−u−2.δ+r′. Since 2k−u−2 = 2 and 2k−u−1 = 4, 3 = 4.m+2.δ+r′

when m = 0, δ = 1 and r′ = 1. This gives jk,r = 22u−k+3− δ−3m = 8−1 = 7.

Since both Steiner Trees in Figure 6.5 are made up of 7 Special Subtrees, this

means tmax(n, r) = t(N ,R), which in this case is 2(13)− 7 = 19.

The various formulae for tmax(n, r) over the complete range of r = [0, . . . , n]

are given in Table 6.2. Figure 6.6 is a graph of tmax(n, r) for a large population,

n = 1024, along with the original bound of 2r − 1 ([23]). The figure gives an

indication of how pessimistic the bound is. The bound and tmax(n, r) start off
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Figure 6.6: tmax(n, r), Complete Subtree and Subset Difference, n = 1024

as the same line, but we showed in Lemma 76 that this is only the case for

r ≤ 2b
k−1
2
c ≈ √

n. After this, the two diverge, eventually being separated by a

distance of almost n/8: (2(n/4)−1)−tmax(n, n/4) = (n/2−1)−3n/8 = n/8−1.

For r > n/4, min(n/2, n−r) is the more appropriate upper bound on tmax(n, r).

Also shown in Figure 6.6 is tmax(n, r) for the Complete Subtree Revocation

Scheme. In [23], and other related papers, the maximum bandwidth cost of

the two schemes have only been compared in terms of upper bounds. The

respective formula we have derived now allow us to compare the actual max-

imum bandwidth of the Subset Difference Revocation Scheme (SDRS) and

the Complete Subtree Revocation Scheme (CSRS). We see that for small

values of r, tSDRS
max (n, r) is significantly less than tCSRS

max (n, r) (2r − 1 versus

≈ r(log2(n/r))). In the range of n/4 ≤ r ≤ n/2, tSDRS
max (n, r) is a step func-

tion with tSDRS
max (n, r) increasing from 3n/8 to n/2, as compared to a constant

tCSRS
max (n, r) = n/2. As stated earlier, both schemes have the same value of

tmax(n, r) for all r greater than n/2, tSDRS
max (n, r) = tCSRS

max (n, r) = n − r. This

means that the Subset Difference Revocation Scheme has higher maximum

bandwidth than the Forest of Trees Revocation Schemes in this range. The

Forest of Trees Revocation Schemes achieved tmax(n, r) significantly lower than

n− r, as shown in Formula (5.12). There will be a more thorough comparison
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of all schemes presented in Chapter 7.

6.3 Average Bandwidth

In the Chapter 5, we found a formula for taver(n, r) for the disjoint union of two

revocation schemes (Formula (5.5)). As we mentioned in the previous section,

the Subset Difference Revocation Scheme on 2n users is not just comprised

of the disjoint union of two schemes on n users. There is more than one

subset in the Subset Difference Revocation Scheme on 2n users that contains

users from both of the component Subset Difference Revocation Schemes on n

users. However, if we can specify all such subsets, we may be able to determine

the difference in the sizes of the covers of the Subset Difference Revocation

Scheme with 2n users (SDRS) and the disjoint union of two Subset Difference

Revocation Schemes with n users (DURS). Formula (5.5) gives us a formula

for the taver(2n, r) for the latter scheme:

tDURS
aver (2n, r) =

min(n,r)∑

r1=max(0,r−n)

(
n
r1

)(
n

r−r1

) (
tSDRS
aver (n, r1) + tSRDS

aver (n, r − r1)
)

(
2n
r

) .

(6.10)

Note that this is not a recursive relation as it expresses taver(2n, r) for one

scheme (DURS) in terms of taver(n, r) of another scheme (SDRS) with a

smaller population. More importantly, we wish to find a recursive relation for

taver(n, r) with SDRS. However, if we can classify all the subsets R such that

the size of the cover of N \R in SDRS (tSDRS(N ,R)) differs from the cover

in DURS (tDURS(N ,R)), and by how much they differ, then we can modify

Formula (6.10) to give a recursive formula for tSDRS
max (n, r). Because SDRS

contains all the subsets in DURS, we know that tSDRS(N ,R) ≤ tDURS(N ,R).

Let SDRS = (N , Ω, γ) be a Subset Difference Revocation Scheme on a

set of 2n users determined by the correspondence between the users and the

leaves of a complete binary tree T . Let N1 be the set of users whose leaves

are descended from the left child of the root of T , and N2 be the set of

users whose leaves are descended from the right child of the root of T . Let

SDRS1 = (N1, Ω1, γ1) and SDRS2 = (N2, Ω2, γ2) be Subset Difference Re-

vocation Schemes defined on the two subtrees of T , T1 and T2, rooted at
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the left and right child of the root of T . In the previous section we showed

that all the subsets in SDRS1 and SDRS2 (i.e. {γ1(i, j) : (i, j) ∈ Ω1} and

{γ2(i, j) : (i, j) ∈ Ω2}), occur in SDRS. We need to classify the subsets,

γ(i, j), that occur in SDRS, but do not occur in either SDRS1 or SDRS2.

In the following Lemma, we will prove the following: for any γ(i, j) ∈
SDRS, we have γ(i, j) ∈ SDRSb if and only if i is a node of Tb or i is the root

of T and j is the root of T1−b (for b ∈ {0, 1}). Conversely, if γ(i, j) ∈ SDRS,

then γ(i, j) /∈ SDRS1 and γ(i, j) /∈ SDRS2 if and only if (i, j) = (0, 0) or i is

the root of T and j is not a child of the root of T .

Lemma 99. Let T be a complete binary tree with 2n ≥ 4 leaves. Let SDRS1 =

(N1, Ω1, γ1) and SDRS2 = (N2, Ω2, γ2) be the Subset Difference Revocation

Schemes defined on the two subtrees of T rooted at the left and right child

of the root of T , T1 and T2. Let DURS be the disjoint union of SDRS1

and SDRS2. Let SDRS = (N , Ω3, γ3) be a Subset Difference Revocation

Scheme with 2n users, defined on T . If R 6= ∅ is a subset of revoked users

corresponding to leaves which are descended from the same grandchild of the

root of T then:

tSDRS(N ,R) = tDURS(N ,R)− 1.

Otherwise, tSDRS(N ,R) = tDURS(N ,R).

Proof. From the definition of a disjoint union (Definition 48), the following

subsets are in DURS:

{γ(i, j) : γ(i, j) ∈ DURS} = {γ1(i, j) : γ1(i, j) ∈ SDRS1}
∪{γ2(i, j) : γ2(i, j) ∈ SDRS2}
∪{γ(0, 0)(= N )}.

Clearly γ(i, j) is in DURS and SDRS when (i, j) = (0, 0) or when i is in

either T1 or T2, i.e. not the root. But there are also two other occasions when

γ(i, j) is in both schemes and i is the root of T (which is not in either of the

two subtrees). When j = right child(root), then:

γ(i, j) = desc(root) \ desc(right child(root))

= desc(left child(root)

= γ1(0, 0) ∈ SDRS1 ⊂ DURS.
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The same holds when j is the left child of the root. So, in order for a subset

to be in SDRS, but not in DURS, it must be in the form of γ(i, j) where i

is the root of T and j is at least distance two from the root. For example, if

j is in the right tree, then:

γ(i, j) = desc(root) \ desc(j)

= desc(left child(root)) ∪ (desc(right child(root) \ desc(j))

= γ1(0, 0) ∪ γ2(root of T2, j).

Subsets of this form are composed of users from both N1 and N2. Since the

only subset in DURS with users from both N1 and N2 is γ(0, 0) = N and

there is at least one user not in γ(i, j) (desc(j)), γ(i, j) /∈ DURS. However,

because any γ(i, j) in this form is the union of γb(i, j) and N1−b, for some

b ∈ {0, 1}, each subset in SDRS that is not in DURS can be written as the

union of two subset that are in DURS. Therefore, if we let v1 and v2 be the

roots of T1 and T2 respectively, we have:

{γ(i, j) : γ(i, j) ∈ SDRS} = {γ1(i, j) : γ1(i, j) ∈ SDRS1}
∪{γ2(i, j) : γ2(i, j) ∈ SDRS2}
∪{N1 ∪ γ2(i, j) : (i, j) ∈ SDRS2, i = v2}
∪{N2 ∪ γ1(i, j) : (i, j) ∈ SDRS1, i = v1}
∪{γ(0, 0)(= N )}.

