
A Device Management Framework for Secure Ubiquitous Service Delivery

Adrian Leung∗ and Chris J. Mitchell
Information Security Group, Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
{A.Leung, C.Mitchell}@rhul.ac.uk

Abstract

In a mobile ubiquitous environment, service interactions
between a user device and a service provider should be se-
cure, regardless of the type of device used to access or con-
sume a service. We present a Secure Device Management
Framework (SDMF), designed to securely deliver services
to user devices, whilst also hiding (some of) the complexity
of security management from users. Key to this framework
is the Device Management Entity (DME), that manages a
user device’s security credentials, and interacts with service
providers on its behalf. This framework also provides users
with assurance that a compromised device cannot consume
the delivered service, and, at the same time, prevents users
from illegally sharing their credentials with other users. We
achieve these objectives using Trusted Computing function-
ality and certain other security mechanisms.

1. Introduction

In a mobile ubiquitous environment (such as that shown
in Figure 1), users typically own disparate devices (e.g.
PDAs, laptops, mobile phones, etc.) with varying form fac-
tors and capabilities, attached to a range of access networks,
and used to consume a variety of content and services of-
fered by service providers. It is extremely important to se-
cure the service interactions between user devices and ser-
vice providers. However, achieving this presents many in-
teresting challenges. For example, a user may own devices
of many different types, and the device used to access a ser-
vice may depend on the user’s physical location or context.
The user just wants to be able to access a service in a sim-
ple and secure manner using an appropriate device without
being burdened with (too much) technical complexity. A
service provider may be happy to allow a user to access
services if they have a legitimate subscription (i.e. using a
properly issued credential) and the user device is not in a

∗This author is supported by a British Chevening/Royal Holloway
Scholarship

compromised state. The latter task is further complicated by
the current landscape, where security threats (e.g. viruses,
malware, trojans, spams, etc.) abound. In this paper, we aim
to address these challenges collectively; to the best of our
knowledge, there is no prior published work on this topic.

Fixed

Satellite

3G/GPRS

Broadcast

WLAN

Network
TechnologiesDevices

Service and Content
Providers

User

?
IP Backbone?

Pervasive User Environment

WiMAX

Bluetooth

Figure 1. A Mobile Ubiquitous Environment

In this paper we propose SDMF, a Device Management
Framework for secure delivery of ubiquitous services to end
user devices. Apart from providing secure service interac-
tions amongst the players, the framework is also designed
to reduce the complexity of device security management
tasks for users. Furthermore, the framework protects the
interests of service providers by preventing unauthorised
credential sharing amongst user devices. One other novel
feature of the framework is that compromised devices are
self-revoking, hence removing the need for a cumbersome
revocation infrastructure. We achieved these objectives by
incorporating Trusted Computing functionality into an en-
tity known as the Device Management Entity (DME), and
then integrating it with a number of other security mecha-
nisms (such as the MANA protocol [3] and the Ninja Ser-
vice Discovery protocol [6]).

The remainder of this paper is organised as follows. In
Section 2 we identify the major challenges to secure ser-
vice delivery. Section 3 gives an overview of the building
blocks that we employ to develop the secure device man-
agement framework. In Section 4 we present our secure
device management framework, and Section 5 analyses its
security. Finally, in Section 6, we draw conclusions.

2. Security Issues

We identify the security threats to users and service
providers arising in the delivery of services in a mobile
ubiquitous environment. We then give a corresponding set
of security requirements designed to mitigate these threats.

2.1 Security Threats

The security threats can be summarised as follows:

• Spoofing: Malicious entities may masquerade as legit-
imate service providers by broadcasting fraudulent ser-
vice messages to users in an attempt to initiate a bogus
service interaction. Similarly, malicious entities may
masquerade as service users by replaying old service
messages (captured earlier) to service providers.

• Tampering: Service messages (e.g. service advertise-
ments, registration messages, or reply messages) sent
between users and service providers via wireless chan-
nels may be overhead by a passive adversary, and mod-
ified or deleted by an active adversary. In addition,
an adversary may tamper with the service or content
information requested by a user whilst the data is in
transit. Tampering includes sending (injecting) false
service messages or malicious content to users.

