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Abstract

The Transport Layer Security (TLS) protocol aims to pro-
vide confidentiality and integrity of data in transit across un-
trusted networks. TLS has become the de facto secure proto-
col of choice for Internet and mobile applications. DTLS is
a variant of TLS that is growing in importance. In this paper,
we present distinguishing and plaintext recovery attacks against
TLS and DTLS. The attacks are based on a delicate timing anal-
ysis of decryption processing in the two protocols. We include
experimental results demonstrating the feasibility of the attacks
in realistic network environments for several different imple-
mentations of TLS and DTLS, including the leading OpenSSL
implementations. We provide countermeasures for the attacks.
Finally, we discuss the wider implications of our attacks for the
cryptographic design used by TLS and DTLS.

Keywords TLS, DTLS, CBC-mode encryption, timing attack,
plaintext recovery

1 Introduction

TLS is arguably the most widely-used secure communica-
tions protocol on the Internet today. Starting life as SSL, the
protocol was adopted by the IETF and specified as TLS 1.0 [10].
It has since evolved through TLS 1.1 [11] to the current ver-
sion TLS 1.2 [12]. Various other RFCs define additional TLS
cryptographic algorithms and extensions. TLS is now used for
securing a wide variety of application-level traffic and has be-
come a serious rival to IPsec for general VPN usage. It is widely
supported in client and server software and in cryptographic li-
braries for embedded systems, mobile devices, and web appli-
cation frameworks. Open-source implementations of TLS and
DTLS include OpenSSL, GnuTLS, PolarSSL and CyaSSL.

The DTLS protocol is a close relative of TLS, developed
from TLS by making minimal changes so as to allow it to oper-
ate over UDP instead of TCP [25]. This makes DTLS suitable
for use where the costs of TCP connection establishment and
TCP retransmissions are not warranted, for example, in voice
and gaming applications. DTLS exists in two versions, DTLS
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1.0 [31], which roughly matches TLS 1.1 and DTLS 1.2 [32],
which aligns with TLS 1.2.

Both TLS and DTLS are actually protocol suites, rather than
single protocols. The main component of (D)TLS that con-
cerns us here is the Record Protocol, which uses symmetric
key cryptography (block ciphers, stream ciphers and MAC al-
gorithms) in combination with sequence numbers to build a se-
cure channel for transporting application-layer data. Other ma-
jor components are the (D)TLS Handshake Protocol, which is
responsible for authentication, session key establishment and
ciphersuite negotiation, and the TLS Alert Protocol, which car-
ries error messages and management traffic. Setting aside ded-
icated authenticated encryption algorithms (which are yet to
see widespread support in TLS or DTLS implementations), the
(D)TLS Record Protocol uses a MAC-Encode-Encrypt (MEE)
construction. Here, the plaintext data to be transported is first
passed through a MAC algorithm (along with certain header
bytes) to create a MAC tag. The supported MAC algorithms
are all HMAC-based, with MD5, SHA-1 and SHA-256 being
the allowed hash algorithms in TLS 1.2 [12]. Then an encod-
ing step takes place. For the RC4 stream cipher, this just in-
volves concatenation of the plaintext and the MAC tag, while
for CBC-mode encryption (the other possible option), the plain-
text, MAC tag, and some encryption padding of a specified for-
mat are concatenated. In the encryption step, the encoded plain-
text is encrypted with the selected cipher. In the case where
CBC-mode is selected, the block cipher is DES, 3DES or AES
(with DES being deprecated in TLS 1.2). Following [28], we
refer to this MEE construction as MEE-TLS-CBC. We provide
greater detail on its operation in the (D)TLS Record Protocol in
Section 2.

The widespread use of TLS (and the increasing use of
DTLS) makes the continued study of the security of these pro-
tocols of great importance. Indeed, the evolution of the TLS
Record Protocol has largely been driven by cryptographic at-
tacks that have been discovered against it, including those in
[37, 6, 26, 2, 3, 13, 28, 1].

Of particular interest lately have been attacks based on the
use of chained initialisation vectors (IVs) for CBC-mode in SSL
and TLS 1.0, in particular, the so-called BEAST attack [13]
which has its roots in [35, 26, 2, 3]. This attack achieved full
plaintext recovery against TLS, but only in scenarios where an
attacker can gain access to a chosen plaintext capability, per-
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haps by inducing the user to first download malicious javascript
code into his browser. Despite this strong requirement, the
BEAST attack attracted significant industry and media attention
in 2011. Amongst the possible countermeasures are upgrading
to TLS 1.1 or 1.2, the inclusion of a dummy zero-length mes-
sage prior to each real TLS message, or the abandonment of
CBC-mode encryption in favour of RC4 or an authenticated en-
cryption algorithm.

The other major line of attacks against the TLS Record Pro-
tocol comprises [37, 6, 26, 28, 1] and relates to how the padding
that is required in MEE-TLS-CBC is handled during decryp-
tion. The problems here all stem from the fact that the padding
is added after the MAC has been computed and so forms unau-
thenticated data in the encoded plaintext. Taken altogether, the
attacks in [37, 6, 26, 28, 1] show that handling padding arising
during decryption processing is a delicate and complex issue for
MEE-TLS-CBC.

It is the case that all these attacks on CBC-mode in TLS
could be avoided by adopting RC4 or a dedicated authenticated
encryption mode, or perhaps by redesigning (D)TLS to use only
an Encrypt-then-MAC construction. However, RC4 is not an
option for DTLS, and not NIST-recommended for TLS [7];
meanwhile authenticated encryption modes are only available
in TLS 1.2, which is not yet widely supported.1 Redesigning
(D)TLS would require even more radical changes than adopt-
ing TLS 1.2. So it would be fanciful to “wish away” MEE-
TLS-CBC, and all the complexity that this entails: this is an
option that is firmly embedded in the TLS and DTLS RFCs, in
widespread use, and will remain so for the foreseeable future.
On the other hand, we might hope that after more than a decade
of intensive study, we would have arrived at a point where we
understand how to implement MEE-TLS-CBC securely. In this
paper, we show that this is not the case.

1.1 Our Results

We present a family of attacks that apply to CBC-mode in all
TLS and DTLS implementations that are compliant with TLS
1.1 or 1.2, or with DTLS 1.0 or 1.2. They also apply to im-
plementations of SSL 3.0 and TLS 1.0 that incorporate padding
oracle attack countermeasures (implementations that do not are
of course already vulnerable to known attacks).

The attacks come in various distinguishing, partial plaintext
recovery, and full plaintext recovery flavours. For the plaintext
recovery attacks, no chosen-plaintext capability is needed, in
contrast to the BEAST attacks: the attacks can be mounted by a
standard man-in-the-middle (MITM) attacker who sees only ci-
phertext and can inject ciphertexts of his own composition into
the network. The details of which specific attacks are possible
depends on the exact size of MAC tags output by the MAC al-
gorithm negotiated by the Handshake Protocol, and also on the
fact that the exactly 13 bytes of header data are incorporated in
the MAC calculation (hence our title).

The applicability of the attacks is also implementation-
dependent, because of the manner in which different imple-

1SSL Pulse (https://www.trustworthyinternet.org/
ssl-pulse/) reported that only 11.4% of 200,000 websites surveyed
support TLS 1.2 in January 2013; most major browsers currently do not
support TLS 1.2.

mentations interpret the RFCs. We have investigated several
different open-source implementations of TLS and DTLS, and
found all of them to be vulnerable to our new attacks or variants
of them (or even old attacks in one case). We also found ba-
sic coding errors in the security-critical decryption function of
one popular implementation, GnuTLS. In view of the amount
of variation we have seen in open-source code and our suc-
cess in devising variant attacks, we expect all implementations
– whether open or closed – to be vulnerable to our attacks to
some extent.

We have implemented a selection of the attacks in an exper-
imental setting. As with earlier attacks, completely breaking
TLS is challenging because the attacks create “broken” TLS
records and so consume many TLS sessions. Nevertheless, our
basic attack can extract full plaintext for the current OpenSSL
implementation of TLS assuming the attacker is located, say,
in the same LAN segment as the targeted TLS client or server,
using roughly 223 TLS sessions to reliably recover a block of
plaintext in a multi-session attack scenario like that considered
in [6]. Such a scenario is applicable when, for example, an
application protocol performs automatic TLS reconnection and
password retransmission. Given its complexity, this basic at-
tack would seem to present only a theoretical threat. However,
variants of it are much more effective:

• The distinguishing attacks against TLS are quite practical
for OpenSSL, requiring just a handful of sessions in order
to reliably tell apart the encryptions of chosen messages.

• Breaking DTLS implementations is fully practical even for
a remote attacker, since we can exploit the fact that DTLS
errors are non-fatal to mount the attacks in a single session,
and reuse the amplification techniques from [1] to boost
the delicate timing signals on which our attacks depend.

• We also have more efficient partial plaintext recovery at-
tacks on TLS and DTLS. For example, against OpenSSL
TLS, an attacker who knows one byte of a block in either
of the last two byte positions can reliably recover each of
the remaining bytes in that block using 216 sessions.

• The complexity of all our attacks can be reduced using lan-
guage models and sequential statistical techniques as in
[6, 13]. As a simple example, if the plaintext is base64
encoded, as is the case for HTTP basic access authentica-
tion and cookies, then the number of TLS sessions needed
to recover a block reduces from roughly 223 to 219.

• In the web setting, our techniques can be combined with
those used in the BEAST attack [13]: client-side malware
running in the browser can be used to initiate all the needed
TLS sessions, with an HTTP cookie being automatically
injected by the browser in a predictable location in the
plaintext stream in each session. The malware can also
control the location of the cookie such that there is only
one unknown byte in the target block at each stage of the
attack. The attacker then combines the “one known byte”
variant of our attack and the base64 optimisation above
(assuming the sensitive part of the cookie is base64 en-
coded). Putting all of these improvements together, we
estimate that HTTP cookies can be recovered using 213
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sessions per byte of cookie (with all the sessions being au-
tomatically generated). Note that the malware does not
need the ability to inject chosen plaintext into an existing
TLS session for this attack.

How the attacks work: Our new attacks exploit the fact that,
when badly formatted padding is encountered during decryp-
tion, a MAC check must still be performed on some data to pre-
vent the known timing attacks. But what data should be used
for that calculation? The TLS 1.1 and 1.2 RFCs recommend
checking the MAC as if there was a zero-length pad. As noted
in those RFCs:

This leaves a small timing channel, since MAC per-
formance depends to some extent on the size of the
data fragment, but it is not believed to be large
enough to be exploitable, due to the large block size of
existing MACs and the small size of the timing signal.

We confirm that there are indeed small timing differences,
but, contrary to what is written in the RFCs, they can be ex-
ploited. In short, provided there is a fortuitous alignment of
various factors such as the size of MAC tags, the block cipher’s
block size, and the number of header bytes, then there will be a
time difference in the time that it takes to process TLS records
having good and bad padding, and this difference will show
up in the time at which error messages appear on the network.
This timing side-channel can then be “wrangled” into reveal-
ing plaintext data via careful statistical analysis of multiple tim-
ing samples. As we shall show, other natural methods for han-
dling MAC checking in the event of bad padding also lead to
exploitable timing differences.