Clearly, {γ(i, j) : γ(i, j) ∈ DURS} ⊆ {γ(i, j) : γ(i, j) ∈ SDRS}, as all

the subsets in DURS are replicated in SDRS. Therefore, tSDRS(N ,R) ≤
tDURS(N ,R), the minimal cover of N \ R in DURS is comprised of subsets

that are also in SDRS.

Consider the minimal cover of N \R in SDRS. If this cover is comprised of

subsets that are also in DURS, then tSDRS(N ,R) = tDURS(N ,R). Otherwise,

there must be at least one subset in SDRS that is not in DURS. From

comparing the two lists of subsets in both schemes, any such subset must be

in the form γ(i, j) where i is the root of T and j is distance 2 or further

from the root. The privileged users in this subset are at the very least, all

the descendants of one child of the root of T , and all the descendants of one
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grandchild of the root. Therefore, all revoked users must be limited to one

grandchild of the root.

Because there are more than half of the users in N in such a subset (all

users are descended from i, 1/4 or less are descended from j), two subsets

of this form would intersect. But by Corollary 71, no subsets in a minimal

cover can intersect. Therefore there is only one such subset γ(i, j) ∈ SDRS in

the cover of N \ R that is not in DURS. Because the subset can be written

as the union of two subsets that are in DURS (γ(i, j) = N1 ∪ γ2(v2, j) or

N2 ∪ γ1(v1, j)), we have:

tSDRS(N ,R) = tDURS(N ,R)− 1.

We now know exactly when t(N ,R) with the Subset Difference differs from

the Disjoint Union, and by how much (if there is any difference, it is always

1). This leads to a very simple modification to Formula (5.5) for the average

bandwidth of the Subset Difference Revocation Scheme.

Theorem 100. Let SDRS be a Subset Difference Revocation Scheme with 2n

users, defined in tree T . Then SDRS has:

tSDRS
aver (2n, r) =




min(n,r)∑

r1=max(0,r−n)

(
n
r1

)(
n

r−r1

) (
tSDRS
aver (n, r1) + tSRDS

aver (n, r − r1)
)

(
2n
r

)

−4

(n
2
r

)
(
2n
r

)

if 1 ≤ r ≤ n/2. Otherwise:

tSDRS
aver (2n, r) =

min(n,r)∑

r1=max(0,r−n)

(
n
r1

)(
n

r−r1

) (
tSDRS
aver (n, r1) + tSRDS

aver (n, r − r1)
)

(
2n
r

) .

Proof. Let DURS be the Disjoint Union of two Subset Difference Revocation

Schemes defined on the complete binary trees rooted at the left and right

children of the root of T . By Lemma 99 we must have either tSDRS(N ,R) =

tDURS(N ,R) or tSDRS(N ,R) = tDURS(N ,R) − 1. The latter only occurs

when R is contained in the set of users corresponding to the descendants of

one grandchild of the root of T . This is at most one quarter of the leaves of

the tree. Consequently, if there is a difference in the size of the minimal cover

in SDRS and DURS then |R| ≤ n/2. There are 4 different grandchildren,

and for each grandchild of the root there are
(

n/2
r

)
subsets R, where |R| = r.
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Figure 6.7: taver(n, r) for the Complete Subtree and Subset Difference Revo-
cation Schemes, for n = 210.

This gives a total of 4
(

n/2
r

)
subsets for which there is a difference in the size

of the minimal cover in SDRS and DURS. Therefore:

tSDRS
aver (2n, r) =





tDURS
aver (2n, r)− 4(n/2

r )
(2n

r )
if 1 ≤ r ≤ n/2

tDURS
aver (2n, r) if r > n/2.

Formula (6.10) gives a formula for tDURS
aver (2n, r) in terms of tSDRS

aver (n, r1),

for r1 in the range [max(0, r − n), . . . , min(n, r)]. Substituting this into the

above gives us:

tSDRS
aver (2n, r) =




min(n,r)∑

r1=max(0,r−n)

(
n
r1

)(
n

r−r1

) (
tSDRS
aver (n, r1) + tSRDS

aver (n, r − r1)
)

(
2n
r

)

−4

(n
2
r

)
(
2n
r

)

(6.11)

if 1 ≤ r ≤ n/2, otherwise:

tSDRS
aver (2n, r) =

min(n,r)∑

r1=max(0,r−n)

(
n
r1

)(
n

r−r1

) (
tSDRS
aver (n, r1) + tSRDS

aver (n, r − r1)
)

(
2n
r

) .

(6.12)
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Figure 6.8: taver(n, r) for the Subset Difference Revocation Schemes versus
1.38r and 1.25r, for n = 210.

Figure 6.7 compares taver(n, r) for the Complete Subtree and Subset Differ-

ence Revocation Schemes. This amounts to comparing the average bandwidth

costs for the two schemes. We see that the Subset Difference Revocation

Scheme gives a marked improvement over the Complete Subtree Revocation

Scheme, most notably for small values of r. There is a large gap between the

two graphs up until around r = n/2. In this range taver(n, r) for the Subset

Difference stays below 300, but that of the Complete Subtree hovers around

the 400. When we compared tmax(n, r) of the two schemes (Figure 6.6), there

was much less of a disparity, the two curves meeting at r = n/2. This im-

plies that the difference in the bandwidth costs between the Subset Difference

Revocation Scheme and the Complete Subtree Revocation Scheme is greater

than that suggested just by tmax(n, r).

The fact that there is any difference between the two for r ≤ n/2 = 512

also sheds more light on the comparison than the graphs for tmax(n, r) did. The

maximums for both schemes were identical for all r ≥ n/2, namely tmax(n, r) =

n − r. The average show that the Subset Difference performs better (even if

it is only slightly) in this range.

The shape of taver(n, r) for the two schemes is also different. The average
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for the Complete Subtree peaks when r ≈ 3n/8, while curve for the Subset

Difference is almost symmetric, peaking near r = n/2. The most simple ap-

proximation of the latter is r(n−r)/n, while the former is close to r log2(n/r).

Of course, r(n − r)/n is strictly below the curve of taver(n, r) for the Subset

Difference, while r log2(n/r) is above that of the Complete Subtree.

In [23], Naor et al. proved that taver(n, r) is bounded above by 1.38r. They

also conjectured 1.25r as a tighter bound, suggested by experimental evidence.

We can see in Figure 6.8 that both of these are very pessimistic bounds. They

certainly would not apply for r ≥ n/2 where we know the maximum t(N ,R)

is n− r.

In this Chapter, we have established the exact formula for tmax(n, r) for

the Subset Difference Revocation Scheme. This is a substantial improvement

on the existing bound of 2r − 1. It will also be important in comparing the

performances of the schemes in the following Chapter. We have also given a

recursive relation for taver(n, r) which can be used for large values of n (around

1000). We have already made some statements on how the Subset Difference

Revocation Scheme compares to the Complete Subtree Revocation Scheme in

terms of these two bandwidth measures. In Chapter 7, we will make more

thorough comparisons.
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Chapter 7

Comparison of Schemes

In the previous chapters we have looked at several existing Revocation Schemes,

as well as creating new ones. Up to now the schemes have been largely judged

either on their own merits, or compared to the original Complete Subtree Re-

vocation Scheme. In this chapter we will try to make meaningful comparisons

between all of the schemes. The goal is not to state explicitly which scheme is

the “overall best”, but rather to describe how a centre might go about decid-

ing which scheme best satisfies the constrains for a particular scenario. The

two main measures of performance we will use will be t(N ,R) (in the form

of both tmax(n, r) and taver(n, r)) and |U |max. The formulae for these will be

quoted directly in this chapter with reference to their derivation.

There are five sections in this chapter. In the first, we do an example

comparison of three schemes for one value of n. This highlights the difficulty

in comparing the bandwidth costs of different schemes. In the next two sections

we propose some metrics to quantify these costs and apply them to the schemes

we have looked at. We then describe the complete process a centre would need

to perform in order to determine the optimal scheme. Finally, we draw some

overall conclusions.