• Information Disclosure:

1. During Communications: Service messages
may be overheard whilst in transit (the risk is
particularly high when using a wireless commu-
nications channel). This may reveal sensitive in-
formation about the user (e.g. the type of service
being requested, the service providers a user in-
teracts with, the exact times or dates when ser-
vices are being accessed, etc.). A user’s privacy
may thus be compromised. Similarly, an eaves-
dropper may attempt to intercept the transmitted
service/content for his/her own consumption.

2. Physical Loss of Device: Sensitive personal in-
formation (such as contact information, emails,
etc.) may be stored in user devices. The devices
may also hold the security credentials that are
used to access subscribed services. Thus, if a
user device is lost or stolen, an adversary may be
able both to obtain sensitive information about a
user and gain unauthorised access to services.

• Malicious software attack on user devices: A user
device, although still in the physical possession of the
user, may be infected with malicious software (e.g.
viruses, trojans, etc.). Such software could perform

a variety of attacks, including infecting a device, steal-
ing a user’s credentials or personal information, or en-
crypting user data on the device and then demanding
payment for the release of the decryption key. A user
might be oblivious to such an attack, as his/her device
may still appear to be functioning “as normal”.

• Illegal Credential Sharing/Distribution: Having le-
gitimately obtained the access tokens or security cre-
dentials necessary to access a service or content, a user
could illegally share the credentials (e.g. with friends
or family), possibly for financial gain.

2.2 Security Requirements

Building on the threat analysis in the previous section,
we now give a corresponding set of security requirements
designed to address these threats.

• Entity Authentication: In general, if they use an inse-
cure channel, communicating entities need to authen-
ticate each other to prevent spoofing attacks. First,
users should authenticate themselves to their devices,
e.g. using a PIN or password, to address the threat of
information disclosure arising from physical loss of a
device. Secondly, devices and service providers should
be mutually authenticated to each other.

• Integrity Protection: Messages exchanged between
communicating entities (service management mes-
sages or the actual service/content) should be integrity
protected to address data manipulation attacks. Possi-
ble integrity protection mechanisms include Message
Authentication Codes (MACs) and digital signatures.

• Service Confidentiality: This addresses information
disclosure threats. Messages (service management or
service messages) sent between entities need to be
protected against eavesdroppers and active attackers.
Symmetric encryption algorithms using a shared secret
key can be used to provide this service.

• Device Integrity Assurance: Preventing software at-
tacks on a device is particularly challenging. An al-
ternative to prevention would be to detect whether a
device has deviated from specific trustworthy software
states. It would be even better if access to service could
be prevented if a device has been compromised. This
could be achieved using the attestation mechanisms
provided by Trusted Computing technology.

• Credential Sharing Prevention: Service and content
providers could lose significant revenue if users ille-
gally share access credentials, e.g. for monetary gain.
Digital Rights Management (DRM) mechanisms can
be used to prevent unauthorised credential sharing.

3 Background

We now introduce the building blocks used to meet the
security requirements identified in Section 2. We intro-
duce the Device Management Entity, Manual Authentica-
tion (MANA) protocols, the Ninja Service Discovery Pro-
tocol, and Trusted Computing technology.

3.1 Device Management Entity (DME)

The Device Management Entity (DME) [1] is a semi-
distributed, logical construct designed to abstract the tech-
nical complexities faced by users (especially non-expert
users) in managing (i.e. configuring and operating) their de-
vices in a mobile ubiquitous environment. The DME acts as
an interface between user devices and external entities. The
DME incorporates the following functional components:

• The Features Register maintains information about
the capabilities (storage, screen resolution, processing
power, battery life, networking, OS, software, etc.) of
each device in a user’s Personal Distributed Environ-
ment. This information assists the DME when decid-
ing which device is most appropriate for use in access-
ing specific services or content.