It is not clear to us whether the attacks we present here were
already known to the TLS community. We suspect not, in view
of the attacks’ complexity and the state-of-the-art in attacks at
the time of writing of the TLS 1.1 RFC. However, this ques-
tion seems moot in view of the fact that attacks exist for RFC-
compliant implementations and present a threat to the security
of TLS and DTLS.

Our new attacks demonstrate that properly implementing
MEE-TLS-CBC so as to avoid all exploitable timing differences
is in fact quite difficult, and is not achieved by any of the im-
plementations we examined. A complicating factor, in addition
to dealing with padding, is the need for careful sanity checking
of various fields during decryption. We provide a detailed pre-
scription for dealing with these issues. We also discuss other,
more easily-implemented countermeasures.

1.2 Disclosure (as at 27/02/2013)

Given the large number of affected implementations, we first
notified the IETF TLS Working Group chairs, the IETF Secu-
rity Area directors and the IRTF Crypto Forum Research Group
(CFRG) chairs of our attacks in November 2012. We then be-
gan the process of contacting individual vendors:
OpenSSL addressed the attacks in versions 1.0.1d, 1.0.0k and
0.9.8y, released 05/02/2013. See http://www.openssl.
org/news/secadv_20130205.txt for further details.
NSS addressed the attacks in version 3.14.3, released
15/02/2013. See https://developer.mozilla.org/

en-US/docs/NSS/NSS_3.14.3_release_notes for
further details.
Microsoft performed an investigation and determined that the
issue had been adequately addressed in previous modifications
to their TLS and DTLS implementations
Apple were notified of our attacks in December 2012. The sta-
tus of patch development by Apple is currently unknown.
GnuTLS corrected the programming errors in decryption that
we identified in version 3.1.6 (released 02/01/2013) and ad-
dressed the attacks in versions 2.12.23, 3.0.28 and 3.1.7, re-
leased 04/02/13.
PolarSSL addressed the attacks in version 1.2.5, released
03/02/13.
CyaSSL addressed the attacks in CyaSSL version 2.5.0, re-
leased 04/02/2013.
MatrixSSL addressed the attacks in version 3.4.1, released
06/02/13.
Opera addressed the attacks in Opera version 12.13, re-
leased 30/01/2013. For further details, see www.opera.com/
docs/changelogs/unified/1213/.
F5 were notified of the attacks in December 2012. They
have informed us that their TLS dataplane traffic is not vul-
nerable due to cryptographic offload, but that local manage-
ment ports and virtual editions may be vulnerable. For fur-
ther details, see http://support.f5.com/kb/en-us/
solutions/public/14000/100/sol14190.html.
BouncyCastle addressed the attacks in version 1.48 of the Java
library, released 10/02/2013. The C# version of BouncyCas-
tle was fixed in CVS at a similar time, and will be included in
release 1.8 at a later date.
Oracle (Java) addressed the attacks as part of a special critical
patch update of JavaSE, released 19/02/2013.

In addition, a number of other companies and organisations
were given advance notice of the attacks prior to them being
made public.

We will continue to update this section as the disclosure pro-
cess progresses.

1.3 Further Details on Related Work

TLS, and in particular the TLS Handshake Protocol, has
been the subject of much analysis using a variety of security
paradigms, see for example [29, 18, 27, 5]. In general, these
analyses are at too high a level of abstraction to capture our
attacks.

Padding oracle attacks began with Vaudenay [37], who
showed that the presence of a padding oracle, that is, an ora-
cle telling an attacker whether the padding was correctly for-
matted or not, could be leveraged to build a decryption capa-
bility. Canvel et al. [6] showed that such an oracle could be
obtained for the then-current version of OpenSSL by exploiting
a timing difference in TLS decryption processing. In essence,
in OpenSSL, if the padding was incorrectly formatted, then no
MAC check was performed, while if the padding was correct,
then the MAC check was done. In turn, this meant faster pro-
duction of an error message in the “invalid padding” case than
in the “valid padding” case. Thus the padding oracle was re-
vealed through a timing side-channel. A complication for full
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plaintext recovery is that in TLS, the corresponding error mes-
sages are fatal, leading to the termination of the TLS session.
To overcome this, Canvel et al. considered the multi-session
setting, wherein it is assumed that the same plaintext is trans-
mitted in the same position in the ciphertext in many sessions.
In this setting, they were able to mount full plaintext recovery
attacks, recovering, for example, TLS-protected Microsoft Out-
look passwords in a LAN. Moeller [26] subsequently pointed
out that not doing padding format checks is not an option, since
this enables even simpler attacks. The correct solution, as ad-
vocated in TLS 1.1 and TLS 1.2, is to check the padding format
carefully, report a single error message for padding and MAC
failures, and to make the record processing time essentially the
same whether or not the padding is correct. However, even this
is not enough: Paterson et al. recently showed that distinguish-
ing attacks would still be possible against TLS if the short MAC
extension advocated in [15] were to be implemented in combi-
nation with the variable length padding specified in TLS 1.0
and up. Their attack, whilst not a padding oracle attack, does
exploit the padding format. Most recently, in [1], we showed
that the OpenSSL implementation of DTLS did not adopt the
known attack countermeasures. We also introduced novel tim-
ing amplification techniques to build full plaintext recovery at-
tacks against this implementation of DTLS, even though DTLS
has no explicit error messages to time.

Theoretical support for the MEE construction used in
(D)TLS can be found in [20, 22, 28]. In particular, Paterson et
al. [28] gave the first positive security results for a fully accurate
model MEE-TLS-CBC that includes all the details of the CBC-
mode encoding step (which incorporates padding), proving
that MEE-TLS-CBC provides Length Hiding Authenticated-
Encryption security, provided that its MAC and CBC-mode
block cipher components satisfy natural security properties, that
the MAC tags are long enough, and that it is implemented so
that decryption does not reveal the cause of any failures. The
latter is modelled by having indistinguishable error messages in
the security model. Our attacks exploit the fact that implemen-
tations of (D)TLS fail to meet this last assumption, and so the
attacks do not contradict the result of [28], but instead relativize
its applicability to practice.

Other recent work on the security of TLS implementations
includes [16, 17, 30]. In particular, in independent work, Pironti
et al. [30] identify effectively the same timing channel in TLS
that we exploit. However they dismiss it as being “too small
to be measured over the network” and instead focus on using
it to recover information about message lengths. The recent
CRIME attack exploits the optional use of compression in TLS
in combination with a chosen plaintext capability to mount a
plaintext recovery attack.

Other work showing that implementing MAC-then-encrypt
securely can be difficult is given in [9] in the context of IPsec.
That this is so, and that encrypt-then-MAC is the preferable
construction, has been known in a theoretical sense since at
least [4, 20]. Interesting padding oracle (and related) attacks
abound in the literature, see for example [8, 34, 14, 19].

MAC 

HDR Payload 

Padding 

Encrypt 

Ciphertext 

MAC tag Payload 

SQN 

Figure 1: D(TLS) encryption process

1.4 Paper Organisation

Section 2 provides further background on the (D)TLS
Record Protocol and the MEE-TLS-CBC construction. Sec-
tion 3 presents the basic distinguishing attack against RFC-
compliant implementations of TLS and DTLS, while Section
4 describes our plaintext recovery attacks in the context of
TLS and explains how to modify them to apply to DTLS. In
Section 5 we report on the experimental validation of our at-
tacks for the OpenSSL implementation, and in Section 6 we
describe the modifications needed to make our attacks applica-
ble to other implementations, including GnuTLS, CyaSSL and
PolarSSL. Section 7 discusses countermeasures to our attacks,
giving guidance on how to implement MEE-TLS-CBC so as to
avoid the attacks. Finally, Section 8 concludes with a recap of
the main issues raised by our work.

2 The (D)TLS Record Protocol

We focus on the cryptographic operation of the TLS and
DTLS Record Protocols in the case of CBC-mode encryption.
The core encryption process is illustrated in Figure 1 and ex-
plained in more detail below.

Data to be protected by TLS or DTLS is received from the
application and may be fragmented and compressed before fur-
ther processing. An individual record R (viewed as a byte se-
quence of length at least zero) is then processed as follows. The
sender maintains an 8-byte sequence number SQN which is in-
cremented for each record sent2, and forms a 5-byte field HDR
consisting of a 2-byte version field, a 1-byte type field, and a
2-byte length field. It then calculates a MAC over the bytes
SQN||HDR||R; let T denote the resulting MAC tag. Note that
exactly 13 bytes of data are prepended to the record R here
before the MAC is computed. The size of the MAC tag is 16
bytes (HMAC-MD5), 20 bytes (HMAC-SHA-1), or 32 bytes
(HMAC-SHA-256). We let t denote this size in bytes.

The record is then encoded to create the plaintext P by set-
ting P = R||T ||pad. Here pad is a sequence of padding
bytes chosen such that the length of P in bytes is a multiple
of b, where b is the block-size of the selected block cipher
(so b = 8 for 3DES and b = 16 for AES). In all versions
of TLS and DTLS, the padding must consist of p + 1 copies
of some byte value p, where 0 ≤ p ≤ 255. In particular, at

2In fact, in DTLS, this 8-byte field is composed from a 16-bit epoch number
and a 48-bit sequence number. We will abuse terminology and refer throughout
to the 8-byte field as being the sequence number for both TLS and DTLS.
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least one byte of padding must always be added. So exam-
ples of valid byte sequences for pad are: “0x00”, “0x01||0x01”
and “0x02||0x02||0x02”. The padding may extend over mul-
tiple blocks, and receivers must support the removal of such
extended padding.

In the encryption step, the encoded record P is encrypted
using CBC-mode of the selected block cipher. TLS 1.1 and
1.2 and both versions of DTLS mandate an explicit IV, which
should be randomly generated. TLS 1.0 and SSL use a chained
IV; our attacks work for either option. Thus, the ciphertext
blocks are computed as:

Cj = EKe
(Pj ⊕ Cj−1)

where Pi are the blocks of P , C0 is the IV, and Ke is the key
for the block cipherE. For TLS (and SSL), the data transmitted
over the wire then has the form:

HDR||C

where C is the concatenation of the ciphertext blocks Ci (in-
cluding or excluding the IV depending on the particular SSL or
TLS version). Note that the sequence number is not transmitted
as part of the message. In DTLS, the data transmitted over the
wire is the same as in TLS, except that SQN is included as part
of the record header and the CBC-mode IV is always explicit.

Simplistically, the decryption process reverses this sequence
of steps: first the ciphertext is decrypted block by block to re-
cover the plaintext blocks:

Pj = DKe
(Cj)⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher.
Then the padding is removed, and finally, the MAC is checked,
using the header information (and, in TLS, a version of the se-
quence number that is maintained at the receiver). Finally, in
DTLS, the sequence number is optionally checked for replays.