7.1 Simple Comparison of Three Schemes

Let us start with a simple comparison of three schemes. If we fix the population

size to be n = 26 = 64, then this specific case should give us some tools
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Scheme Storage |U |max Equation
CSRS2 log2(n) + 1 7 Equation (3.1)
CSRS4 (23 − 1) log4(n) + 1 22 Equation (3.4)

SDRS 1
2
log2

2(n) + 1
2
log2(n) + 1 22 Equation (3.5)

Table 7.1: |U |max for three different schemes when (n = 64).

for comparing all the schemes for different values of n. We will just look

at the Complete Subtree Revocation Scheme on a binary tree (CSRS2) and

on a quaternary tree (CSRS4) and the Subset Difference Revocation Scheme

(SDRS). We choose not to consider a ternary tree because of the difference

between n and 81, the nearest power of 3. Any of the Forest of Trees schemes

could also be used, but we will just consider the three above for now. We

will first look at the storage, and then the bandwidth, of the three schemes.

Finally, we will try to devise a way to combine the two measures for an overall

view.

7.1.1 Comparing Storage

The simplest way of comparing the schemes is by looking at the storage. We

calculate how many establishment keys each user must store under the different

schemes. The respective formulae and values are in Table 7.1.

We have taken a slight liberty with the formulae. For SDRS, Equa-

tion (3.5) counts the number of labels a user stores. These are the labels

that are used to generate the establishment keys as described in Section 3.3.2.

The figure for the total number of establishment keys is just short of 4n. We

allow this method for reducing the storage in SDRS because it does not ex-

pand the stored material. With the proper choice of Pseudo Random Number

Generator (PRNG), the labels will be exactly the same length as the establish-

ment keys. This makes labels in this scheme and establishment keys in another

scheme comparable. Conversely, we do not allow the compression methods for

the Complete Subtree Revocation Schemes of Asano [1]. The Master Keys are

calculated using an RSA modulus. In order for this to be secure, the modulus
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(and consequently the Master Keys) must be much larger than the establish-

ment keys. The present minimum for an RSA modulus is around 1024 bits,

while establishment keys could be between 64 and 128 bits (these are keys for

a symmetric block cipher).

We see from Table 7.1 that CSRS2 requires the fewest keys. The other

two schemes, CSRS4 and SDRS, are equal. The use of the PRNG in SDRS

will require extra computation for the users, but this is a different kind of

cost that is not being considered yet. The ordering of the schemes in terms

of storage is straightforward, i.e. the scheme that requires the fewest keys is

the best. Unfortunately, the same is not true when it comes to comparing the

bandwidth of the schemes.

7.1.2 Comparing Bandwidth

Our first measure of the bandwidth costs is the maximum: tmax(n, r). However,

this function does not return a single value, but a range of values for all

r ∈ [0, . . . , n] that correspond to the size of the largest header of a broadcast

where r users are revoked. The bigger the header is, the more information

the centre has to broadcast to the users and so the higher the bandwidth.

Figure 7.1 plots the three different graphs of tmax(n, r) for the three different

schemes.

From Figure 7.1, we can see that both SDRS and CSRS4 have consistently

lower bandwidth than CSRS2. This is unsurprising as both schemes were

designed with this goal in mind. However, neither SDRS nor CSRS4 has

consistently lower bandwidth than the other for all values of r. For the values

of r from r = 7 to r = 47, tCSRS4
max (n, r) < tSDRS

max (n, r). For values of r lower than

7, tSDRS
max (n, r) is lower than tCSRS4

max (n, r), and for r ≥ 48 the two are the same.

This makes it difficult to rate either scheme better than the other. CSRS4

does have the lower bandwidth for the bulk of the range of r, with significantly

lower bandwidth around r = n/2. However, it may be that the values of r

such that SDRS is less costly are the important values, i.e. the centre may

only expect a few revoked users. Alternatively, if the higher values of r are

the important ones, then we cannot distinguish between the two schemes at

all.
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Figure 7.1: tmax(n, r) for three different Revocation Schemes
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Figure 7.2: taver(n, r) for three different Revocation Schemes
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This last problem can be solved by plotting the average bandwidth cost:

taver(n, r), which is the average header size, averaged over all broadcasts when

r users are revoked. In Figure 7.2 we see taver(n, r) plotted for CSRS2, CSRS4

and SDRS. The shapes of the graphs are different to those of tmax(n, r). We do

not have jagged line segments but instead smooth curves. More importantly,

for each value of r there is a scheme with the lowest taver(n, r) apart from the

extreme values of r = 0, n. The only other point where two of the graphs meet

does not occur at an integer value of r. So the graphs of taver(n, r) allow us

to better distinguish between the schemes than tmax(n, r) does. CSRS4 has

lower taver(n, r) than SDRS for large values of r, while the graphs of tmax(n, r)

was equal for the two schemes for all r ≥ 3n/4. Another observation we can

make is that the average bandwidth for CSRS4 and SDRS is lower than that

of CSRS2 for all but the two extreme values of r. The maximum bandwidth

for all three schemes was the same in the range 3n/4 ≤ r ≤ n (and for both

CSRS2 and SDRS in the range n/2 ≤ r ≤ 3n/4). This shows that using either

CSRS4 or SDRS will result in less bandwidth than CSRS2 (on average).

The functions tmax(n, r) and taver(n, r) give slightly different results when

comparing schemes. While the graphs in Figures 7.1 and 7.2 are broadly sim-

ilarly, the lines for taver(n, r) do not overlap, but those of tmax(n, r) do, as has

already been noted. Also, taver(n, r) for SDRS and CSRS4 are considerably

closer together than the respective values of tmax(n, r). We need to put these

results in context, so we can say which results are more applicable. It could be

argued that the maximum bandwidth is an artificial measure of bandwidth.

For the most part, it is the size of a cover that has a vanishingly small prob-

ability of occurring. Consider the case when r = n/2. A set of revoked users

that gives rise to the largest cover (in either CSRS2 or SDRS) is any that

has one user revoked out of every sibling pair. There are 2n/2 such sets out of

a total
(

n
n/2

)
. In the case of n = 26 we get a probability of 2.34 × 10−7, and

this is a very small size for a scheme. When n = 210 the probability is just

2.99× 10−151.

There are advantages of using tmax(n, r) over taver(n, r). For the most part

it is easier to calculate, and in some cases it can be more pertinent. Suppose

the centre will be delivering the broadcast some sort of storage media, e.g.
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Compact Disks, DVD’s, etc. In this case, the centre would need an upper

bound on the number of ciphertexts in order to fix the area on the medium

for the header. This would mean either finding the maximum tmax(n, r) over

the range of all possible values of r, or finding the maximum over a smaller

range, depending on the needs of the centre (i.e. how many revoked users the

system must allow for).

One final point is that tmax(n, r) is not a consistent reflection of the average

bandwidth. The shape of the plots of taver(n, r) is roughly the same as that of

the plots of tmax(n, r), although a plot of the average has a much more smooth

curve. Naturally, the averages are lower than the maximums. However, the

difference between the two varies for different schemes. For example, if we

compare two graphs for CSRS2 in Figure 7.1 and Figure 7.2 we see than

tCSRS2
max (n, r) is only ever greater than tCSRS2

aver (n, r) by at most 6.7 (when r = 22).

However, tSDRS
max (n, 32)− tSDRS

aver (n, 32) = 12.1. So any value of tmax(n, r) gives

little information of the corresponding value of taver(n, r) aside from being an

upper bound. As the converse is true, we can not conclude that taver(n, r) is a

better measure of bandwidth. By the exact same argument, taver(n, r) does not

accurately reflect tmax(n, r). This does highlight the dangers of concentrating

on only one of the two measures. In order to get the most well-rounded

comparisons of schemes we will use both tmax(n, r) and taver(n, r).

7.2 Proposed Bandwidth Scores

We are still left with the problem of deciding which scheme is more efficient

in terms of bandwidth. We will describe some functions, or “scores”, that

take as argument t(N ,R) (in the form of either tmax(n, r) or taver(n, r)) for

a particular scheme as arguments and return a single value that reflects the

bandwidth costs of that scheme. This value will then be used to rank the

schemes in terms of bandwidth, just as |U |max does for storages. The first

score is:

score = max
r∈range1

tmax(n, r),

where range1 is the expected range of r in the proposed scheme. This measure

would be appropriate for broadcasts on storage media as previously mentioned.
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Knowing the maximum size of the header allows you to specify a fixed number

of bits for the header. The fact that most broadcasts would not use all these

bits does not matter, as the storage medium would have a fixed size. We could

substitute taver(n, r) for tmax(n, r) in the above score, but there is no obvious

justification for the resulting score.