• The Location Register stores user device location in-
formation. It can be used to discover whether devices
are reachable or in proximity to the access service.

• The Security Register maintains security credentials
for users. These could include cryptographic keys, ac-
cess tokens, and public key certificates.

DMEs are likely to be arranged hierarchically [1], with
the root DME at the Network or Service provider, and a lo-
cal DME in a user’s personal area network. Local DMEs
and the root DME must communicate securely. Here, for
simplicity, we only refer to one instance of the DME, al-
though this could in fact be a collection of DMEs.

In this paper we specify additional security functionality
for the security register (of a DME), in order to offer users
a richer and more comprehensive set of security services.

3.2 Manual Authentication Protocols

Manual entity authentication (MANA) protocols allow
two devices to authenticate one another using a combina-
tion of an insecure wireless channel and manual data trans-
fer. MANA protocols are particulary useful in situations
where it is necessary to establish a security association (e.g.
in the form of a shared key) between two devices in close
physical proximity, while minimising the amount of user
intervention (e.g. pressing buttons, or reading data from

a display). MANA protocols are resistant to Man-in-the-
middle (MitM) attacks on the wireless channel. To use a
MANA protocol, the devices must possess user interfaces
capable of data input (e.g. buttons) and data output (e.g. a
display). ISO has standardised four MANA protocols in
ISO/IEC 9798-6 [3], designed for use with devices with
differing interface capabilities. The properties of the four
MANA protocols can be summarised as follows:

• Mechanisms using a short check value:

– One device with simple input, and one device
with simple output;

– Both devices with simple input capabilities.

• Mechanisms using a Message Authentication Code
(MAC):

– Both devices with simple output capabilities;

– One device with simple input, and one device
with simple output.

There is a growing literature on such mechanisms [2, 4,
5, 7, 8, 11]; we use MANA protocols here because they
have been adopted by ISO, and thus these protocols have
been subjected to close scrutiny by the security community.

3.3 Ninja Service Discovery Protocol

Service Discovery is an important pre-cursor to service
delivery. Many service discovery protocols have been pro-
posed [13]; unfortunately, very few address security and
privacy issues (one exception being the scheme of Zhu et
al. [14]). It is imperative that service discovery is conducted
in a secure and private manner to protect the security and
privacy interests of users and service providers.

The Ninja Service Discovery scheme [6] is used to meet
the objective of secure service discovery. Ninja offers a
number of security features specifically designed for a mo-
bile ubiquitous environment. It provides mutual authenti-
cation between user and service provider, preserves the pri-
vacy of users, is efficient (has a low communications over-
head), and establishes a shared key between the user and
service provider. Ninja is therefore well suited to our re-
quirements.

3.4 Trusted Computing

Trusted Computing (TC), as specified by the Trusted
Computing Group1 (TCG) [9, 12], is a technology designed
to enhance the security of computing platforms. This aim
is met by incorporating a special purpose hardware compo-
nent, providing so called “roots of trust”, into a computing

1See http://www.trustedcomputinggroup.org/

platform. This hardware component, known as a Trusted
Platform Module (TPM), provides a host platform with a
foundation of trust, as well as the basis on which a suite of
trusted computing security functionality is built.

The tamper-resistant TPM provides a range of crypto-
graphic functionality (random number generation, RSA sig-
natures, SHA-1, etc.). However, the main distinguishing
feature of Trusted Computing is that it allows a platform
to attest to its state to a remote verifier, thereby providing
users with assurance that the platform with which they are
interacting is behaving in the expected manner, and has not
been compromised. Attestation is achieved using a process
known as Integrity Measurement, Storage and Reporting
(IMSR), as follows.