In reality, much more sophisticated processing than this is
needed. The receiver should check that the ciphertext size is
a multiple of the block size and is large enough to contain at
least a zero-length record, a MAC tag of the required size, and
at least one byte of padding. After decryption, the receiver
should check that the format of the padding is one of the pos-
sible patterns when removing it, otherwise attacks are possi-
ble [26] (SSL allows a loose padding format, while no specific
padding checks are enforced during decryption in TLS 1.0, so
both are potentially vulnerable to the attacks in [26]). Typically
this is done by examining the last byte of the plaintext, treating
it as a padding length byte padlen, and using this to dictate
how many additional bytes of padding should be removed. But
care is needed here, since blindly removing bytes could result
in an underflow condition: there needs to be sufficient bytes in
the plaintext to remove a total of padlen+1 bytes and leave
enough bytes for at least zero-length record and a MAC tag.

If all this succeeds, then the MAC can be recomputed and
compared to the MAC tag in the plaintext. If the padding fails to
be correctly formatted, then implementations should continue
to perform a MAC check anyway, to avoid providing a timing
side-channel of the type exploited in [6]. But since the padding
format is incorrect in this case, it’s not immediately clear where

the padding ends and the MAC tag is located: in effect, the
plaintext is now unparseable. The solution recommended in
TLS 1.1 and 1.2 (and by extension, also in DTLS 1.0 and 1.2) is
to assume zero-length padding, interpret the last t bytes of the
plaintext as a MAC tag, interpret the remainder as the record
R and run MAC verification on SQN||HDR||R. This has been
adopted in OpenSSL and elsewhere; GnuTLS on the other hand
removes padlen+ 1 bytes from the end of the plaintext, takes
the next t bytes as the MAC, interprets what is left as R and
then runs MAC verification on SQN||HDR||R.

For TLS, any error arising during decryption should be
treated as fatal, meaning an encrypted error message is sent to
the sender and the session terminated with all keys and other
cryptographic material being disposed of. For DTLS, such er-
rors may be rated non-fatal and the session would proceed to
process the next ciphertext.

It should now be apparent that implementing the basic de-
cryption processing of TLS and DTLS requires some care in
implementation, with there being significant room for coding
errors and inadequate parsing. Moreover, this should all be im-
plemented in such a way that the processing time does not leak
anything about the plaintext (including the padding bytes). As
we shall see, this has proved to be a challenge for implementers:
no implementation we examined gets it completely correct, and
the advice from TLS 1.1 and 1.2 that one should extract and
check the MAC tag as if the padding were of zero-length leaves
an exploitable timing side-channel.

2.1 Details of HMAC

As mentioned above, TLS and DTLS exclusively use the
HMAC algorithm [21], with HMAC-MD5, HMAC-SHA-1, and
HMAC-SHA-256 being supported in TLS 1.2.3 To compute the
MAC tag T for a message M with key Ka, HMAC applies the
specified hash algorithm H twice, in an iterated fashion:

T = H((Ka ⊕ opad)||H((Ka ⊕ ipad)||M)).

Here opad and ipad are specific 64-byte values, and the key
Ka is zero-padded to bring it up to 64 bytes before the XOR
operations are performed. For all the hash functions H used in
TLS, the application of H itself uses an encoding step called
Merkle-Damgård strengthening. Here, an 8-byte length field
followed by padding of a specified byte format are appended
to the message M to be hashed. The padding is at least 1 byte
in length and aligns the data on a 64-byte boundary. The rele-
vant hash functions also have an iterated structure, processing
messages in chunks of 64 bytes (512 bits) using a compres-
sion function, with the output of each compression step being
chained into the next step. The compression function in turn
involves a complex round structure, with many basic arithmetic
operations on data being involved in each round.

In combination, these features mean that HMAC implemen-
tations for MD5, SHA-1 and SHA-256 have a distinctive timing
profile. Messages M of length up to 55 bytes can be encoded
into a single 64-byte block, meaning that the first, inner hash

3TLS ciphersuites using HMAC with SHA-384 are specified in RFC 5289
(ECC cipher suites for SHA256/SHA384) and RFC 5487 (Pre-Shared Keys
SHA384/AES) but we do not consider this algorithm further here.
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operation in HMAC is done in 2 compression function evalua-
tions, with 2 more being required for the outer hash operation,
for a total of 4 compression function evaluations. Messages M
containing from 56 up to 64 + 55 = 119 bytes can be encoded
in two 64-byte blocks, meaning that the inner hash is done in 3
compression function evaluations, with 2 more being required
for the outer operation, for a total of 5. In general, an extra
compression function evaluation is needed for each additional
64 bytes of message data, with the exact number needed being
given by the formula d `−5564 e+ 4, where ` is the message length
in bytes. A single compression function evaluation takes typ-
ically around 500 to 1000 hardware cycles (depending on the
hash function and details of the implementation), giving a time
in the sub-µs range for modern processors.

Recall that in TLS the MAC is computed on plaintext af-
ter removing padding. Hence, one might expect the total run-
ning time for decryption processing to reveal some information
about the size of the depadded plaintext, perhaps up to a reso-
lution of 64 bytes in view of the above discussion. Our distin-
guishing attack exploits this, but we will show that much more
is possible.

3 A Distinguishing Attack

In this section we describe a simple distinguishing attack
against the MEE-TLS-CBC construction as used in TLS. This
is a warm-up to our plaintext recovery attacks, but we note that
even a distinguishing attack against such an important protocol
would usually be regarded as a significant weakness.

Recall that in a distinguishing attack, the attacker gets to
choose pairs of messages (M0,M1). One of these is encrypted,
Md, say, and the resulting ciphertext is given to the attacker.
The attacker’s task is to decide the value of the bit d. To prevent
the attacker from winning trivially, we require that M0 and M1

have the same length.
We focus on the case where b = 16, i.e. the block cipher

is AES. A variant of the attack works for b = 8. Suppose the
MAC algorithm is HMAC-H whereH is either MD5, SHA-1 or
SHA-256. LetM0 consist of 32 arbitrary bytes followed by 256
copies of 0xFF. Let M1 consist of 287 arbitrary bytes followed
by 0x00. Note that both messages have 288 bytes, and hence
fit exactly into 18 plaintext blocks. Our attacker submits the
pair (M0,M1) for encryption and receives a MEE-TLS-CBC
ciphertext HDR||C. Now C consists of a CBC-mode encryption
of an encoded version of Md, where the encoding step adds a
MAC tag T and some padding pad. Because the end of Md

aligns with a block boundary, the additional bytes T ||pad are
encrypted in separate blocks from Md. The attacker now forms
a new ciphertext HDR||C ′ in which C ′ keeps the same 16-byte
IV as C (if explicit IVs are being used), but truncates the non-
IV part of C to 288 bytes. This has the effect of removing those
blocks of C that contain T ||pad.

Now the attacker submits HDR||C ′ for decryption. If the
record underlying C was M0, then the plaintext P ′ correspond-
ing toC ′ appears to end with the valid 256-byte padding pattern
0xFF . . . 0xFF. In this case, all of these bytes are removed, and
the remaining 32 bytes of plaintext are interpreted as a short
message and a MAC tag. For example, if H is SHA-1, then

we have a 12-byte message and a 20-byte MAC tag. The MAC
verification fails (with overwhelming probability), and an error
message is returned to the attacker. If the underlying record
was M1, then P ′ appears to end with the valid 1-byte padding
pattern 0x00. In this case, a single byte is removed, and the re-
maining 287 bytes of plaintext are interpreted as a long message
and a MAC tag. Again, the MAC verification fails and an error
message is returned to the attacker.

Notice that when d = 0, so C encrypts M0, a short message
consisting of 13 bytes of header plus at most 16 bytes of mes-
sage (when the hash algorithm is MD5) is passed through the
MAC algorithm. To calculate the MAC requires 4 evaluations
of H’s compression function. On the other hand, when d = 1,
C encrypts M1, and a long message consisting of 13 bytes of
header plus at least 255 bytes of message is passed through the
MAC algorithm. Then to calculate the MAC requires at least 8
evaluations of H’s compression function, at least 4 more than
for the d = 0 case. Hence, we expect the time it takes to pro-
duce the error message on decryption failure to be somewhat
larger if d = 1 than when d = 0, on the order of a couple of µs
for a modern processor. This timing difference then allows, in
theory, a distinguishing attack on the MEE-TLS-CBC construc-
tion used in TLS.

3.1 Practical Considerations

In describing the attack, we have ignored the time taken to
remove padding. This is different for the two messages be-
ing processed, and the difference is opposite to that for MAC
checking in that padding removal for M0 takes longer than for
M1. Similarly, we have ignored any other timing differences
that might arise during other processing steps. In practice, as
we will see in Section 5, these differences turn out to be smaller
than the MAC timing difference.

The attack exploits the requirement from the (D)TLS RFCs
that implementations be able to properly decrypt records having
variable length padding, but does not require implementations
to actually send records containing such padding. A variant
attack is possible in case only minimum-length padding is sup-
ported, but involves a smaller timing signal.

In TLS, the error messages are sent over the network, and so
can easily be detected by the attacker. However, these messages
are subject to network jitter, and this may be large enough to
swamp the timing difference arising from the 4 extra compres-
sion function evaluations. On the other hand, the timing signal
may be quite large when the cryptographic processing is per-
formed in a constrained environment, e.g. on an 8-bit or 16-bit
processor, or even on a smartphone. Furthermore, the jitter may
be significantly reduced when the adversary runs as a separate
process on the machine performing TLS decryption. This may
be possible in virtualised environments, e.g. in a cloud scenario
as explored in [33]. The attack also destroys the TLS session,
since in TLS such errors are fatal. The attack can be iterated
across L sessions, with Md being encrypted in each session,
and statistical processing used to extract the timing signal.

In DTLS, there are no error messages, but the techniques of
[1] can be applied to solve this problem. There, the authors
send a packet containing a ciphertext C closely followed by
a DTLS message, with the latter always provoking a response
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message. Any timing difference arising from the decryption of
C then shows up as a difference in the arrival time of the re-
sponse messages. The signal amplification techniques from [1]
can also be used to boost the timing difference – here, the idea
is to send multiple packets all containingC in quick succession,
to create a cumulative timing difference (since each time C is
processed, it will be processed in the same way).

In the attack as described, we have used 288 byte messages.
This ensured that there were sufficient bytes left after the re-
moval of padding to leave room for a message (possibly of zero
length) and a MAC tag. This ensures that C ′ passes any san-
ity checks that might be applied during decryption. However,
these sanity checks might be exploitable in variants of our ba-
sic attack. For example, an implementation that finds it does
not have enough bytes left to contain a MAC after depadding
may choose to skip MAC verification altogether, leading to an
increased timing difference.

Note that the attack would still work as described if the trun-
cated MACs specifed for TLS in [15] were used, since the full
HMAC-H computation is still performed but only certain bytes
of the computed tag are compared to bytes of the plaintext.