Even if the centre does not have information on the population’s expected

behavior, an estimate of the range range1 can be made, based on the appli-

cation. For example, in a Pay-per-View scheme, where users are given a wide

range of content to choose from, one would expect the number of privileged

users for any one broadcast to be small. Each user would only choose to view

a small portion of the available content. If instead the application was a Sub-

scription service, each user would be paying a flat rate. As such, we would

expect the membership of the privileged set of users to be less volatile. In this

case, it would be the number of revoked users that would be small. In the

former case, the centre would set range1 = [(1− a).n, . . . , n], and in the latter

case, the centre would set range1 = [0, . . . , a.n], where 0 < a ¿ 1 is a small

fraction.

If the centre also knows the probability distribution of r, i.e. the probability

that r users will be revoked for any broadcast for r ∈ range1, then we can

define the score as:

score =
∑

r∈range1

P (r)× tmax(n, r) or score =
∑

r∈range1

P (r)× taver(n, r).

This gives an expected value of either the maximum or average cover. We can

be even more specific by defining the score using the probability of specific

subsets R begin revoked:

score =
∑
R⊆N

P (R)× t(N ,R).

All of these scores are weighted averages that reflect the behavior or the popu-

lation. However, they require knowledge of the probabilities of various revoca-

tion events. In the case of the latter score, the exponential number of subsets

when |N | is large requires having an extensive list of probabilities, unless the

vast majority were zero. This score would only be appropriate if there was a
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CSRS2 CSRS4 SDRS
scoremax 1366 820 1157
scoreaver 1100.66 715.86 801.45

Table 7.2: Scores for CSRS2, CSRS4 and SDRS

need to differentiate the probabilities of different sets of the same size being

revoked. Otherwise, the average of taver(n, r) with the appropriate probability

distribution on r will achieve the same result. The advantage of these scores is

that they can reflect the fact that the most likely size of revoked subsets may

be restricted to a small range. Assuming each user has the same probability

of being revoked (p) then those subsets of revoked users with a size close to

n× p will be the only ones with a non-negligible probability.

7.2.1 Application of Bandwidth Scores

In the absence of any specific probability distribution on r or R, we will use

the following two scores:

scoremax =
∑

r∈range1

tmax(n, r) and scoreaver =
∑

r∈range1

taver(n, r).

These scores are easy to calculate given tmax(n, r) and taver(n, r), but can be

customised to different user behavior by varying range1. We will be using the

complete range, range1 = [0, . . . , n], for most cases. This means that scoremax

and scoreaver are the areas under the graphs of tmax(n, r) and taver(n, r) re-

spectively. This would only be applicable if the centre needed the maximum

resiliency in the scheme. For our three chosen schemes we get the scores in

Table 7.2.

Table 7.2 confirms what we see from the graphs of tmax(n, r) and taver(n, r),

namely that CSRS4 has the smallest area under the graph (for both graphs),

followed by SDRS, and CSRS2 has the greatest area. We will need the use

of the scores later when comparing several schemes as it will not be readily

apparent which schemes have the smallest area.
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Figure 7.3: Combining figures for storage and maximum bandwidth

7.2.2 Combining Results

We have shown how to rate the storage of the three schemes, and a number

of ways of rating the bandwidth as well. What we need now is an intuitive

way of combining these measures, so the schemes can be judged with regard

to both properties. The obvious way of doing this is to have a point on a

plane for each scheme, where the x co-ordinate is |U |max and the y co-ordinate

is scoremax (or scoreaver). The closer a point is to the origin, the better the

scheme is, i.e. the smaller
√
|U |2max + score2

max is, the better the scheme.

As the graph is drawn in Figure 7.3, the point for CSRS2 appears closest

to the origin. But because of the huge disparity in the axes (y axis goes up

to 1400, while the x axis only goes as far as 22), it is the value of scoremax

that has the greatest influence on the distance to the origin. The point that is

actually closest to the origin is that of CSRS4, as a consequence of having the

lowest scoremax. Because of the difference in the size of scoremax and |U |max,

|U |max has almost no influence on which point is closest to the origin. In order

to lessen the disparity, the y axis should be scaled down by a constant factor.

Ideally, the scoremax values would be scaled down in such a way that the same

208



distance on each axis would represent the same cost. For example, if it was

possible to translate both |U |max and scoremax into actual financial costs, then

the graphs would represent the comparative costs more accurately.

It may not be possible to express the costs of both storage and bandwidth

in similar terms, especially as storage would most likely be a one-time cost

and bandwidth costs are repeated for each broadcast. However, there are two

simpler ways for the centre to choose the best scheme for its needs. The first

way is to decide the maximum possible storage that can be available to a

user. The centre would then looks at all the points in Figure 7.3 with storage

less than or equal to this value and picks the point with the lowest scoremax,

or equivalently the point closest to the x-axis. For example, if the maximum

storage was less than 22, then CSRS2 would be chosen as it is the only scheme

with less than 22 keys per user (unless the maximum was less than 7 as none

of the three schemes has storage that low). If the maximum storage is any

greater, then CSRS4 would be chosen as it has the lowest scoremax of the

three. The other way is the same, except that the centre starts by limiting

the bandwidth (scoremax) and choosing the scheme from those remaining that

has the lowest storage.

Replacing scoremax with scoreaver gives a similar plot: Figure 7.4. Since the

order of scoreaver for the three schemes is the same as that for scoremax, there

is no major difference. However, since SDRS has a much smaller scoreaver

than scoremax, it is closer to the origin (not as close as the point for CSRS4

though).

A slight change to the range over which we calculate either score can

give different results. If we change range1 to be over small values of r, say

0, . . . , n/4, we get the scores in Table 7.3. For both scoremax and scoreaver,

SDRS scores lower than CSRS4. The reason why SDRS performs better is

that tmax(n, r) is 2r−1 for lower values of r, whereas with CSRS4, tmax(n, r) is

closer to r log4(n/r). As this demonstrates, neither scoremax nor scoreaver are

absolute metrics for determining the best scheme. They only give a limited

view of performance that depends on the chosen range1.
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Figure 7.4: Combining figures for storage and average bandwidth

CSRS2 CSRS4 SDRS
scoremax 155 79 75
scoreaver 131.74 71.82 51.59

Table 7.3: Scores for CSRS2, CSRS4 and SDRS with smaller range1
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Figure 7.5: tmax(n, r) for SDRS with n = 24, . . . , 210

7.3 Comparing Schemes with different n

In the previous section we showed how a centre might choose between three

schemes. But this was a very restricted example. The value of n was fixed, and

we only looked at three schemes. Granted, when choosing a scheme, a centre

will probably know how many users will be in the system. However, we wish to

know how all the schemes compare as n grows. For the two bandwidth scores

we used, scoremax and scoreaver, the Complete Subtree Revocation Scheme

on a quaternary tree performed better than the Subset Difference Revocation

Scheme when n = 26 (for one choice of range1). We want to know if this is true

for smaller and larger values of n. Also, we need to be able to compare schemes

that have different size user sets, e.g. the number of users in a scheme based

on a binary tree will be a power of 2, while the Complete Subtree Revocation

Scheme on a ternary tree will have a power of 3 users. It turns out that both

of these goals can be accomplished with the use of scaled down graphs.

Let us focus on how one Revocation Scheme, the Subset Difference Re-

vocation Scheme, changes as n grows. The storage grows in a very straight
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Figure 7.6: tmax(n, r)/n for SDRS with n = 24, . . . , 210

forward way: |U |max = 1
2
log2

2(n) + 1
2
log2(n) + 1. However, it is not obvious

from the formula for tmax(n, r) (Formula (6.9)) how the bandwidth grows with

n. In Figure 7.5 we plot tmax(n, r) on the same graph for n equal to all powers

of 2 from 24 to 210. We cannot directly compare any of the graphs as the

range doubles from one to the next. If instead of plotting [r, tmax(n, r)], we

plot [r/n, tmax(n, r)/n], then each graph will go from 0 to 1 in the horizontal

axis and 0 to 1
2

in the vertical, since tmax(n, r) for SDRS (as well as for most

revocation schemes) is bounded above by n
2
. This is done in Figure 7.6.