A platform’s operational state is measured using the
Root of Trust for Measurement (RTM). State measure-
ments, also known as integrity metrics, are recorded to a
file called the Stored Measurement Log (SML). At the same
time, the Root of Trust of Storage (RTS) computes a digest
(i.e. a cryptographic hash) of the integrity metrics, which is
written into one of the TPM’s internal Platform Configura-
tion Registers (PCRs). These PCRs are 160 bits long (the
SHA-1 output length). Since the TPM only has a limited
number of PCRs, and in order to preserve the integrity and
order of previous measured events (potentially a very large
number), TPMs use a technique known as extending the di-
gest. Newly measured values are appended to the current
contents of a PCR, rehashed and then stored back in the rel-
evant PCR. Finally, the Root of Trust of Reporting (RTR)
provides a challenger with the requested integrity metrics
(i.e. the SML and the corresponding PCR values). To prove
the integrity metrics originate from a TPM, the PCR values
are signed using one of the TPM’s Attestation Identity Keys
(AIKs). This completes the IMSR process.

Another important feature of Trusted Computing used in
the SDMF framework is the Protected Message Exchange
Mechanism, namely Binding and Sealing. Binding involves
encrypting data with a non-migratable public key, i.e. a pub-
lic key stored by the TPM and for which the private key will
never leave the TPM. As a result, bound data is available
only to the TPM. Sealing involves binding data to integrity
metrics representing a particular platform state. The TPM
will only make the data available to the platform if the cur-
rent values in the PCRs are equal to those bound to the data,
i.e. only if the platform is in the pre-specified state. Note
that arbitrary data as well as keys can be bound or sealed to
a TPM and to particular platform states.

4 A Framework for Secure Device Manage-
ment

We now present the Secure Device Management Frame-
work (SDMF), which is designed to secure the process of

service provisioning to end user devices. At the heart of this
framework is the Device Management Entity (DME), that
manages a user device’s security credentials on its behalf,
and interacts with service providers. This framework also
provides users with assurance that a compromised device is
unable to consume the delivered service, and, at the same
time, prevents users from illegally sharing their credentials
with other users. We achieve these security objectives using
Trusted Computing functionality.

We first introduce the entities in the SDMF framework.
We then state the assumptions upon which this framework is
based. Finally, we describe the operation of the framework.

4.1 The Entities

The entities participating in the Secure Device Manage-
ment Framework are as follows:

• The User, often a human, who is the end consumer of
a service or application.

• The User Devices (such as PDAs, laptops, smart-
phones) which are used by the user to access or con-
sume the available services.

• The Device Management Entity (DME) performs a
number of functions (as discussed in Section 3.1). In
the framework, its main role is to securely interact
with service providers on behalf of user devices, and
to manage the security credentials of user devices.

• The Service Provider provides end users with a range
of service offerings (e.g. music, videos, software ap-
plications, etc.).

4.2 The Working Assumptions

The SDMF relies on a number of assumptions:

• User devices are equipped with Trusted Computing
functionality conforming to version 1.2 of the TCG
TPM specifications [12].

• User devices have a (possibly very simple) interface
capable of data input and data output.

• The DME is trusted by both the user and service
provider to perform its tasks correctly.

• The user has ownership control of the TPM in the de-
vice. The user therefore possesses an authorisation se-
cret that can later be used to authenticate to the TPM.

• User devices and the DME have loosely synchronised
clocks. This enables the user devices and the DME to
check that a received message is fresh.

• Prior to the enrolment phase, the TPM in the User
Device has generated an Attestation Identity Key
pair (AIKpk ,AIKsk), and has obtained a Certificate
CertAIK for AIKpk from a Privacy CA (a trusted
computing specific trusted third party).

Finally note that our framework is independent of the under-
lying transport and network layer protocols, as it is purely
an application layer solution.

4.3 The SDMF

The notation used is summarised in Table 1.

Table 1. Notation
Notation Description

D The User Device
M The Device Management Entity (DME)
S The Service Provider

EnReq Enrolment Request Message
EnRep Enrolment Reply Message
EnMsg Enrolment Message
EnAck Enrolment Acknowledgement Message
DevID A Unique Device ID number
SessID A Unique Session ID number

|| The concatenation operator
tA A timestamp generated by principal A
N A nonce (a random value)

IDA The identity of principal A
(PKA, SKA) The public and private Key pair of principal A

H A cryptographic hash-function
EK (M) The encryption of a message, M , using the key K
DK (M) The decryption of a message, M , using the key K

MACK(M) The message authentication code (MAC) of a message,
M , computed using the key K

SigK (M) A signature on a message, M , signed using the key K

As shown in Figure 2, the SDMF involves five phases.
We now describe the workings of each phase in greater de-
tail.