We report on the successful implementation of this attack in
Section 5.

4 Plaintext Recovery Attacks

4.1 General Approach

As we have seen in the previous section, the processing time
for a (D)TLS record (and therefore the appearance time of er-
ror messages) will depend on the amount of padding that the
receiver interprets the encoded plaintext as containing. How-
ever, by placing a target ciphertext block at the end of the en-
crypted record, an attacker can arrange that the plaintext block
corresponding to this block is interpreted as padding, and hence
make the processing time depend on plaintext bytes. But, it
seems that large amounts of valid padding are needed to create
a significant timing difference, and this is difficult to arrange in
a plaintext recovery attack. We show that this barrier to plain-
text recovery can be overcome under certain circumstances.

Let C∗ be any ciphertext block whose corresponding plain-
text P ∗ the attacker wishes to recover. Let C ′ denote the ci-
phertext block preceding C∗. Note that C ′ may be the IV or the
last block of the preceding ciphertext if C∗ is the first block of
a ciphertext. We have:

P ∗ = DKe(C∗)⊕ C ′.

For any block B of plaintext or ciphertext, we write B =
[B0B1 . . . Bb−1], where Bi denote the bytes of B. In partic-
ular, we have P ∗ = [P ∗0 P

∗
1 . . . P

∗
b−1].

As usual, we assume that the attacker is capable of eaves-
dropping on the (D)TLS-protected communications and of in-
jecting messages of his choice into the network. For TLS, or
DTLS with sequence number checking disabled, we do not need
the ability to prevent messages from reaching their destination.
Nor do we require a chosen-plaintext capability.

4.2 Full Plaintext Recovery

For simplicity of presentation, in what follows, we assume
the CBC-mode IVs are explicit (as in TLS 1.1, 1.2 and DTLS
1.0, 1.2). We also assume that b = 16 (so our block cipher is
AES). It is easy to construct variants of our attacks for implicit
IVs and for b = 8. We begin by considering only TLS, with
details for DTLS to follow. We also assume that the TLS im-
plementation follows the advice in the TLS 1.1 and 1.2 RFCs
about checking the MAC as if there was a zero-length pad when
the padding is incorrectly formatted. We will examine the se-
curity of other implementation options in Section 6. Most im-
portantly, and for reasons that will become clear, we assume for
the moment that t = 20 (so that the MAC algorithm is HMAC-
SHA-1). We consider t = 16 and t = 32 (HMAC-MD5 and
HMAC-SHA-256) shortly.

Let ∆ be a block of 16 bytes and consider the decryption of
a ciphertext Catt(∆) of the form

Catt(∆) = HDR||C0||C1||C2||C ′ ⊕∆||C∗

in which there are 4 non-IV ciphertext blocks, the penulti-
mate block C ′ ⊕ ∆ is an XOR-masked version of C ′ and
the last block is C∗. The corresponding 64-byte plaintext is
P = P1||P2||P3||P4 in which

P4 = DKe
(C∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.

Notice that P4 is closely related to the unknown, target plaintext
block P ∗. We consider 3 distinct cases, which between them
cover all possibilities for what can happen during decryption of
Catt(∆):

1. P4 ends with a 0x00 byte: in this case, a single byte of
padding is removed, the next 20 bytes are interpreted as
a MAC tag T , and the remaining 64 − 21 = 43 bytes
of plaintext are taken as the record R. MAC verifica-
tion is then performed on a 13 + 43 = 56-byte message
SQN||HDR||R.

2. P4 ends with a valid padding pattern of length at least 2
bytes: in this case, at least 2 bytes of padding are removed,
and the next 20 bytes are interpreted as a MAC tag T . This
leaves a record R of length at most 42 bytes, meaning that
MAC verification is then performed on a message of length
at most 55 bytes.

3. P4 ends with any other byte pattern: in this case, the byte
pattern does not correspond to valid padding. Following
the prescription in the TLS 1.1 and 1.2 RFCs, the plaintext
is treated as if it contains no bytes of padding, so the last
20 bytes are interpreted as a MAC tag T , and the remain-
ing 44 bytes of plaintext are taken as the record R. MAC
verification is then performed on a 57-byte message.

In all cases, the MAC verification will fail (with overwhelm-
ing probability) and an error message produced. Notice that,
in accordance with the discussion in Section 2.1, in Cases 1
and 3, the MAC verification will involve 5 evaluations of the
compression function for SHA-1, while Case 2 only requires 4
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evaluations. Therefore, we can hope to distinguish Case 2 from
Cases 1 and 3 by timing the appearance of the error message
on the network. Here the timing difference is that needed for a
single SHA-1 compression function evaluation (compared to 4
such evaluations in our distinguishing attack). Notice that the
size of the header, 13 bytes, in conjunction with the MAC tag
size, 20 bytes, are critical in generating this distinctive timing
behaviour.

In Case 2, assuming that the plaintext has no special struc-
ture, the most likely padding pattern to arise is the one of length
2, namely 0x01||0x01, with all longer padding patterns being
roughly 256 times less likely. Thus, if the attacker selects a
mask ∆ in such a way that he detects Case 2 after submitting
Catt(∆) for decryption, then he can infer that P4 ends with
0x01||0x01, and, using the equation P4 = P ∗ ⊕ ∆, can now
recover the last 2 bytes of P ∗. (In fact, by repeating the attack
with a mask ∆′ that is modified from ∆ in the third-to-last byte,
the attacker can easily separate the case of a length 2 padding
pattern from all longer patterns.)

The question remains: how does the attacker trigger Case
2, so that he can extract the last 2 bytes of P ∗? Recall that the
attacker has the freedom to select ∆. By injecting a sequence of
ciphertexts Catt(∆) with values of ∆ that vary over all possible
values in the last 2 bytes ∆14,∆15, then (in the worst case) after
216 trials, the attacker will surely select a value for ∆ such that
Catt(∆) triggers Case 2.

Once the last 2 bytes of P ∗ have been extracted, the attacker
can more efficiently recover the remaining bytes of P ∗, working
from right to left. This phase is essentially identical to Vaude-
nay’s original padding oracle attack [37]. For example, to ex-
tract the third-to-last byte, the attacker can use his new knowl-
edge of the last two bytes of P ∗ to now set ∆14,∆15 so that P4

ends with 0x02||0x02. Then he generates candidates Catt(∆)
as before, but modifying ∆13 only. After at most 28 trials, he
will produce a ciphertext which falls into case 2 again, which
reveals he has managed to set a value 0x02 in the third-to-last
byte of P4 = P ∗⊕∆. From this, he can recover P ∗13. Recovery
of each subsequent byte in P ∗ requires at most 28 trials, giving
a total of 14 · 28 trials to complete the extraction of P ∗.

Practical considerations: In practice, for TLS, there are two
severe complications. Firstly, the TLS session is destroyed as
soon as the attacker submits his very first attack ciphertext. Sec-
ondly, the timing difference between the cases is very small,
and so likely to be hidden by network jitter and other sources of
timing difference.

The first problem can be overcome for TLS by mounting a
multi-session attack, wherein we suppose that the same plain-
text is repeated in the same position over many sessions (as in
[6], for example). We have used masks ∆ in such a way that
no further modification to the attack is needed to cater for this
setting – of course blocks C ′ and C∗ change for each session.

The second problem can be overcome in the same multi-
session setting by iterating the attack many times for each ∆
value and then performing statistical processing of the recorded
times to estimate which value of ∆ is most likely to correspond
to Case 2. In practice, we have found that a basic percentile
test (and even averaging) works well – see Section 5 for further
details. Assuming that L trials are used for each ∆ value, the

attack as described consumes roughly L ·216 sessions, with one
ciphertext Catt(∆) being tried in each session.

More efficient variants: The attack complexity can be sig-
nificantly reduced by assuming that the language from which
plaintexts are drawn can be modelled using a finite-length
Markov chain. This is a fair assumption for natural languages,
as well as application-layer protocol messages such as HTML,
XML etc. This model can be used to drive the selection of
candidate plaintext bytes in order of decreasing likelihood, and
from this, determine the bytes of ∆ needed to test whether a
guess for the plaintext bytes leads to valid padding or not. Sim-
ilar techniques were used in [6, 13] in combination with sequen-
tial statistical techniques to reduce the complexity of recovering
low-entropy plaintexts. Note that this approach does not work
well if TLS’s optional compression is used. Another possibil-
ity is that the plaintext bytes are drawn from a reduced space
of possibilities. For example, in HTTP basic access authentica-
tion, the username and password are Base64 encoded, meaning
that each byte of plaintext has only 64 possible values. Similar
restrictions often apply to the sensitive parts of HTTP cookies.

In a related attack scenario, if the attacker already knows one
of the last two bytes of P ∗, he can recover the other byte with
much lower complexity than our analysis so far would suggest.
This is then a plaintext recovery attack with partially-known-
plaintext. For example, suppose the attacker knows the value
of the byte P ∗14. Then he sets the starting value of ∆ such that
∆14 = P ∗14 ⊕ 0x01, so that when Catt(∆) is decrypted, the
second-to-last byte of P4 already equals 0x01. Then he iterates
over the 28 possible values for ∆15, eventually finding one such
that P4 has its last two bytes equal to 0x01||0x01, triggering
Case 2. He can then proceed to recover the rest of P ∗ with the
same complexity as before. Overall, this attack, which recovers
15 bytes of plaintext with 1-out-of-2 of the last bytes of the
target block known, consumes only 15L·28 sessions, whereL is
the number of trials used for each ∆ value in each byte position.
This can be further reduced by combining the two variants. For
example, for base64 encoded plaintext, only 15L · 26 sessions
are needed to decrypt a block.

Combining Lucky 13 with the BEAST: A significant limi-
tation of our attacks as described so far is their consumption of
many TLS sessions. This limitation can be overcome by com-
bining our attacks with techniques from the BEAST attack [13]
to target TLS-protected HTTP cookies.

Specifically, in the context of a web browser communicating
with a web server over TLS, the user can be induced into down-
loading malware into his browser from a rogue website. This
malware, perhaps implemented in Javascript, can then initiate
all the TLS sessions need for our attack, with the browser auto-
matically appending the targetted HTTP cookie to the browser’s
initial HTTP request. Furthermore, by adjusting the length of
that initial HTTP request, the malware can ensure that there is
only one unknown byte of HTTP cookie plaintext in each tar-
get ciphertext block. This allows our remote attacker to carry
out the variant attack described immediately above. Assuming
the targeted part of the cookie is base64 encoded, the attack
consumes L · 26 sessions per byte of HTTP cookie. As we
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will discuss in more detail in Section 5, we found that setting
L = 27 yields reliable plaintext recovery in our experimental
set-up, giving us an attack that recovers HTTP cookies using
roughly 213 sessions per unknown byte of cookie.