This results in graphs that are close together, the many graphs overlap-

ping making it difficult to distinguish individual ones. We can make some

observations. The graphs seem to be increasing in area (as n grows), but in

smaller and smaller increments, tending to a limit. For example in the range
n
4
≤ r ≤ n

2
we have a step function from 3n

8
to n

2
. When n = 24 we only get two

“steps”. But as n grows we get more steps between the two points, making

a closer approximation to a straight line. It is more complicated in the lower

range, 1 ≤ r ≤ n
4
, but it does seem to tend to something close a straight line

between [0, 0] and [1
4
, 3

8
]. The only place where the graphs for smaller values
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SDRS 24 25 26 27 28 29 210

score′max 0.2754 0.2798 0.2823 0.2840 0.2848 0.2852 0.2855
score′aver 0.2056 0.1988 0.1955 0.1940 0.1932 0.1923 0.1926

CSRS2 24 25 26 27 28 29 210

score′max 0.3360 0.3340 0.3335 0.3334 0.3333 0.3333 0.3333
score′aver 0.2824 0.2731 0.2687 0.2666 0.2655 0.2650 0.2648

Table 7.4: score′max and score′aver for SDRS and CSRS2 with various n

of n give the higher points is when r = 0. We always have tmax(0, n) = 1, so

the smaller n is the less it will be scaled down.

By approximating the graphs to the implied straight lines, we can get an

estimate of the area of the limiting case. The area under the lines connecting

the points [0, 0], [1
4
, 3

8
], [1

2
, 1

2
], [1, 0] is:

(
1

2
× 1

4
× 3

8

)
+

(
1

4
× 7

16

)
+

(
1

2
× 1

2
× 1

2

)
=

3

64
+

7

64
+

1

8
=

9

32
= 0.28125.

With a minor modification to the formula, we can define a new score to be

the area of scaled down graphs:

score′max =
∑

r∈range1

tmax(n, r)

n2
and score′aver =

∑
r∈range1

taver(n, r)

n2
.

The values we get for range1 = [0, . . . , n] in Table 7.4, are all close to our

estimate of 0.28125. But they are all above this value, and are tending to

a limit that is a little above it (around 0.286). The reason for this is that

tmax(n, r) (when scaled down) tends to a limit slightly above the straight line

between [0, 0] and [1
4
, 3

8
].

For the Complete Subtree Revocation Scheme on a binary tree, we can

make a more definitive statement about score′max. By Theorem 102 in Ap-

pendix C we have that:
n∑

r=0

tmax(n, r) =
1

3
n2 +

2

3
.

Hence
n∑

r=0

tmax(n, r)

n2
=

1

3
+

2

3n2

so that score′max →
1

3
as n tends to infinity.
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Figure 7.7: tmax(n, r)/n for CSRS2 and SDRS with n = 29, CSRS3 with
n = 35 and CSRS4 with n = 44.

We use this to calculate score′max for CSRS2 in Table 7.4. While the values

of score′aver for both CSRS2 (and SDRS in Table 7.4) also tend to a limit,

due to the recursive nature of the formula for taver(n, r), it is difficult to justify

this for n greater than the values we have calculated. For those values that

we can calculate score′max and score′aver for, we can see how the bandwidth

changes as n grows. We can also use this to compare the bandwidth of schemes

with different sized user sets. When comparing the bandwidth of schemes, it

is important to compare the storage at the same time, as is done if Figures

7.3 and 7.4.

In Figure 7.7, we have the graph of r/n vs tmax(n, r)/n for four different

schemes CSRS2, CSRS3, CSRS4 and SDRS with varying size user sets so

the bandwidth can be compared directly. This adds the Complete Subtree

Revocation Scheme on a ternary tree, which was absent from the earlier com-

parisons. Unsurprisingly, tmax(n, r)/n for CSRS3 lies between CSRS2 and

CSRS4. Just as was the case for CSRS4, CSRS3 has higher maximum band-

width than SDRS for small values of r, equal maximum bandwidth for large

values of r and lower maximum bandwidth for intermediate values of r.
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Figure 7.8: |U |max versus score′max for a variety of Revocation Schemes.

Fortunately, the use of score′max removes the need for a dissection of several

such graphs. In Figure 7.8 we have plotted |U |max versus score′max for nine

different Revocation Schemes, including the four above. The values of n for

the different schemes are not the same by necessity (e.g. binary and ternary

must have different size user sets) but has been kept to as small an interval

as possible to give a good comparison. Each scheme is represented as a single

point where the x co-ordinate is |U |max, and the y co-ordinate is score′max. The

complete list of the schemes in the figure and their co-ordinates is:

Binary Schemes: n = 211 = 2048. Complete Subtree (CSRS2 = [12, 0.33]),

Subset Difference (SDRS = [67, 0.29]), Forest of 3, 7 and 15 Trees

(Fo3T = [14, 0.30], Fo7T = [22, 0.26] and Fo15T = [46, 0.22]).

Ternary Scheme: n = 37 = 2187. Complete Subtree on a ternary tree

(CSRS3 = [22, 0.25]).

Quaternary Scheme: n = 45 = 1024. Complete Subtree on a quaternary

tree (CSRS4 = [36, 0.20]).

5-ary Scheme: n = 55 = 3125. Complete Subtree on a 5-ary tree (CSRS5 =

[76, 0.17]).

6-ary Scheme: n = 64 = 1296. Complete Subtree on a 6-ary tree (CSRS6 =

[125, 0.14]).

The most striking feature of Figure 7.8 is how poorly the Subset Difference

Revocation Scheme fairs. All of CSRS3, CSRS4, Fo7T and Fo15T have both
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score′max and |U |max lower than that of SDRS. This is despite the fact that

SDRS only has the labels that generate the keys counting toward the storage.

If we had used a smaller range1 in calculating score′max, only summing over

small values of r, we would get radically different results. SDRS has the

lowest tmax(n, r) for small values of r, and would consequently get the smallest

score′max. Apart from the one errant point for SDRS in the top-right of

Figure 7.8, the rest of the schemes roughly transcribe a curve similar to that

of y ≈ 1.3√
x
. This curve marks the storage/bandwidth trade-off. The decision

as to which scheme is most efficient is not clear-cut. Before this can be judged,

the centre must work out the relative costs of bandwidth and storage. Once

this is done, then one of the axes can be re-scaled so that the same distance

on either axes represents the same cost. The best scheme is then the one with

the point closets to the origin. If the relative costs are not comparable, then

the centre can limit one cost and minimise the other (as was done for Figures

7.3 and 7.4).

It is worth noting that the Complete Subtree Revocation Schemes on the

a-ary trees perform slightly better than the Forest of Trees Schemes. CSRS3

is slightly below Fo7T (same storage), while CSRS4 is closer than Fo15T to

the origin along both axes.

Figure 7.9 is a more general plot than Figure 7.8. Each point is still in

the form [|U |max, score
′
max]. But instead of one point for each scheme, we

have a line of points marking the progress of the scheme as n grows. The

leftmost points represent n = 24, 32, 42, 52 or 62 as appropriate, and the

rightmost points are the same as those in Figure 7.8, i.e. n = 211, 37, 45, 55 or

64. A centre could use such a plot to find the most appropriate scheme. By

travelling along any one line until he reaches the first point that corresponds to

a population size equal to or greater than the desired n, he will have the cost of

storage and bandwidth for that particular scheme. By doing this for all lines

in the plot, he will end up with something resembling Figure 7.8. The same

techniques we mentioned for choosing the best scheme will still work: namely

limiting the storage and choosing the scheme with the lowest bandwidth cost,

or vice versa.

There is little variation in the heights of the points (score′max) along any
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Figure 7.9: |U |max versus score′max for a variety of Revocation Schemes over
different values of n.

one line, as each scheme seems to quickly converge to a fixed height either

from above or below. We have already seen that score′max → 1/3 from above

in the case of the Complete Subtree Revocation Scheme. There is a greater

variation in the way the storage grows with n for the different schemes. This

can be explained by looking at the three different groups of scheme we have:

The Forest of Tree schemes, the a-ary tree based schemes and the Subset

Difference Revocation Scheme.

For the Forest of Tree schemes we have the formula |U |max = log2(n) +

1 + g(l − 2) + 2 (Formula (5.13)). The g(l − 2) + 2 term is constant for each

scheme, taking the values 0, 2, 10 and 34 for CSRS2, Fo3T , Fo7T and Fo15T

respectively. This means:

lim
n→∞

|U |max

log2(n)
= 1.

It also means that the storage increases by the same amount for each scheme as

n increases, and there is a constant offset between the storage of the different

schemes. For example, for the same population n, the difference in |U |max

between Fo15T and Fo7T is always 24.
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The corresponding formula for the Complete Subtree Revocation Scheme

on an a-ary tree is:

|U |max = (2a−1 − 1) loga(n) + 1 =
2a−1 − 1

log2(a)
log2(n) + 1

So lim
n→∞

|U |max

log2(n)
=

2a−1 − 1

log2(a)
.