Figure 2. The Secure Device Management
Framework Phases of Operation

Initialisation Phase. This phase involves the user prepar-
ing a device for the subsequent phases. One of the primary

aims of this phase is for the user device and the DME to
establish a shared key, used to secure subsequent commu-
nications. The user U , the user device D, and the DME M
must be in close physical proximity. The user performs the
following steps:

1. The user authenticates himself/herself to the TPM in
the device D using the authorisation secret (obtained
earlier when the user took ownership of the TPM).
This enables the user to access the TPM functionality.

2. The user instructs D and the DME M to engage in a
MANA protocol (see Section 3.2). The choice of pro-
tocol will depend on the types of interface (input and
display) that D possesses. The User must take part in
the protocol and perform his/her role in the protocol
correctly (e.g. reading data from the display accurately
and pressing the correct buttons). At the end of the
protocol execution, D and M will have securely estab-
lished a shared secret key KDM . This is a long lived
master key used mainly to established subsequent ses-
sion keys, and should be stored securely when not in
use.

3. The DME sends a copy of its public key PKM to the
user device as follows:

M → D : (PKM , MACKDM
(PKM)).

The user repeats the above procedure for every device
he/she owns (or intends to use for service consumption).

Enrolment Phase. In this phase, device D is securely en-
rolled with DME M , which involves M being given D’s
security credentials. This phase may take place at any time
after the Initialisation phase, and does not require D and
M to be in close physical proximity. If necessary this phase
can be performed at regular intervals, or even for every ‘ses-
sion’, without repeating the Initialisation phase. It involves
the following steps.

1. D constructs an Enrolment Request message, EnReq ,
which includes a Device Identifier DevID , a Session
Identifier SessID , and a timestamp tD:

EnReq = (DevID ,SessID , tD).

Using KDM (established in the Initialisation Phase),
D derives session keys K1 = H(0||KDM ||SessID)
and K2 = H(1||KDM ||SessID), where H is a cryp-
tographic hash function (e.g. SHA-1 [10]). Note that
K1 and K2 will be discarded at the end of the enrol-
ment phase, and must not be reused. D then computes
a MAC on EnReq using K2, and sends EnReq and
the MAC to M :

D → M : (EnReq , MACK2
(EnReq)).

2. On receiving the above message, M retrieves SessID ,
and computes K1 and K2 in the same way as D. M
then verifies the integrity of the received message us-
ing K2, and (if the outcome is satisfactory) prepares an
Enrolment Reply message EnRep for D:

EnRep = (IDM ,DevID ,SessID ,n, tM),

where n is a nonce. M computes a MAC on EnRep
using K2, and then sends EnRep and the MAC to D :

M → D : (EnRep, MACK2(EnRep)).

3. D checks the integrity of the above message and, if it
verifies correctly, then reports its “trustworthiness” to
M by instructing its TPM to attest to its current soft-
ware state. This involves D’s TPM signing the current
values of the PCRs requested by M , denoted by PCR
where the PCR values are concatenated with the nonce
n supplied by M . Note that this signature is sent in
conjunction with the portions of the SML necessary to
interpret and verify the PCR values:

SigAIKsk
(PCR||n).

Note that the nonce n is included to prevent possible
replay attacks.

4. The TPM in D generates a non-migratable Service
Key Encrypting Key pair (SKEKpk ,SKEKsk) which
is bound to the TPM in D, and sealed to D’s
current software state (i.e. the PCR values used in
the previous step) using the TPM_CreateWrapKey
command. The TPM then uses AIKpk to sign
a certificate CertSKEKpk

for SKEKpk using the
TPM_CertifyKey command. CertSKEKpk

contains
a digest of SKEKpk , and also describes the proper-
ties of the key, including the key type (bind, identity,
signing, or storage), whether the key is migratable, and
the PCRs to which the key is sealed. M will later use
SKEKpk to encrypt services destined for this device.