4.3 Plaintext Recovery for Other MAC Algorithms

A critical feature of our attack above is the relationship be-
tween the size of the header included in the MAC calculation
(fixed at h = 13 bytes), the MAC tag size t, and the block size b.
For example, if TLS happened to be designed such that h = 12,
then, with t = 20 and b = 16, a similar case analysis as before
shows that our ciphertext Catt(∆) would have the property of
having faster MAC verification if P4 also ends with the single
byte 0x00 (the valid padding pattern of length 1). This would
allow an improved 28 attack against TLS with CBC-mode and
HMAC-SHA-1. In some sense, 13 is lucky, but 12 would have
been luckier!

Similarly, we have (less efficient) variants of our attacks for
HMAC-MD5 and HMAC-SHA-256, where the tag sizes t are
16 and 32 bytes, respectively. In fact, because here t is a mul-
tiple of b, the analysis is largely the same in both cases, and
we consider only HMAC-MD5 in detail. This time Catt(∆)
is such that we fall into Case 2 (valid padding with a message
of size at most 55 bytes, giving fast MAC verification) only if
P4 = P ∗ ⊕ ∆ ends with a valid padding of length 6 or more.
With no additional information on P ∗ the attacker would need
(worst case) 248 attempts to construct the correct ∆ so as to trig-
ger this case; detecting that he had done so would be more diffi-
cult in view of the large number of candidate ∆ values. This is
not an attractive attack, especially in view of the practical con-
siderations for TLS mentioned above. On the other hand, we
do have attractive partially-known-plaintext attacks for HMAC-
MD5 and HMAC-SHA-256. For example, if any 5 out of the
last 6 bytes of P ∗ are known, we can recover the remaining 11
bytes using 11L ·28 sessions. The attack can also be made more
efficient if the plaintext has low entropy, by trying candidates
for the last 6 bytes of P ∗ in order of decreasing probability and
then recovering the remaining bytes of P ∗ once the right 6-byte
candidate is found. This would be an good option for password
recovery, for example.

A similar analysis can be carried out for truncated MAC
algorithms, as per [15]. For example, for an 80-bit (10-byte)
MAC tag, if any 11 out of the last 12 bytes of P ∗ are known,
we can recover the remaining 5 bytes using 5L · 28 sessions.

Finally, we note that the “Lucky 13 + BEAST” attacks work
equally well, no matter what the MAC tag size is.

4.4 Applying the Attacks to DTLS

So far we have focussed on TLS. The changes needed to han-
dle DTLS are the same as for our distinguishing attack in Sec-
tion 3: we can use the techniques of [1] to amplify the timing
differences and to emulate TLS’s error messages. The ampli-
fication capability reduces the attack complexity dramatically:
essentially, we can accurately test each ∆ value using just a few
packet trains instead of requiring L trials.

There is one further critical difference that we wish to em-
phasise: as already noted, DTLS does not treat errors arising

during decryption as being fatal. This means that the entire at-
tack against DTLS can be carried out in a single session, that is,
without requiring the same plaintext to be repeated in the same
position in the plaintext across multiple sessions, and without
waiting for the Handshake Protocol to rerun for each session.

These differences brings our attack well within the bounds
of practicality for DTLS. This is particularly so if DTLS’s op-
tional checking of sequence numbers is disabled. Even if this
is not the case, the attacks are quite feasible in practice, pro-
vided enough DTLS messages are available, or if the upper
layer protocol being protected by DTLS produces replies to sent
messages in a consistent manner. These issues are discussed at
greater length in [1] and the next section, where we report on
the successful implementation of our attacks for the OpenSSL
implementation of TLS and DTLS.

5 Experimental Results for OpenSSL

5.1 Experimental Setup

We ran version 1.0.1 of OpenSSL on the client and the
server. In our laboratory set-up, a client, the attacker and the tar-
geted server are all connected to the same VLAN on a 100Mbps
Ethernet switch. The targeted server was running on a single
core processor machine operating at 1.87 GHz with 1 GByte of
RAM, while the attacker was running on a dual core processor
machine operating at 3.4 GHz, with 2 GByte of RAM.

To simulate the (D)TLS client, we made use of s client, a
generic tool that is available as part of the OpenSSL distribution
package. We modified s client’s source code to satisfy our
testing requirements. We also developed a basic Python script
that calls s client when needed. Our attack code is written
in C and is capable of capturing, manipulating and injecting
packets of choice into the network.

In the case of TLS, the attacker captures the “targeted”
packet, manipulates it and then sends the crafted version to
the targeted server causing the TLS session to terminate. This
crafted packet forces the client and the targeted server to lose
TCP synchronization, causing delay in the TCP connection
shutdown. To speed up the TCP connection tear down, the at-
tacker sends spoofed RST packets to the client and the targeted
system upon detecting the TLS encrypted alert message, forc-
ing both systems to independently destroy the underlying TCP
structure associated with the terminated TLS session.

All the timing values presented in the paper are based on
hardware cycles, which are specific to processor speed. For
example, 187 hardware cycles on our targeted server operating
at speed of 1.87 GHz translate to an absolute timing of 100 ns.
To count the hardware cycles, we made use of an existing C
library licensed under GNU GPL v34.

5.2 Statistical Analysis

The network timings we collect in each experiment are from
skewed distribution(s) with long tails and many outliers. How-
ever, we found that using basic statistical techniques (medians

4code.google.com/p/fau-timer
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L Success Probability
1 0.756
2 0.769
4 0.858
8 0.914
16 0.951
32 0.983
64 0.992

128 1

Table 1: OpenSSL TLS distinguishing attack success probabilities.

and, more generally, percentiles) was sufficient to analyse our
data.

5.3 Distinguishing Attack for OpenSSL TLS

Figure 2 shows the experimental distribution of timing val-
ues for the TLS distinguishing attack described in Section 3.
The figure indicates that, with enough samples, it should be
possible to distinguish encryptions of message M0 (consisting
of 32 arbitrary bytes followed by 256 copies of 0xFF) from en-
cryptions of message M1 (consisting of 287 arbitrary bytes fol-
lowed by 0x00).

We used a simple threshold test to build a concrete attack:
we calculate a threshold value T based on profiling, gather L
timing samples, filter outliers, calculate the median of the re-
maining timing samples, and then output 1 if the median value
is greater than T and 0 if it is less. Table 1 shows the success
probabilities for this concrete distinguishing attack; it is evident
that the attack is reliable even if only a moderate number of
samples are available. The attack already has a significant ad-
vantage over guessing when L = 1, i.e. when only one sample
is available.

5.4 Plaintext Recovery Attacks for OpenSSL TLS

Partial plaintext recovery: Section 4 describes an attack
where byte P ∗15 can be recovered when P ∗14 is known. This
involves setting ∆14 to force P ∗14 ⊕ ∆14 to equal 0x01, and
then trying all possible values of ∆15, identifying which one
forces P ∗15⊕∆15 to also equal 0x01. Figure 3 shows the median
server-side decryption time as a function of ∆15 for the particu-
lar values of P ∗14 = 0x01 (so ∆14 = 0x00) and P ∗15 = 0xFF. A
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Figure 3: OpenSSL TLS median server timings (in hardware cycles)
when P ∗

14 = 0x01 and P ∗
15 = 0xFF. As expected, ∆15 = 0xFE leads

to faster processing time.
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Figure 4: OpenSSL TLS median network timings in terms of hardware
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15 = 0xFF. As expected ∆15 = 0xFE

leads to faster processing time.

clear reduction in processing time can be seen for the expected
value of ∆15, namely ∆15 = 0xFE. Also notable is the stability
in the processing time for other byte values. These server-side
times indicate that an attack based on timing error message on
the network has some prospect of success. Figure 4 shows the
corresponding distribution of median network timings in our
experimental setup. Clearly, the data is noisier, but the “dip” at
∆15 = 0xFE is clearly distinguishable.

Figure 5 shows success probabilities for the attack. Each
data-point in the figure is based on at least 64 experiments. Each
curve in the figure represents a different number of total ses-
sions consumed in the attack (corresponding to different values
for L, the number of trials for each ∆ value). The x-axis repre-
sents the percentile used in our statistical test: if the percentile
value is p, then we take as the correct value for ∆15 the one for
which the p-th percentile value of the timing distribution (mea-
sured over L samples) is minimised. It is evident that a range of
percentiles work well, including the median. As expected, the
success probability of the attack increases as L increases. We
already reach a success probability of 1 when L = 28, where
the total number of sessions needed is 216. Similarly, we have
a success probability of 0.93 when L = 27, where the total
number of sessions is 215.

Given these results, we anticipate that the attack would ex-
tend easily to recovering 15 unknown bytes from a block, given
one of the last two bytes. We have not implemented this variant.
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Figure 5: OpenSSL TLS partial plaintext recovery: percentile-based
success probabilities for recovering P ∗

15 assuming P ∗
14 known.

Full plaintext recovery: The next step would be to perform
the full plaintext recovery attack from Section 4. In this case,
the attacker would need a total of L ·216 trials to discover which
mask value triggers Case 2. In the case of TLS, this takes a
considerable amount of time due to the underlying TCP and
TLS connection set-up and tear-down times. For example, with
L = 27 we estimate that the 223 sessions would take around
64 hours in our setup. However, once the last two bytes of
a block have been successfully recovered, then the remaining
bytes in that block can be recovered in a much shorter time.
We have not implemented the full plaintext recovery attack for
TLS. Our results below for DTLS strongly indicate that the full
attack would work for TLS with L = 27, albeit slowly.

5.5 Plaintext Recovery Attacks for OpenSSL DTLS

As explained in Section 4.4, we can use the timing and am-
plification techniques from [1] in combination with the previ-
ously described attacks to attack DTLS. Now the attacker sends
a number (n) of crafted packets, followed by a DTLS Heartbeat
request and waits for the corresponding Heartbeat reply. This
process is repeated L times for each mask value. The attacker
selects n and L in order to trade-off the attack success proba-
bility and the total number of packets injected. We have found
experimentally that n = 10 is a good choice for achieving sta-
ble timing values. On the other hand, n = 1 is indicative of
what might be expected to happen with TLS but without endur-
ing the overhead of TCP and TLS connection setups (note that
the noise levels for DTLS are generally somewhat higher since
we depend on an application-layer error message rather than a
native TLS error message). Higher values of n could be used if
the attacker is remote from the server.

Figure 6 shows the percentile-based success probabilities for
recovering P ∗15 assuming that P ∗14 is known, for n = 10. It can
be seen that the attack is very effective, reliably recovering the
unknown plaintext byte with only 211 trials (L = 23). Even for
28 trials (L = 1), the success probability is 0.266.

We also conducted a 2-byte recovery attack against
OpenSSL DTLS; this attack is effectively the first step of the
full plaintext recovery attack described in Section 4. Figure
7 shows the success probabilities for recovering P ∗14 and P ∗15
when n = 10. Again, the attack is very effective, recovering
both bytes with success probability 0.93 for 219 trials (L = 23).
The quality of these results is evidence that the attack should
extend easily to a full plaintext recovery attack. Figure 8 shows
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Figure 6: OpenSSL DTLS partial plaintext recovery: percentile-based
success probabilities for recovering P ∗

15 with P ∗
14 known, n = 10.
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Figure 7: OpenSSL DTLS 2-byte recovery: percentile-based success
probabilities for recovering P ∗

14 and P ∗
15, n = 10.

our results for n = 1, which we recall serves as an experimen-
tal model for TLS. We see that 2-byte recovery is reliable given
223 trials (L = 27); we already reach more than 80% success
rate using 222 trials.