The factor (2a−1 − 1)/ log2(a) tells us how fast the storage grows, as it is

constant for fixed a. For CSRS on a binary tree (which technically falls into

the categories of both Forest of Trees and a-ary tree scheme), the limit is 1.

All larger values of a give a higher limit: for 3-ary, 4-ary, 5-ary and 6-ary the

limit is 1.89, 3.5, 6.46 and 11.99 respectively. In comparison, all storage for the

Forest of Trees schemes is log2(n) multiplied by 1, but with an added constant

greater than 1. While some of the Forest of Trees schemes will have a higher

storage than some a-ary tree schemes, the higher limit of |U |max/ log2(n) will

mean that for a high enough n, any Forest of Trees scheme will have lower

storage than any a-ary tree scheme. For example, CSRS3 has lower storage

than Fo15T for all values of n shown in Figure 7.9, but has greater storage

when log2(n) ≥ 39 or n ≥ 5.48× 1011. This is much to large for any practical

scheme, being about 100 times the population of the planet!

The storage for the Subset Difference Revocation Scheme is unlike the other

two types of scheme. For any line in Figure 7.9, aside from the one for SDRS,

the points are evenly spaced. In the line for SDRS we can see the distance

between consecutive points increase as the line progresses (towards the right,

i.e. as n increases). All other schemes have storageO(log(n)), while SDRS has

|U |max = 1/2 log2
2(n)+1/2 log2

n(n)+1, which is O(log2(n)) (so |U |max/ log2(n)

does not converge). Because of this higher order of complexity, SDRS will

have the highest storage of these schemes as n gets sufficiently large. For

example, when n = 226 the storage for SDRS is 352, but for n = 610 (nearest

power of 6) the storage for CSRS6 is 311. This is a very large value for n, but

still within the realms of a actual scheme (it is less than the number of TV or

Internet users in the US).

As was the case with the points in Figure 7.8, there is no clear “best”

scheme. There are some general trends that we can discern. The a-ary
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Figure 7.10: |U |max versus score′aver for a variety of Revocation Schemes over
different values of n.

tree schemes provide a lower score′max than the Forest of Trees schemes do.

The 5-ary scheme has almost half the score′max of CSRS (0.55), while the

Fo15T scheme has a score′max greater than the quaternary tree scheme. Even

though the a-ary schemes have (generally) lower storage than the Forest of

Tree schemes for the parameter sizes in Figure 7.9, the above arguments mean

that for larger values of n that are more likely in an actual deployment of

a Revocation Scheme, the Forest of Trees schemes would have lower storage.

The Subset Difference Revocation Scheme appears to be the worst scheme in

regards both score′max and storage.

By plotting |U |max versus score′aver we get different results, especially with

regard to the Subset Difference Revocation Scheme. In Figure 7.10, we see

that SDRS has a score′aver between CSRS3 and CSRS4, which is roughly the

same as Fo7T . This is much lower than score′max, both absolutely and relative

to the scores for the other schemes. Like score′max, the values of score′aver

quickly level off. Whereas for score′max the limit was approached from above

and below for different schemes, score′aver tends to a limit from above for all

219



schemes. The values of |U |max are the exact same as in Figure 7.9, so all the

statements made about the storage of the various schemes apply equally to

Figure 7.10. Even though SDRS has |U |max and score′aver close to the schemes

CSRS3, CSRS4 and Fo7T for small values of n, because of the O(log2(n))

storage, it grows much faster than the others. For larger values of n, SDRS

is one of the schemes furthest from the origin, having either a greater |U |max

or score′aver than all the other schemes.

There is a slightly different ordering of the other schemes given by score′aver

than we had with score′max. Fo7T has a score′aver that tends to a limit slightly

below that of CSRS3 (instead of above with score′max) and similarly, Fo15T

tends to a limit slightly below CSRS4.

It is worth re-stating that these plots are examples of one particular way of

calculating score′max and score′aver. Both scores are sums over range1, which we

set to range1 = [0, . . . , n]. It is more likely that the centre can place limits on

how many revoked/privileged users there will be in the specific implementation

of a scheme. The range of the sum can be correspondingly narrowed when

calculating the scores. Even if the scheme must be set up to allow all possible

values of r, then the centre will probably have some idea of the likelihood of the

different values and could weight the different values in the sum accordingly.

Having said that, if we were to interpret Figures 7.9 and 7.10 as they are

(i.e. for range1 = [0, . . . , n]), then the Subset Difference Revocation Scheme

would have to one of the least efficient. The higher order storage quickly makes

it more costly than the other schemes for all but the smallest values of n, and

it does not give as low a bandwidth cost (of score′max or score′aver) as some of

the other schemes. This is in stark contrast to conventional wisdom that says

the Subset Difference Revocation Scheme is best of the current schemes ([16],

[4], [2] and [8]). The reasoning for this is that the bound of tmax(n, r) ≤ 2r−1

cannot be beaten by any other scheme for small values of r. Our analysis

would suggest that the Complete Subtree Revocation Scheme on an a-ary tree

gives the lowest overall bandwidth cost, but the most efficient in terms of

bandwidth and storage is the Forest of Trees Revocation Schemes. The latter

does not give as low a bandwidth score as the a-ary trees, but they do reduce

the score from that of the Complete Subtree Revocation Scheme, and for much
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less storage cost (at least for large values of n).

7.3.1 Comparing Compression Methods

In comparing the schemes in the last section, we ignored any benefit of using

Compression Methods in the Complete Subtree Revocation Scheme on an a-

ary tree. In order to present as fair a comparison of all the schemes as possible,

we must look at the three methods described in Sections 3.2 and 4.3.3, and

discover how much of a benefit they can be.

The main problem with analysing the Compression Methods is the fact

that they are based on RSA calculations. Since each Master Key is essentially

a number taken modulo an RSA modulus, the size is fixed, or at least bounded

below by the minimum for a secure RSA modulus, e.g. around 1024 bits. We

cannot directly compare these to the establishment keys for another scheme,

as the bit length of the establishment keys is unspecified (but probably smaller

than 1024).

Before we go any further, let us give a brief reminder of the function of the

establishment keys. In the Revocation Protocol, described in Section 2.2, for

any broadcast the message is encrypted under E1 (a respected stream cipher)

with a session key. This session key is encrypted several times under E2 with

different establishment keys. E2 needs to be a secure block cipher, due to the

small size of the input to the encryption function, as well as the requirement

for the keys to be long lived. As far as analysing the storage of the Revocation

Schemes, we are only interested in the key size of E2. For the rest of this

section, we will assume all establishment keys are 128 bits in length. This

is a reasonable length given the requirements, i.e. it is the typical key length

of current block ciphers (e.g. AES). We will also assume all RSA moduli to

be 1024 bits in length. This allows us to compare the explicit storage of the

various schemes.

In Figure 7.11 we have plotted the storage of the Complete Subtree Revo-

cation Scheme on a binary tree using the various Compression Methods. The

x-axis is k or log2(n) and goes up to k = 30 as 230 = 1.07 × 109 is about the

most users we would expect in a scheme. The y-axis is the storage required

of the users in the schemes in kilobytes. There are five graphs in the figure,
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Figure 7.11: Storage (in kilobytes) versus log2(n) for CSRS2 (on a binary
tree) with various Compression Methods.

although it is only the discrete points that represent values that would occur

in a actual scheme. There is one line for CSRS with the keys stored explicitly,

and three for CSRS using the three different Compression Methods. We also

plot the storage for SDRS, which results in the only curve (storage is pro-

portional to log2(n)). We will be using this curve in later comparisons. The

storage of CSRS2 using Method 1 represented by the completely horizontal

line at 1KB. This Compression Method only requires the storing of one Mas-

ter Key, so it only depends on the size of the RSA modulus, and is completely

independent of a and n. For all but the smallest values of k, this requires less

storage than storing the keys explicitly, as represented by the gently sloping

line.

The second Compression Method is represented by the steeply sloped line

that has, for the most part, the highest storage. An important observation is

that the storage is consistently higher than that of CSRS2 with the keys stored

explicitly. The purpose of the compression methods is to reduce the amount

of information stored by the users, but in this case Method 2 clearly fails.
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Method 2 requires the user store loga(n) Master Keys (in this case a = 2).