5. D constructs an Enrolment Message EnMsg :

EnMsg = (DevID ,SKEKpk ,CertSKEKpk
, tD ,SML,

SigAIKsk
(PCR||n),AIKpk , CertAIK).

D then encrypts EnMsg using K1, and computes a
MAC on the encrypted EnMsg using K2 to give:

EK1(EnMsg) and MACK2
(EK1

(EnMsg)).

D sends the following to M :

D → M : (DevID ,EK1
(EnMsg),

MACK2
(EK1

(EnMsg))).

6. On receiving the above message, M checks its in-
tegrity using K2, and then decrypts the encrypted
EnMsg using K1. M next verifies the signature on the
PCR values using AIKpk , and assesses the “trustwor-
thiness” of D by comparing the reported integrity met-
rics (i.e. the PCR values and the accompanying SML)
against a list of known trustworthy states. If the de-
vice is deemed to be in a trustworthy state, M creates
a new entry for this device in its security register. The
security register holds information associated with this
device, i.e. DevID , KDM , AIKpk , and SKEKpk . At
this point, the user device D is successfully enrolled
with the DME M .

7. M creates an Enrolment Acknowledgement message,
EnAck to inform D of the enrollment outcome EnOut
(i.e. Success or Failure):

EnAck = (IDM ,DevID ,EnOut , tM).

M computes a MAC on EnAck using K2, and sends
the following to D:

D → M : (EnAck , MACK2(EnAck)).

At any subsequent time, the User Device D must be in
the state indicated by the values of its PCRs in order to be
able to access services via the DME.

Secure Service Discovery Phase. In this phase, the Ninja
protocol (see Section 3.3) is used to secure the process of
service discovery between the DME (acting on behalf of
the user devices) and a service provider. Prospective service
providers advertise their service offerings via authenticated
service advertisement messages. If a user is interested in a
particular advertised service, the DME M can respond with
a service reply message on behalf of the user devices. Ser-
vice interactions between the DME and service provider are
secured. At the end of the Ninja service discovery protocol
run, a shared secret key KMS has been established between
the DME and the service provider. This shared key is used
to secure the delivery of the sought services in the Secure
Service Delivery phase, described immediately below.

Secure Service Delivery Phase. In this phase, the service
provider securely delivers a requested service, Srv , to the
DME.

1. The service provider generates a secret service encryp-
tion key, KSrv , and uses it to encrypt the service:

EKSrv
(Srv).

The service provider encrypts KSrv using K3 to obtain
EK3

(KSrv), and computes a MAC on the encrypted

service and the encrypted copy of KSrv using K4,
where KMS = K3||K4, to obtain:

MACK4
(EKSrv

(Srv)||EK3
(KSrv)||tS).

2. The service provider sends the following to the DME:

S → M : (EKSrv
(Srv),EK3

(KSrv),
MACK4

(EKSrv
(Srv)||EK3

(KSrv)), tS).

3. On receiving the above message, the DME checks its
integrity by recomputing the MAC using K4 , and then
comparing it with the received value. If the two values
agree, the DME proceeds to the next step.

4. The DME decrypts EK3
(KSrv) using K3 to obtain

KSrv . Key KSrv will be securely stored by the DME.

Secure Service Re-Distribution Phase. In this phase, the
DME M securely redistributes the service (received from
the service provider in the Secure Service Discovery phase)
to a specific Device D.

1. M consults its security register, retrieves the cor-
responding device public key SKEKpk (which was
sealed to a trustworthy platform state), and re-encrypts
KSrv using SKEKpk :

ESKEKpk
(KSrv).

2. M generates a new SessID and uses it to derive
a new session key K5 = H (DevID ||KDM ||SessID).
M then computes a MAC on the encrypted service and
the re-encrypted service key using K5 to obtain:

MACK5(EKSrv
(Srv)||ESKEKpk

(KSrv)).