5.6 More Challenging Network Environments

We have not conducted experiments where the attacker is
not situated in the same LAN as the server. Given the small
timing differences involved, we would expect the attacks to fail
when the attacker is remote, i.e. more than a couple of hops
away from the server, or that very large numbers of sessions
would be needed to get reliable results. Nevertheless, there are
realistic scenarios where the proximity requirement can be met,
for example when a hostile network service provider attacks its
customers, or in cloud computing environments. For DTLS,
the timing signals can be amplified, effectively by an arbitrary
amount, and so we would expect to be able to mount the attacks
remotely.
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6 Other Implementations of TLS

6.1 GnuTLS

The GnuTLS5 implementation of MEE-TLS-CBC deals
with bad padding in a different way to that recommended in
the RFCs: instead of assuming zero-length padding, it uses the
last byte of plaintext to determine how many plaintext bytes
to remove (whether or not those bytes are correctly formatted
padding). More precisely, GnuTLS sets a variable pad as:

pad = ciphertext->data[ciphertext->size - 1] + 1

and then, after doing some basic sanity checking on the value
of pad, subtracts pad bytes from the length field:

length = ciphertext->size - tag_size - pad

The GnuTLS code then proceeds to check the padding bytes,
but the value of length stays the same for the remainder of
the processing whether the padding check succeeds or fails.
This variable dictates the number of record bytes involved in
the MAC verification.

Since this approach is a natural alternative to the RFCs’ ad-
vice for handling bad padding, we analyse it in detail, first for
HMAC-SHA-1 as the MAC algorithm, and then in brief for
other MAC algorithms. As before, we assume that our block
cipher is AES and that IVs are explicit, with obvious modifica-
tions for other cases. We focus on TLS, but our attacks apply
equally to DTLS. We then report experimental results.

GnuTLS + HMAC-SHA-1: Firstly, we point out that
GnuTLS-style processing is just as vulnerable to distinguishing
attacks as RFC-compliant processing. Indeed, the attack de-
scribed in Section 3 will work just as before6. We next present
an attack that recovers the rightmost byte of plaintext in any
target block for GnuTLS-style padding processing.

Let C∗ denoting the target ciphertext block, C ′ denote the
previous ciphertext block and ∆ denote a mask block of 16
bytes. We consider the decryption of a ciphertext Catt(∆) of
the form:

Catt(∆) = HDR||C0||C1||C2|| . . . ||C18||C ′ ⊕∆||C∗

in which there are 20 non-IV ciphertext blocks, the penultimate
block is an XOR-masked version of C ′ and the last block is
C∗, the target ciphertext block. The corresponding 320-byte
plaintext is P = P1||P2|| . . . ||P19||P20 in which

P20 = DKe
(C∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.

Now we need consider only two distinct cases, which be-
tween them cover all possibilities:

1. P20 ends with a 0x00 byte: in this case, a single byte of
padding is removed, the next 20 bytes are interpreted as
a MAC tag T , and the remaining 320 − 21 = 299 bytes

5www.gnu.org/software/gnutls/
6In fact, since the attack only involves plaintexts which are correctly padded,

it will work for any correct decryption algorithm.

of plaintext are taken as the record R. MAC verification
is then performed on a 13 + 299 = 312-byte message
SQN||HDR||R.

2. P20 ends with any other byte value: in this case, at least
two bytes of “padding” are removed, the next 20 bytes are
interpreted as a MAC tag T , and the remaining bytes of
plaintext are taken as the record R. Because the starting
message length, at 320 bytes, is long enough to allow for
the removal of 256 bytes of padding and a 20-byte MAC
whilst still leaving a non-null record, no length sanity tests
will fail. MAC verification is then performed on a message
SQN||HDR||R that contains at most 311 bytes.

In both cases, the MAC verification will fail (with over-
whelming probability) and an error message produced. Notice
that, in accordance with the discussion in Section 2.1, in Case 1,
the MAC verification will involve 9 evaluations of the compres-
sion function for SHA-1, while Case 2 requires at most 8 eval-
uations. Therefore, we can hope to distinguish the two cases by
careful timing, as previously.

Now the single-byte plaintext recovery attack is straightfor-
ward: the attacker injects a sequence of ciphertexts Catt(∆)
with values of ∆ that vary over all possible values in the last
byte ∆15, then (in the worst case) after 28 trials, the attacker
will surely select a value for ∆ such that Catt(∆) triggers Case
1. When this is detected, he knows that P20 ends with a 0x00
byte and can infer the value of the last byte of P ∗ via the block-
wise equation P20 = P ∗ ⊕∆.

This basic attack can be further improved. The 2 most sig-
nificant bits of the last byte of P ∗ can be extracted using 4 trials
by simply examining the time taken to produce an error mes-
sage when ciphertexts Catt(∆) are injected for values ∆ which
vary in the 2 most significant bits of ∆15: the maximum run-
ning time is produced when the last byte of P20 is set to have
bits 00 in the most significant positions. The remaining 6 bits
can then be extracted using a further 64 trials to find the value
of ∆15 which triggers Case 1. Thus an enhanced version of the
attack only needs 68 trials to recover the last byte of the target
block.

For TLS, the usual problems of fatal errors and noisy tim-
ing information can be overcome in a multi-session attack. For
DTLS, we can use the techniques of [1] to amplify the timing
differences and overcome the lack of error messages.

GnuTLS + HMAC-MD5/HMAC-SHA-256: For HMAC-
MD5 and HMAC-SHA-256, a similar analysis as before shows
that the ciphertext Catt(∆) triggers “slow” MAC evaluation (9
compression function evaluations) if P20 has last byte that is
any of the 5 possibilities 0x00, 0x01, 0x02, 0x03, 0x04, while all
other values for the last byte of P20 result in “fast” MAC eval-
uation (at most 8 evaluations). These 5 byte values correspond
to bit patterns 000, 001, 010, 011, 100 in the 3 least significant
bits. Exploiting this, we can build an attack using even fewer
trials than previously. In the worst case, the attacker needs 24L
trials to recover all the bits of the last byte of P ∗. For TLS, we
will need a multi-session attack, but note that the parameter L
can be quite small since we only need to distinguish between a
few possibilities (at most 16) in each phase of the attack. We
omit the details.
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Interestingly, the attacks for HMAC-MD5 and HMAC-SHA-
256 are much more efficient for GnuTLS-style processing than
they are for RFC-compliant processing. This is opposite to the
situation for HMAC-SHA-1. We note that we have not found
attacks for GnuTLS-style processing that can extract more than
the last byte of the target block. This is not surprising in view of
the fact that the decryption time for GnuTLS-style processing
depends only on the last byte of plaintext.

Attack implementation for GnuTLS: We worked with ver-
sion 3.0.21 of GnuTLS to implement the above attacks. In do-
ing so, we found some subtle coding errors.

Firstly, the variable pad is defined as being of type uint8.
In the code:

pad = ciphertext->data[ciphertext->size - 1] + 1

this has the unintended action of setting pad to zero when the
last byte of plaintext equals 0xFF instead of the desired value
of 256, meaning that no bytes of padding are removed in this
case instead of 256 bytes. As a consequence, GnuTLS does
not properly support variable length padding during decryption,
and the TLS session would be terminated if the encrypting party
ever uses 0xFF padding.

This coding error is easily patched, but means that our at-
tacks do not quite work as described, since now 2 byte values
(0x00 and 0xFF) in the last byte of P20 lead to slow MAC verifi-
cation (in the HMAC-SHA-1 case). In fact, this does not present
a serious barrier to our attack, and there is a variant using at
most 66 trials to recover the last byte of P ∗. We omit the de-
tails.

The second coding error we found relates to the implemen-
tation of the padding check. This uses the following for loop:

for (i = 2; i < pad; i++)
{

if (ciphertext->data[ciphertext->size - i] !=
ciphertext->data[ciphertext->size - 1])

pad_failed = GNUTLS_E_DECRYPTION_FAILED;
}

It is not hard to see that this loop should also cover the edge
case i=pad in order to carry out a full padding check. This
means that one byte of what should be padding actually has
a free format. This would enable, for example, a variant of
the short MAC attack of [28] even if variable length padding
was not supported. This coding error does not affect our attack.
Notice also that the number of iterations in the loop depends on
pad, which is plaintext-dependent.

Experimental Results for GnuTLS: By default, GnuTLS
adds random length padding to every TLS record it sends (in-
cluding alerts), subject to constraints imposed by the TLS spec-
ification. The time required to encrypt that random padding
disrupts the timing signal that our attacks attempt to detect. For
the purposes of experimental validation, we disabled GnuTLS’s
random padding. Note, however, that the attacks would still
be effective even if the the random padding were to be reac-
tivated, since the error messages can be grouped according to
their lengths, and the time difference attributable to adding ex-
tra padding can be profiled and subtracted for each group.
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Figure 9: GnuTLS TLS median server timings (in hardware cycles)
for varying values of ∆15 and P ∗

15 = 0x00.

We began by measuring the time (in hardware cycles) taken
by the GnuTLS server to perform the padding check, MAC ver-
ification and other associated operations as a function of the
value of ∆15, for ciphertexts containing 20 non-IV blocks and
with the last byte of P ∗ equal to 0x00. Figure 9 shows the re-
sults. The expected behaviour is observed: byte values 0x00
and 0xFF have similar, long processing times. Moreover, there
are four “blocks” of timings, corresponding to the reducing
number of compression function evaluations needed as the byte
value ∆15 ⊕ P ∗15 increases. (Here, P ∗15 denotes the last byte of
the target plaintext block P ∗.) Within these blocks, the trend
is upwards, and this is attributable to the increasing amount
of time needed for the padding check as the value of pad in-
creases.

Our next step was to gather timing of error messages from
the network. Figure 10 shows median network timings for the
same ciphertext structure. It is evident that there are anoma-
lies at byte values 0x01, 0x11, ..., 0xF1 (with 16 byte incre-
ments). In further testing, we discovered that their positions
did not depend on the plaintext byte P ∗15. This phenomenon
was subsequently explained to us [23] as arising from the way
in which GnuTLS’s random number generator updates its state
(when generating CBC-mode IVs for TLS’s encrypted error
messages). We handled this in our attack by setting the tim-
ing values for these mask values to the average value of the
neighbouring bytes.

The data is clearly very noisy, and the distinct pattern exhib-
ited in the server timings in Figure 9 is not immediately evident
in Figure 10. However, a zoomed view (see Figure 11) shows
that an overall descending pattern is evident. Further analy-
sis using linear regression showed that the ascending pattern
within each of the 4 blocks is weakly preserved in the network
timings. We could not reliably distinguish the values 0x00 and
0xFF needed for the attack mentioned above; however, we are
able to reliably extract the 4 most significant bits (MSBs) of
P ∗15, as we explain briefly next.