But there are only log2(n) + 1 keys in the scheme and because Method 2 uses

much larger keys, it has a higher cost. We can work out the minimal value

of a in order to have a saving in the storage with Method 2. For the general

case, we will have (2a−1 − 1) loga(n) + 1 keys if they are stored explicitly. So

Method 2 will provide a saving if:

loga(n)× RSA key < ((loga(n))(2a−1 − 1) + 1)× AES key,

that is if loga(n)× RSA key

AES key
< ((loga(n))(2a−1 − 1) + 1),

which is satisfied if:

loga(n)× RSA key

AES key
< ((loga(n))(2a−1 − 1)),

i.e. 8 < 2a−1 − 1,

that is a > 4.17.

So Method 2 provides actual compression on the stored information for a ≥ 5

(for the given sizes of RSA and establishment keys). We can easily show that

for any other values of a (a = 2, 3, 4) we do not get any compression, assuming

loga(n) > 1. For these values we have 2a−1−1 ≤ 7, so the explicit storage will

be:

(loga(n)(2a−1 − 1) + 1)× AES key ≤ (7 loga(n) + 1)× 128

< 8 loga(n)× 128

= 1024 loga(n).

For these values, the explicit storage is strictly less than that given by Method

2. So the only values of a that provide compression are a ≥ 5.

Like Method 1, Method 3 only requires that the user store a constant

number of Master Keys for any scheme, namely 2a − 2. This gives us the

second horizontal line in Figure 7.11, only this one is at 2KB. For values

of log2(n) ≥ 16 this results in less storage than storing the keys explicitly.

While it does have twice the storage of Method 1, there are several benefits

of using Method 3 instead. This list of primes in Method 3 is much shorter
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Figure 7.12: Storage (in kilobytes) versus log2(n) for CSRS3 (on a ternary
tree) with various Compression Methods.

than that in Method 1 (and consequently the primes can be smaller). The

operations are also much simpler: no prime generation needed, several small-

sized exponentiations versus one very large-sized exponentiation.

Figure 7.12 shows the storage for the same Compression Methods, only

with a Complete Subtree Revocation Scheme on a ternary tree. It is the

same range of log2(n) from 1 to 30, but because n increases in powers of 3, the

points are spaced further apart. Method 2 still requires more storage than just

storing the keys explicitly, as does Method 3 for all but the largest values of

log2(n). Method 1 stays constant at 1KB, clearly the best in terms of storage.

In Figure 7.13 we jump up to a = 5. We can see how Method 2 reduces the

storage from storing the keys explicitly, while Method 3 is consistently above

both Method 2 and explicit storage.

In Chapter 4 we listed all the requirement of the various Compression

Methods. These included multiplications and modular exponentiations, access

to a public list of primes, and primality testing. What was left unsaid in

these discussions was that when storing the keys explicitly there are no such
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Figure 7.13: Storage (in kilobytes) versus log2(n) for CSRS5 (on a 5-ary tree)
with various Compression Methods.

requirements. If in any one case Method 2 requires storing less bits than

Method 3, then an argument could be made that because Method 3 is less

computationally expensive, it could be the more desirable method. No such

argument could be made if any Method requires more bits to be stored than

storing the establishment keys explicitly, as there are no extra costs for the

latter method. Therefore, for these key sizes (RSA and establishment) Method

2 should only be used when a ≥ 5 and Method 3 for a = 2 and n ≥ 216 or

a = 3 and n ≥ 316. For higher values of a, the value of n at which Method

3 provides a storage saving is far too high. And for all but extremely small

values of n, Method 1 provides a storage saving.

We also plotted the storage for the Subset Difference Revocation Scheme.

The Compression Methods generally give lower storage than SDRS in each of

the figures. This is not very remarkable as the explicit storage of the keys is

lower than SDRS in most cases. The graphs do show the trend of the slope

of the explicit storage; the line gets steeper as a grows. Even at a = 5, the

storage is less than that of SDRS for just slightly more than half of the values
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of log2(n) shown. The explicit storage is ((2a−1 − 1) loga(n) + 1)× |AES key|,
which is an order of complexity less than the ≈ 1/2 log2

2(n) × |AES key| of

SDRS. This does mean that for log(n) large enough SDRS will have the

greater storage, but for large enough a this would only be a scheme that is too

big to ever occur in practice. Luckily, the slope of the storage for Method 2

follows the reverse trend. It gets more gradual as a increases since it is plotting

loga(n) × |AES key|. So Method 2, and of course Method 1, will give lower

storage than SDRS for large values of a.

7.4 Strategy for choosing a scheme

This chapter has been concerned with the various ways of the Revocation

Schemes we have looked at can be measured and rated. We will summarise

these ideas in the form of a comprehensive strategy for a centre to decide

what scheme to use for a particular application. It is assumed that the centre

knows (or at least has a good approximation of) n, the number of users in the

scheme, and has chosen appropriate encryption algorithms for E1 and E2.

The first step is to check if the computational capabilities of the receivers

will be limited in a way that rules out certain schemes. If the receivers could

not perform RSA calculations, then the Complete Subtree on an a-ary tree

would be possible, but none of the compression methods could be used. Even

if RSA calculations are possible, the processing power available will be finite.

The costs of each compression method (Multiplications and Modular Expo-

nentiations, as summarised in Section 4.3.3) will possibly rule out some of

the compressions methods, and certainly limit which values of a are possible.

The cost of the storage of primes is another consideration, but separate from

|U |max as the primes are public. This cost can either be treated like the com-

putation cost and used to limit the compression methods, or if any type of

storage at the receivers is expensive, then it can be added to |U |max to give

the storage costs. The only other scheme that might be ruled out at this stage

is the Subset Difference Revocation Scheme. If the receivers are not capable

of executing the Pseudo-Random Sequence Generator, then the high costs of

explicitly storing the keys would almost certainly make this scheme unfeasible.
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The next step is for the centre to choose a bandwidth score. This could

be any of the scores mentioned in Section 7.2, or a variant on these. The

score may require knowledge of the expected behavior of the population, or

the expected range of r. But even if this information is available, the most

relevant score is not necessarily the one that uses all the information available,

but the one that most closely reflects the costs of broadcasts. How well the

score does this will have consequences in the final decision.

On choosing an appropriate score, the centre should calculate the points

for a plot similar to Figure 7.8, for all the schemes that passed the first step.

But rather than plotting the bandwidth score against |U |max, it should plot

it against the explicit storage of either establishment keys (keys for E2) or

Master Keys/Labels in kilobytes. Any public primes can be added to this

storage cost if appropriate.

Before the most apt scheme can be chosen, the costs of bandwidth and

storage must be made comparable. If the bandwidth score the centre picked is

an accurate measure of financial cost, and the storage axis can be re-labelled

to give the storage costs, then the centre need only pick the scheme with a

point closest to the origin. If this is not possible, then the centre would need

to use the decision strategy mentioned earlier:

• Limit either the bandwidth score or storage, and remove all points above

this limit on the appropriate axis

• Choose the remaining point that minimises the distance on the other

axis.

By doing this, the centre either limits the allowable bandwidth cost and

chooses the scheme with the minimum storage, or visa versa.

7.5 Conclusions

Most of the existing literature on the subject seems to point to the Subset

Difference Revocation Scheme as being the best scheme. What we have done

is shown that this is not a clear-cut decision, and arguments can be made

for the other schemes. If we consider the performance of the schemes over
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the entire range of possible values of r, as is done in Figures 7.9 and 7.10,

then there are several schemes that perform better in terms of both storage

and bandwidth. For example, the Forest of 15 Trees Scheme has values of

both score′max and score′aver lower than those of SDRS. Since its storage is

log2(n) + O(1) compared to O(log2(n)) it has lower storage for most values

of n. As for the a-ary tree schemes, from a ≥ 4 all schemes also have lower

values of both score′max and score′aver lower than those of SDRS (ternary

scheme only has a lower score′max). While the quaternary scheme does have

storage lower than SDRS for most values of n, for larger values of a this is

no longer true. But as we have shown in Section 7.3.1, for all a ≥ 5, the

second Compression Method for a-ary tree schemes costs less storage than

storing the keys explicitly and less than the storage of labels in the SDRS

(see Figure 7.13).