3. M sends the secured service (i.e. the encrypted ser-
vice) and the MAC to D:

M → D : (SessID , EKSrv
(Srv), ESKEKpk

(KSrv),
MACK5

(EKSrv
(Srv)||ESKEKpk

(KSrv))).

To consume the service, the user device performs the fol-
lowing steps:

1. On receiving the above message, the user device first
computes K5, and then uses it to check the integrity of
the received message.

2. If the outcome of the previous step is satisfactory, the
user device unseals SKEKsk using the TPM_Unseal
command. Note that this step is only possible if the
TPM in the device is in the same state as it was when
the key was created and sealed.

3. If the previous step is successful, the user device de-
crypts ESKEKpk

(KSrv) using SKEKsk to obtain KSrv .

4. The User Device decrypts EKSrv
(Srv) using KSrv to

obtain the service Srv .

The service can now be consumed on device D.

5 Security Analysis and Discussion

We now evaluate SDMF against the security require-
ments identified in Section 2.2.

Entity Authentication: Entity authentication takes place
between the following pairs of entities:

• User-to-Device: During the initialisation phase, the
user is authenticated by the TPM in the device using
an authorisation secret. Only the user (i.e. the autho-
rised custodian of the TPM and the device) knows this
secret. An attacker who has stolen the device would
therefore be unable to access the TPM functionality
required to unlock and access a service.

• Device-to-DME: During the enrolment and the secure
service re-distribution phases, a secret key known only
to the device and DME (i.e. KDM and keys derived
from it) is used to compute MACs on the service mes-
sages, providing device/DME mutual authentication.

• DME-to-Service Provider: The DME and service
provider are mutually authenticated in the service dis-
covery phase.

Timestamps and nonces are included in the service mes-
sages to address replay attacks.

Integrity Protection: All message exchanged during the
various phases are integrity protected.

In the Enrolment and Secure Service Re-Distribution
phases, the integrity of the EnReq , EnRep, EnMsg , and
EnAck messages, the Service Srv , and the encrypted ser-
vice key KSrv , are protected with MACs that are computed
using a shared key known only to the device and the DME
(i.e. K2 and K5).

In the Secure Service Delivery phase, the Service Srv
and the service encryption key KSrv are integrity protected
with MACs computed using a secret key known only to the
DME and the service provider. Data origin authentication
is also achieved for the service that is delivered to the DME
by the service provider.

Service Confidentiality: In the Enrolment Phase, the En-
rolment message EnMsg is encrypted before it is sent to
the DME. This prevents eavesdroppers reading it. In the
Service Delivery and Service Re-distribution phases, the

service, Srv , as well as the service encryption key, KSrv ,
are encrypted whilst in transit. Eavesdroppers thus cannot
learn the type of services a user is consuming by observ-
ing the messages. Also, active attackers cannot capture the
encrypted service and consume it.

Device Integrity Assurance: If a user device has been
compromised (e.g. by malicious software), its software (as
recorded in the PCR values) will differ from the expected
value, and hence the device will be prevented from access-
ing a service, since it will now be unable to perform the
UnSeal operation to retrieve the necessary secret key. If the
device is unable to access a service, a user will be able to de-
duce that the device may have been compromised. Since a
compromised (or untrustworthy) device is “automatically”
prevented from accessing a service, the requirement for a
revocation infrastructure (for distributing and maintaining
up to date CRLs) may no longer be necessary.

Unauthorised Credential Sharing Prevention: De-
pending on the service plans a user subscribes to, service
providers may, for example, allow a user to access a ser-
vice on a maximum number (three, say) of personal de-
vices. These three devices are enrolled with the DME. As
a service is encrypted with an service encryption key, and
the service encryption key is encrypted using a key which
is bound to the device’s TPM, a service can thus only be
consumed on the device to which the key is bound. The pri-
vate part of the Service Key Encrypting Key SKEKsk never
leaves the platform, and so a user cannot share it. Even the
key is extracted, it may not be possible to unseal it in an-
other device, as the PCR values will probably differ.