Extracting 4 bits of P ∗15: To extract the 2 MSBs of P ∗15, the
attacker focusses on the overall downward trend in the process-
ing time (as a function of ∆15 ⊕ P ∗15) exhibited in Figure 11.
Let δ7δ6 . . . δ0 denote the bits of ∆15. By setting δ7 = 0 and
then δ7 = 1, the attacker has 2 sets each containing 128 masks;
he gathers timings for each of these two sets; if larger timings
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Figure 10: GnuTLS TLS median network timings (in hardware cycles)
for varying values of ∆15 and P ∗

15 = 0x00.
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Figure 11: Zoomed view of GnuTLS TLS network timings.

are obtained on average when δ7 = 0, then the attacker deduces
that the MSB of P ∗15 is a 0; otherwise he guesses that the MSB
is 1. The attacker can also use a reduced set of masks, and col-
lect multiple timing samples for each mask that he tries. Thus
we have two parameters: the total number of masks S that he
uses across the two sets, and the number of timing samples L
for each mask. The second MSB of P ∗15 is extracted in the same
way: now we consider masks for δ6 = 0 and then δ6 = 1. In
principle, we have S as large as 256 again, by varying δ7 as well
as the other 6 bits of ∆15. In practice, we just set δ7 = 0 when
extracting the second MSB. The third and fourth MSBs are ex-
tracted in roughly the same way, but now we reverse the test,
setting the targeted bit to 1 if larger timings are obtained on av-
erage when δ5 = 0 or δ4 = 0, respectively. This change reflects
the ascending trend within the 4 blocks observed in Figure 9.

Success probabilities for this attack are shown in Table 2.
We tried to recover the remaining bits, but did not obtain signif-
icant success probabilities. Whilst extracting less plaintext than
our OpenSSL attack, far fewer TLS sessions are required in this
attack on GnuTLS. This indicates that ignoring the recommen-
dations of the RFCs can have severe security consequences.

6.2 Further Implementations

NSS: Network Security Services (NSS)7 is an open-source
set of libraries implementing, amongst other things, TLS. It is
widely used, including in Mozilla client products and Google
Chrome.

In the decryption code8 the variable plaintext->len
is reduced by the assumed amount of padding

7http://www.mozilla.org/projects/security/pki/nss
8We worked with version 3.13.6 available at https://ftp.mozilla.

H
HHHHS

L 4 8 16 32 64 128

4 0.575 0.662 0.746 0.828 0.875 0.937
8 0.516 0.615 0.781 0.836 0.844 1

16 0.531 0.609 0.766 0.852 0.969 1
32 0.536 0.596 0.750 0.898 0.984 1
64 0.544 0.596 0.781 0.937 0.984 1
128 0.555 0.627 0.812 0.977 1 1
256 0.593 0.635 0.859 1 1 1

MSB

HHH
HHS
L 4 8 16 32 64 128

4 0.511 0.580 0.629 0.687 0.656 0.812
8 0.513 0.576 0.695 0.789 0.812 0.812

16 0.515 0.564 0.637 0.742 0.734 0.844
32 0.509 0.549 0.617 0.734 0.766 0.844
64 0.519 0.570 0.656 0.859 0.953 0.969
128 0.544 0.557 0.557 0.914 1 1

Second MSB

H
HHHHS

L 4 8 16 32 64 128

4 0.486 0.451 0.418 0.391 0.422 0.375
8 0.522 0.508 0.523 0.500 0.531 0.625

16 0.537 0.555 0.598 0.625 0.625 0.781
32 0.543 0.572 0.609 0.609 0.609 0.609
64 0.528 0.541 0.602 0.758 0.758 1

Third MSB

H
HHHHS

L 4 8 16 32 64 128

4 0.456 0.434 0.363 0.336 0.312 0.25
8 0.487 0.484 0.445 0.477 0.484 0.375

16 0.495 0.531 0.539 0.570 0.594 0.687
32 0.506 0.520 0.566 0.695 0.828 0.812

Fourth MSB

Table 2: GnuTLS success probabilities for recovering the four MSBs
of P ∗

15.

(padding_length + 1) before the padding is checked for
correctness. This is the same approach as taken in GnuTLS,
potentially rendering the code vulnerable to an attack recov-
ering a single byte of plaintext per block. The sanity check
performed at the beginning of the decryption code is also
problematic, since it leaves plaintext->len unmodified if
the check fails, meaning that MAC verification may take longer
than when the check passes.

PolarSSL: We also examined the PolarSSL9 implementation
of TLS. The code10 behaves in much the same way as OpenSSL,
setting a variable padlen to 0 if the padding check fails, and
then verifying the MAC on a record stripped of padlen bytes.
This would render it vulnerable to the attacks described in Sec-
tion 4.

org/pub/mozilla.org/security/nss/releases/NSS_3_13_
6_RTM/src/.

9polarssl.org/
10We worked with version 1.1.4 available at polarssl.org/trac/

browser/trunk/library/ssl_tls.c.
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In fact, this implementation has other problems too. The
code does not sanity check padlen before running the padding
check, meaning that out-of-bounds comparisons may be made
if the value of padlen exceeds the plaintext length. It does
sanity check padlen after the padding check, checking that
the plaintext is big enough to contain both the expected amount
of padding and the MAC tag. However, it does not perform
any MAC check if this sanity check fails, but instead exits im-
mediately. This would render the implementation vulnerable
to a simple timing-based distinguishing attack as follows: M0

consists of 256 copies of 0xFF, while M1 consists of 255 ar-
bitrary bytes followed by 0x00; as in the attack of Section 3,
the encrypted version C of one of these is received; the attacker
truncates C so that the underlying plaintext has 256 bytes; if
the message was M0, then the padding is good, but the post-
padding sanity check fails and no MAC computation is per-
formed; if the message was M1, then the padding is also good,
but now the post-padding sanity check passes and a MAC com-
putation is performed. This attack produces a larger timing dif-
ference than our previous distinguishing attack and illustrates
the role that careful sanity checking plays in preventing attacks.

However, none of these attacks would work in practice, since
in its default configuration, PolarSSL does not send any TLS
alert messages when decryption errors are encountered. This
means that PolarSSL is not RFC-compliant in this aspect, since
such alerts are a required part of TLS implementations.

yaSSL: The yaSSL11 embedded SSL library, CyaSSL, is tar-
getted at embedded and real-time operating system environ-
ments. It appears to have rather few known vulnerabilities, with
only 5 being reported in the CVE database12 since 2005. The
CyaSSL code13 does not perform proper padding checks, but
instead just examines the last byte of plaintext and uses this to
determine how many bytes to remove. This can be seen in the
following CyaSSL code extract:

if (ssl->specs.cipher_type == block) {
if (ssl->options.tls1_1)

ivExtra = ssl->specs.block_size;
pad = *(input + idx + msgSz - ivExtra - 1);
padByte = 1;
}

dataSz = msgSz - ivExtra - digestSz - pad - padByte;
if (dataSz < 0) {
CYASSL_MSG("App data buffer error, malicious input?");
return BUFFER_ERROR;
}

This approach renders the code vulnerable to the old attack
from [26] which recovers one byte of plaintext per block. This
was the only implementation that we found that still contains
this basic flaw. Note also that the sanity checking represented
by the last 3 lines of code above would render the code vulnera-
ble to other plaintext recovery attacks even if the padding check
was done properly, since it exits the code without performing a
MAC check if the tested condition (which depends on the byte
pad extracted from the plaintext) is violated.

11yassl.com/yaSSL/Home.html
12www.cvedetails.com/vulnerability-list/vendor_

id-3485/Yassl.html
13We worked with version 2.3.0 available at yassl.com/yaSSL/

Source/output/src/internal.c.html.

Java: We have examined the BouncyCastle14 and OpenJDK15

Java implementations of TLS.
The BouncyCastle code does careful sanity checking of

the padding length (as indicated by the last byte of plain-
text) but treats the padding as having length 1 if the padding
format, when checked, is found to be incorrect (a variable
paddingsize is set to 0, but then the plaintext size is
reduced by an amount paddingsize+minLength where
minLength is set to be 1 larger than the MAC tag size). This
deviates slightly from the recommendation of the RFCs to treat
the padding as having length zero, but still allows our attacks in
Sections 3 and 4 to be applied (for Case 3 of the main plaintext
recovery attack in Section 4, MAC verification ends up being
performed on a 56-byte message, but this will still involve 5
evaluations of the compression function for SHA-1).

The OpenJDK code appears follow the recommendation of
the RFCs in treating the padding as having zero length if the
padding format, when checked, is found to be incorrect. This
is because this case is trapped by exception handling, during
which the variable defining the plaintext length is not changed.
This potentially renders it vulnerable to our attacks in Sections
3 and 4.

Other implementations: There are further open-source and
many closed-source implementations of (D)TLS. We have not
conducted any further testing to see if these are vulnerable to
any of our attacks. However, we expect that any RFC-compliant
implementation will be vulnerable. We also expect that all im-
plementations will be vulnerable to simple variants of our at-
tacks, unless the implementers have taken great care to ensure
that the decryption processing time is uniform, or nearly so.
Our experiences in investigating open-source implementations
suggests this is unlikely.

7 Countermeasures

Add Random Time Delays: A natural reaction to timing-
based attacks is to add random time delays to the decryption
process to frustrate statistical analysis. In fact, this countermea-
sure is surprisingly ineffective, as we explain next.

Consider our distinguishing attack: this attack involves dis-
tinguishing two distributions X , Y , where X has mean µ and
Y has mean µ+ 4, where we measure time in units of compres-
sion function evaluations. Suppose X , Y both have variance
σ2. Now suppose we add a random delay that is uniformly cho-
sen from the interval [0, T ] to the decryption process. Then we
obtain distributionsX ′, Y ′ with means µ+T/2 and µ+4+T/2
and variance σ2 + T 2/12. Now consider the random variables
VL =

∑L
i=1X

′
i/L and WL =

∑L
i=1 Y

′
i /L obtained from aver-

agingL samples ofX ′, Y ′, respectively. Treating these samples
as being independent, the Central Limit Theorem guarantees

14www.bouncycastle.org/viewcvs/viewcvs.cgi/
java/crypto/src/org/bouncycastle/crypto/tls/
TlsBlockCipher.java?view=markup

15hg.openjdk.java.net/jdk7/l10n/jdk/file/
3598d6eb087c/src/share/classes/sun/security/ssl/
SSLSocketImpl.java and hg.openjdk.java.net/jdk7/
2d/jdk/file/85fe3cd9d6f9/src/share/classes/sun/
security/ssl/CipherBox.java

15



that VL, WL are approximately Normal with means µ + T/2,
µ+4+T/2 and equal variance τ2 = (σ2+T 2/12)/L. Note that
the difference between the means of VL, WL is 4; now, using
standard results about the Normal distribution, it is easy to see
that if 4τ ≤ 4, then the distributions of VL, WL are sufficiently
“tight” about their means that a simple statistical test based on
taking means of L samples will be 90% accurate. Solving for
L, we see that we need

L ≥ σ2 + T 2/12

and it is apparent that the effect of adding the random time de-
lay is to increase the number of samples needed from σ2 to
σ2 + T 2/12. From our experiments for OpenSSL, we estimate
that σ ≈ 10; then taking T = 50 only increases the number of
samples needed for a 90% success rate from 100 to about 300,
at the cost of increasing the average decryption time by 25 com-
pression function evaluations. This does not seem like a good
trade-off between security and performance.