The Subset Difference Revocation Scheme does have a lower bandwidth

than any other scheme (with the exception of the trivial scheme in Lemma 7)

for very small values of r. If the range over which score′max and score′aver is

calculated is narrowed to such values of r, then SDRS would score better than

any of the other schemes. However, as we see in Figures 7.1, 7.2 and 7.7, the

bandwidth of the Complete Subtree Revocation Scheme on a quaternary tree is

only slightly higher. Also, the interval for which the Subset Difference Scheme

has the lowest bandwidth gets smaller when compared with schemes on a-ary

trees with large a. This, coupled with the lower storage mentioned above,

results in an a-ary tree scheme being a more efficient scheme that SDRS with

respect to both bandwidth and storage.

As we have said from the beginning, no scheme can be considered the

“best” under all circumstances. A centre can only decide what scheme is most

suitable to its particular needs. There can be many constraints, the ones we

have discussed being:

• The capacity of information that can be broadcast by the centre (which

either has a limit on the maximum or average size of a broadcast).

• The range of expected (or even likely) numbers of revoked users.

• The storage capacity at the receiver.
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• The computational capability of the receiver.

We have shown how to analyse several schemes in these terms, and how to rate

the best. The relative importance of how a scheme performs with regard the

different properties (e.g. is storage more important than bandwidth?) is not

something that can be stated in absolute terms. Once again, this is something

that depends on the intended application, and needs to be decided by the

centre. Once the centre knows its needs and priorities, we believe we have

described the tools necessary to find the most applicable scheme.
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Appendix A

Bound on tmax(n, r)

The following Lemma is given a sketch proof in [23]. Using that fact that

t(N ,R) is just the number of nodes in ST (R) whose degree is strictly less

than its degree in the original tree we have:

Lemma 101. Let (N , Ω, γ) be a Complete Subtree Revocation Scheme with

n = 2k users. Then for all 1 ≤ r ≤ n:

tmax(n, r) ≤ r log2(n/r).

Proof. Our induction hypothesis is that tmax(2
k, r) ≤ r(k − log2(r)), for any

positive r, where k is the height of the complete tree. The initial case is when

k = 1. We only have two different values of r to check, and by inspection

we have tmax(2, 1) = 1 and tmax(2, 2) = 0. Substituting the respective values

into the above formula we get 1 log2(2/1) = 1 and 2 log2(2/2) = 0, so the

hypothesis holds.

Assume that the hypothesis is true for k = i, i.e. for a tree of height i,

tmax(2
i, r) is bounded above by r(i− log2(r)). Then consider a tree of height

i + 1. As a result of Lemma 13, tmax(n, r) is the maximum of the number of

nodes in ST (R) whose degree is less than their degree in the original tree, for

R with |R| = r. If all r leaves are in one half of the tree, then ST (R) is just

the union of a path from the root to one of its children and a Steiner Tree

ST (R)′ determined by R in the subtree of height i whose root is that child.

The root has degree in ST (R) less than its degree in the original tree (it only

has one child in ST (R)). Any other node will only have degree in ST (R) less
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that its degree in the original tree if that is the case in ST (R)′. Hence:

tmax(2
i+1, r) ≤ 1 + r(i− log2(r)) ≤ r(i + 1− log2(r)).

Otherwise, the leaves of R will be split between the two subtrees of height i

whose roots are the children of the root of the original tree, into a partition

R1 and R2. A node has degree in ST (R) less than its degree in the original

tree if and only if it has degree in ST (Ri) less than its degree in its respective

subtree corresponding to Ri. Thus

t(N ,R) ≤ r1(i− log2(r1)) + r2(i− log2(r2))

where r1 = |R1| and r2 = |R2|. Using the fact that r2 = r − r1, a little

re-arranging gives us:

t(N ,R) ≤ r1(i− log2(r1)) + r2(i− log2(r2))

= r.i− (r1 log2(r1) + r2 log2(r2))

= r.i− (r1 log2(r1) + (r − r1) log2(r − r1)).

Define f(r1) to be this last expression. We need to show that this function is

bounded above by r(i + 1 − log2(r)). We are only interested in this function

in the range 1 ≤ r1 ≤ r − 1 (since both r1 and r2 are positive). From the

derivative of f(r1) we can work out the maximum value in the given range.

f ′(r1) = 0− r1

r1 ln(2)
− log2(r1)− −(r − r1)

(r − r1) ln(2)
− (−1) log2(r − r1)

= log2(r − r1)− log2(r1)

= log2

(
r − r1

r1

)
.

The slope is only zero when r− r1 = r1 or r1 = r/2. If r1 = r/2, then we just

get:

f(r/2) = r.i− ((r/2) log2(r/2) + (r/2) log2(r/2))

= r.i− r(log2(r/2))

= r(i− (log2(r)− log2(2)))

= r(i + 1− log2(r)).
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In the range 1 ≤ r1 < r/2, f(r1) is increasing (log of a number greater than 1

is positive), and in the range r/2 < r1 ≤ r−1 it is decreasing (log of a number

less than 1 is negative). All this means that the maximum value of f(r1) in

the range 1 ≤ r1 ≤ r − 1 is f(r/2) = r(i + 1 − log2(r)). Because t(N ,R)

is bounded by f(r1), for all r1, we have that tmax(2
i+1, r) is also bounded by

r(i + 1− log2(r)). This proves the induction hypothesis:

tmax(n, r) ≤ r(k − log2(r))

= r(log2(n)− log2(r))

= r(log2(n/r)).
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Appendix B

Examples of tmax(n, r)

Here we have some examples of ST (R) when t(N ,R) = tmax(n, r) for the

Complete Subtree Revocation Scheme.

S T ( R )Tn o d e h a n g i n g o f f
Figure B.1: n = 25, r = 19, tmax(n, r) = 13
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S T ( R )Tn o d e h a n g i n g o f f
Figure B.2: n = 26, r = 19, tmax(n, r) = 32

S T ( R )Tn o d e h a n g i n g o f f
Figure B.3: n = 27, r = 19, tmax(n, r) = 51
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Appendix C

Summation of tmax(n, r)

In this appendix, we prove the following result:

Theorem 102. Let CSRS be a Complete Subtree Revocation Scheme on a

binary tree with n = 2k leaves. Then CSRS has:

n∑
r=0

tmax(n, r) =
1

3
n2 +

2

3
.

Proof. The formula for tmax(n, r) for CSRS is:

tmax(n, r) =





1 if r = 0

r(k − j)− 2(r − 2j) if 1 ≤ r ≤ n,

where j = blog2(r)c. We also know that tmax(n, n) = 0, as this holds for all

revocation schemes. So we can shorten the range of the sum as follows:

n∑
r=0

tmax(n, r) = 1 +
n−1∑
r=1

r(k − j)− 2(r − 2j). (C.1)

Since j = blog2(r)c, we have that r = 2j + a for some 0 ≤ a ≤ 2j − 1. So

instead of summing over r, we can sum over both j and a. This will make it

easier to simplify the expressions:

n−1∑
r=1

r(k − j)− 2(r − 2j) =
k−1∑
j=0

2j−1∑
a=0

(2j + a)(k − j)− 2(2j + a− 2j)
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=
k−1∑
j=0

2j−1∑
a=0

2j(k − j) + a(k − j)− 2(a)

=
k−1∑
j=0

2j(2j(k − j))
2j−1∑
a=0

a(k − j)− 2(a)

=
k−1∑
j=0

4j(k − j) +
2j−1∑
a=0

a(k − j − 2)

=
k−1∑
j=0

4j(k − j) + (k − j − 2)
2j−1∑
a=0

a

=
k−1∑
j=0

4j(k − j) + (k − j − 2)
2j(2j − 1)

2

=
k−1∑
j=0

4j(k − j) + (k − j)
4j − 2j

2
− 2

4j − 2j

2

=
k−1∑
j=0

(k − j)

(
4j +

4j − 2j

2

)
− (4j − 2j)

=
3

2

k−1∑
j=0

4j(k − j)− 1

2

k−1∑
j=0

2j(k − j)−
k−1∑
j=0

4j +
k−1∑
j=0

2j. (C.2)

These summations evaluate to the following:

k−1∑
j=0

4j(k − j) =
4

9
4k − 1

3
k − 4

9

k−1∑
j=0

2j(k − j) = 2.2k − k − 2

k−1∑
j=0

4j =
1

3
4k − 1

3

k−1∑
j=0

2j = 2k − 1.

Substituting these back into Equation (C.2) gives:
n∑

r=0

tmax(n, r) =1 +
3

2

(
4

9
4k − 1

3
k − 4

9

)
− 1

2
(2.2k − k − 2)

−
(

1

3
4k − 1

3

)
+ 2k − 1 =

1

3
4k +

2

3
=

1

3
n2 +

2

3
.
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