6 Conclusion

We have introduced SDMF, a framework for the secure
delivery of ubiquitous services in a mobile environment.
Using Trusted Computing and certain other security mech-
anisms, the framework facilitates the secure delivery of ser-
vices to user devices, whilst removing the complexities of
security management from the users. A user need not be
worried if his/her device has been compromised. Service
providers are also assured that unauthorised credential shar-
ing is prevented. Our security analysis shows that the frame-
work meets all the identified security objectives.

Acknowledgment

The work reported in this paper has formed part of the
Ubiquitous Services Core Research Programme of the Vir-
tual Centre of Excellence in Mobile & Personal Communi-
cations, Mobile VCE, www.mobilevce.com.

References

[1] R. C. Atkinson, J. Irvine, J. Dunlop, and S. Vadagama. The
personal distributed environment. IEEE Wireless Communi-
cations, 14(2):62–69, 2007.

[2] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong.
Talking to strangers: Authentication in ad hoc wireless net-
works. In Proc. of Network and Distributed Systems Security
Symposium 2002 (NDSS’02). The Internet Society, Reston,
Virgina, 2002.

[3] International Organization for Standardization. ISO/IEC
9798–6, Information technology — Security techniques —
Entity authentication — Part 6: Mechanisms using manual
data transfer, 2005.

[4] T. Kindberg and K. Zhang. Secure spontaneous device asso-
ciation. In A. Dey et al., editors, 5th International Confer-
ence on Ubiquitous Computing (Ubicomp’03), pages 124–
131. Springer-Verlag LNCS 2864, Berlin, 2003.

[5] S. Laur and K. Nyberg. Efficient mutual data authentication
using manually authenticated strings. In D. Pointcheval et
al., editors, 5th International Conference on Cryptology and
Network Security (CANS 2006), pages 90–107. Springer-
Verlag LNCS 4301, Berlin, 2006.

[6] A. Leung and C. J. Mitchell. Ninja: Non identity based, pri-
vacy preserving authentication for ubiquitous environments.
In J. Krumm et al., editors, 9th International Conference
on Ubiquitous Computing (Ubicomp 2007), pages 73–90.
Springer-Verlag LNCS 4717, Berlin, 2007.

[7] R. Mayrhofer and H. Gellersen. Shake well before use: Au-
thentication based on accelerometer data. In A. LaMarca et
al., editors, 5th International Conference on Pervasive Com-
puting (Pervasive 2007), pages 144–161. Springer-Verlag
LNCS 4480, Berlin, 2007.

[8] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-
believing: Using camera phones for human-verifiable au-
thentication. In Proc. of the 2005 IEEE Symposium of Secu-
rity and Privacy (SP’05), pages 110–124. IEEE Computer
Society, 2005.

[9] C. J. Mitchell, editor. Trusted Computing. IEE Press, Lon-
don, 2005.

[10] National Institute of Standards and Technology (NIST). Se-
cure Hash Standard. Federal information processing stan-
dards (FIPS) publication 180-2, 2002.

[11] C. Soriente, G. Tsudik, and E. Uzun. BEDA: Button-enabled
device association. In Proc. of UbiComp 2007 Workshops:
First International Workshop on Security for Spontaneous
Interaction (IWSSI 2007)., pages 443–449, 2007.

[12] Trusted Computing Group (TCG). TCG Specification Ar-
chitecture Overview. Version 1.2, The Trusted Computing
Group, Portland, Oregon, USA, April 2004.

[13] F. Zhu, M. Mutka, and L. Li. Service discovery in perva-
sive computing environments. IEEE Pervasive Computing,
4(4):81–90, 2005.

[14] F. Zhu, M. Mutka, and L. Ni. A private, secure and user-
centric information exposure model for service discovery
protocols. IEEE Trans. on Mobile Computing, 5(4):418–
429, 2006.