Use RC4: The simplest countermeasure for TLS is to switch
to using the RC4 stream cipher in place of CBC-mode encryp-
tion. However, this is not an option for DTLS. When a stream
cipher is used in TLS, no padding is required. Consequently
none of the attacks in this paper will work. RC4 is widely sup-
ported in implementations of TLS, the same countermeasure
is effective against the BEAST attack, and was fairly widely
adopted in response to BEAST (e.g. by Google and Facebook).
The use of a stream cipher in a MEE construction is well-
supported by theory [20]. There are two potential drawbacks of
making this switch. Firstly, the use of variable length padding
in CBC-mode allows for a modicum of plaintext length hiding,
and this is no longer possible when using a stream cipher. Sec-
ondly, and more importantly, the first bytes of keystream output
by the RC4 generator have certain small biases, and TLS does
not seem to discard these before starting encryption.

Use Authenticated Encryption: Another possibility is to
switch from MEE-TLS-CBC to using a dedicated authenticated
encryption algorithm, such as AES-GCM or AES-CCM which
were standardised for use in TLS in RFCs 5288 [36] and 6655
[24], respectively. In theory, this should obviate all attacks
based on weaknesses in the MEE construction. However, we
cannot rule out implementation errors, and we are not aware
of any detailed analysis of implementations of these algorithms
in (D)TLS for potential side-channels. A further issue is that
authenticated encryption was only added in TLS 1.2, and this
version of TLS is not yet widely supported in implementations.
Finally, the current authenticated encryption algorithms do not
offer any length-hiding facility.

Careful implementation of MEE-TLS-CBC decryption:
Our final option is to encourage more careful implementation
of MEE-TLS-CBC decryption. However, we believe that im-
plementers will find it difficult to do this in a way that eliminates
all significant timing channels (especially for DTLS).

The key requirement is to ensure uniform processing time for
all MEE-TLS-CBC ciphertexts of a given size. That is, the total
processing time should depend only on the ciphertext size, and

not on any characteristics of the underlying plaintext (including
padding). The basic principle to be followed in achieving this
is quite simple: since the major timing differences arise from
MAC processing, implementations should make sure the same
amount of MAC processing is carried out no matter what the
underlying plaintext indicates the message length to be.

However, this simple principle is complicated by the need to
also perform careful sanity checking on the underlying plain-
text whilst avoiding the introduction of yet more timing side-
channels, and to make sure appropriate amounts of MAC pro-
cessing are performed even when these checks fail.

A further complication arises because the number of bytes to
be examined in the padding check depends on the last byte of
the last plaintext block, and so, even if the MAC processing is
made uniform, the running time of the padding check may still
leak a small amount of information about the plaintext. This can
be seen for GnuTLS in Figure 9: notice that the maximum dif-
ference in the running time for the padding check is more than
1000 hardware cycles for this implementation. For example,
then, distinguishing attacks would require a timing resolution
of around 1000 hardware cycles, while a timing resolution of
250 cycles would be sufficient to allow an attack recovering 2
bits of plaintext per block for this implementation.

With these remarks in mind, we now proceed to give a de-
tailed prescription of how to achieve constant-time processing
of MEE-TLS-CBC ciphertexts, incorporating suitable sanity
checking. In what follows, we let plen denote the length (in
bytes) of the plaintext P obtained immediately after CBC-mode
decryption of the ciphertext, padlen denote the last byte of
that plaintext interpreted as an integer between 0 and 255, and
t denote the length of the MAC tags (in bytes). Also, let HDR,
SQN denote the (D)TLS record header and the expected value
of the sequence number for this record. Our recommended pro-
cedure is then as follows:

1. First sanity check the ciphertext: check that its length
in bytes is a multiple of the block-size b and is at least
max{b, t+ 1} (for chained IVs) or b+ max{b, t+ 1} (for
explicit IVs). If these conditions are not met, then return
fatal error.

2. Decrypt the ciphertext to obtain plaintext P ; now plen
will be a multiple of b and at least max{b, t+ 1}.

3. If t+ padlen+ 1 > plen, then the plaintext is not long
enough to contain the padding (as indicated by the last byte
of plaintext) plus a MAC tag. In this case, run a loop as
if there were 256 bytes of padding, with a dummy check
in each iteration. Then let P ′ denote the first plen − t
bytes of P , compute a MAC on SQN||HDR||P ′ and do a
constant-time comparison of the computed MAC with the
last t bytes of P . Return fatal error.

4. Otherwise (when t + padlen + 1 ≤ plen), check the
last padlen + 1 bytes of P to ensure they are all equal
(to the last byte of P ), ensuring that the loop does check
all the bytes (and does not stop as soon as the first mis-
match is detected). If this fails, then run a loop as if there
were 256− padlen− 1 bytes of padding, with a dummy
check in each iteration, and then do a MAC check as in the
previous step. Return fatal error.
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Figure 12: Distribution of timing values (outliers removed) for distin-
guishing attack on OpenSSL TLS, using our decryption procedure.

5. Otherwise (the padding is now correctly formatted) run a
loop as if there were 256−padlen− 1 bytes of padding,
doing a dummy check in each iteration. Then let P ′ denote
the first plen − padlen − 1 − t bytes of P , and let T
denote the next t bytes of P (the remainder of P is valid
padding). Run the MAC computation on SQN||HDR||P ′ to
obtain a MAC tag T ′. Then set L1 = 13 + plen − t,
L2 = 13 + plen − padlen − 1 − t, and perform an
additional dL1−55

64 e−d
L2−55

64 eMAC compression function
evaluations (on dummy data). Finally, do a constant-time
comparison of T and T ′. If these are equal, then return P ′.
Otherwise, return fatal error.

When implementing the above procedure, it would be tempt-
ing to omit seemingly unnecessary computations that are per-
formed, for example when t + padlen + 1 > plen. How-
ever, these are needed to prevent other timing side-channels like
those reported in [1] for the GnuTLS implementation of DTLS.
Notice also that the dummy computations performed in the last
step are compression function evaluations and not full MAC
computations. These give a MAC computation time that is the
same irrespective of how much padding is removed (and equal
to that carried out in earlier steps). Finally, note that some ad-
justments to this procedure would be needed when SHA-384 is
used as the hash function in HMAC: SHA-384 operates on 128-
byte blocks and uses a 16-byte encoding for message length.

We have implemented the above procedure by modify-
ing OpenSSL version 1.0.1, the same version used for our
attacks. We modified the code in files ssl/s3_pkt.c
and ssl/t1_enc.c to perform the required sanity checks,
dummy padding checks, and dummy MAC compression func-
tion evaluations. In ssl/s3_pkt.c, we make a single call
to OpenSSL’s SHA1_Update function using a message size
that will invoke the required number of dummy MAC compres-
sion function evaluations. Our call to SHA1_Update happens
before OpenSSL’s actual MAC calculation and comparison op-
erations.

We then ran our distinguishing attack from Section 3 against
the modified OpenSSL code. Each packet in the attack passes
the padding check, but fails MAC verification, causing the
server to close the TLS session and send an encrypted alert
message. Figure 12 shows the distribution of timing values (in
hardware cycles) after implementing our procedure. This fig-
ure should be compared with Figure 2: visual inspection alone
shows that the timing difference is substantially reduced. In

fact, the separation between the medians of the two distribu-
tions is reduced from about 8500 to about 1100 hardware cycles
(from around 2.5µs to 0.32µs). In turn, this small separation
means that 128 sessions are needed to achieve a distinguish-
ing success probability of 0.68, whereas, prior to our modifica-
tions, just 1 session was enough to give a success probability
of 0.756. For the plaintext recovery attack, the adversary will
have access to timing differences roughly one quarter of this,
i.e. roughly 80ns on our hardware. Notice also that the two
distributions are reversed compared to Figure 2, i.e. processing
0xFF packets now takes longer, on average, than for 0x00 pack-
ets. We believe that this is caused by overhead introduced by
the SHA1_Update function call that occurs for 0xFF packets
but not 0x00 packets.

To achieve further reductions in timing difference would re-
quire a more sophisticated “constant time” programming ap-
proach. The OpenSSL patch addressing the attacks in this pa-
per provides an exemplar of how to do this. The complex-
ity of the OpenSSL patch is notable, with around 500 lines of
new ‘C’ code being required. For further discussion and expla-
nation, see www.imperialviolet.org/2013/02/04/
luckythirteen.html.

8 Discussion

We have demonstrated a variety of attacks against implemen-
tations of (D)TLS. We reiterate that the attacks are ciphertext-
only, and so can be carried out by the standard MITM attacker,
without a chosen-plaintext capability. The attacks that are pos-
sible depend crucially on low-level implementation details, as
well as factors such as the relationship between the MAC tag
size t and the block size b. All implementations we examined
were vulnerable to one or more attacks.

For TLS, we need a multi-session attack, with, in some
cases, many sessions. This limits the practicality of the attacks,
but note that they be further improved using standard techniques
such as language models and sequential estimation. They can
also be enhanced in a BEAST-style attack to enable efficient
recovery of HTTP cookies. The timing differences we must de-
tect are close to or below the levels of jitter one typically finds in
real networks. In particular, our attacker needs to be positioned
relatively close (in terms of network hops) to the machine be-
ing attacked. Still, the attacks should be considered as a realistic
threat to TLS, and we have described a range of suitable coun-
termeasures. The attacks are much more serious for DTLS, be-
cause of this protocol’s tolerance of errors and because of the
availability of timing amplification techniques from [1]. Very
careful implementation of the MEE-TLS-CBC decryption al-
gorithm is needed to thwart these amplification techniques. In
view of this, we highly recommend the use of a suitable au-
thenticated encryption algorithm in preference to CBC-mode
for DTLS. The contrast between the security of TLS and DTLS
reaffirms one of the main messages from [1].

More generally, our attacks illustrate the difficulty of imple-
menting MEE securely. Similar issues were identified for MEE
configurations of IPsec in [8]. We encourage protocol design-
ers in general, and the IETF TLS working group in particular,
to move away from using MEE. None of the attacks on TLS
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presented here would have been possible with an Encrypt-then-
MAC approach, for example. A more realistic solution for TLS
is to move as quickly as possible to TLS 1.2 and adopt its au-
thenticated encryption algorithms.
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