
Technical Report IR-CS-73

Memory Errors:
The Past, the Present, and the Future
Victor van der Veen†, Nitish dutt-Sharma†, Lorenzo Cavallaro†,∗ Herbert Bos†

†The Network Institute, VU University Amsterdam
∗Royal Holloway, University of London

Abstract—Memory error exploitations have been around for
over 25 years and still rank among the top 3 most dangerous
software errors. Why haven’t we been able to stop them? Given
the host of security measures on modern machines, are we less
vulnerable than before, and can we expect to eradicate memory
error problems in the near future? In this paper, we present a
quarter century worth of memory errors: attacks, defenses, and
statistics. A historical overview provides insight in past trends and
developments, while an investigation of real-world vulnerabilities
and exploits allows us to speculate on the significance of memory
errors in the foreseeable future.

I. INTRODUCTION

Memory errors in C and C++ programs are among the
oldest classes of software vulnerabilities. To date, the research
community has proposed and developed a number of different
approaches to eradicate or mitigate memory errors and their
exploitation. They range from safe languages that remove
the vulnerabilities entirely [1], [2], to bounds checkers that
perform runtime checks for out-of-bounds accesses [3], [4],
[5], [6]. They also include lightweight countermeasures that
prevent certain memory locations to be overwritten [7], [8],
detect code injections at early stages [9] or prevent attackers
from finding [10], [11], using [12], [13], or executing [14],
[15] injected code.

Despite more than two decades of independent, academic,
and industry-related research, such flaws still undermine the
security of our systems. Even if we consider only classic
buffer overflows, this class of memory errors has been lodged
in the top-3 of the CWE SANS top 25 most dangerous
software errors for years [16]. Experience shows that attackers,
motivated by profit rather than fun [17] have been effective
at finding ways to circumvent protective measures [18], [19].
Many attacks today start with a memory corruption that
provides an initial foothold for further infection.

Even so, it is unclear how much of a threat these attacks
remain if all our defenses are up. In two separate discussions
among PC members in two of 2011’s top-tier venues in
security, one expert suggested that the problem is mostly
solved as “dozens of commercial solutions exist” and research
should focus on other problems, while another questioned the
significance of our research efforts, as they clearly “did not
solve the problem”. So which is it? The question of whether
or not memory errors remain a significant threat in need of

renewed research efforts is important and the main motivation
behind our work.

To answer it, we study the memory error arms-race and its
evolution in detail. Our study strives to be both comprehensive
and succinct to allow for a quick but precise look-up of specific
vulnerabilities, exploitation techniques or countermeasures. It
consolidates our knowledge about memory corruption to help
the community focus on the most important problems. To
understand whether memory errors remain a threat in the
foreseeable future, we back up our investigation with an
analysis of statistics and real-life evidence. While some papers
already provide descriptions of memory error vulnerabilities
and countermeasures [20], we provide the reader with a
comprehensive bird-eye view and analysis on the matter. This
paper aims to be the reference on memory errors.

To this end, we first present (Section II) an overview of
the most important studies on and organizational responses to
memory errors: the first public discussion of buffer overflows
in the 70s, the establishment of CERTs, Bugtraq, and the
main techniques and countermeasures. Our discussion blends
academic, industry and underground-driven research for com-
pleteness, importance, and impact of the information. Like
Miller et al. [21], we use a compact timeline to drive our
discussion, but categorize events in a more structured way
and based on a branched timeline. For instance, we have
not followed the classic division between OS- and compiler-
enforced protections [22]. Conversely, we strive to focus on
memory error-related history and facts. Doing so helps the
reader navigate through the dense and prolific maze of memory
error-related topics (with the ability to zoom in and out) and
contributes to a timeline-driven discussion of the key events.
Branches of the timeline are the topic of detailed discussion
in Sections III–IX.

Second, we present a study of memory errors statistics,
analyzing vulnerabilities and exploit occurrences over the past
15 years (Section X). Interestingly, the data show important
fluctuations in the number of reported memory error vulnera-
bilities. Specifically, vulnerability reports have been dropping
since 2007, even though the number of exploits shows no
such drop. A tentative conclusion, drawn in Section XI, is
that memory errors are unlikely to lose much significance in
the near future and that perhaps it is time adopt a different
mindset—one where malicious computations, often as a result

of successful memory error exploitations, should be expected
to take place eventually—necessitating further work on con-
tainment techniques.

II. A HELICOPTER VIEW OF MEMORY ERROR HISTORY

A memory error occurs when an object accessed using a
pointer expression is different from the one intended. A spatial
memory error occurs when a pointer pointing outside the
bound of its referent is dereferenced. Spatial memory errors
include dereferences of uninitialized pointers and non-pointer
data, and valid pointers used with invalid pointer arithmetic
where buffer overflows represent the classic example. Con-
versely, a temporal memory error occurs when a the program
dereferences a pointer to an object that no longer exists.
Representatives examples are dangling pointers and double
frees, as discussed in Section V. The core history of memory
errors, their exploitations, and main defenses techniques can
be summarized by the branched timeline of Figure 1.

Memory errors were first publicly discussed in 1972 by
the Computer Security Technology Planning Study Panel [23].
However, it was only after more than a decade that this concept
was further developed. On November 2, 1988, the Internet (or
Morris) Worm developed by Robert T. Morris abruptly brought
down the Internet [24]. The Internet Worm exploited a number
of vulnerabilities, including memory error-related ones.

In reaction to this catastrophic breach, the first Computer
Emergency Response Team Coordination Center (CERT/CC)
was then formed [25]. CERT/CC’s main goal was to collect
user reports about vulnerabilities and forward them to vendors,
which would have taken the appropriate decision. In addition,
the Morris Worm helped to bring memory errors to attention
of the research community. Miller et al. published an empirical
study of the reliability of UNIX utilities in which they provide
evidence of how insecure systems were at that time [26].

In response to the lack of useful information about security
vulnerabilities, Scott Chasin started the Bugtraq mailing list in
November 1993. At that time, many considered the CERT/CC
useless, vendors did little to help and administrators had to
wait years before patches for security vulnerabilities were
provided. In contrast, Bugtraq offered practitioners an effective
tool to publicly discuss vulnerabilities and possible fixes,
without relying on vendors’ responsiveness. Such information
could then be used to patch vulnerable systems quickly [27].

In 1995, Thomas Lopatic boosted interest in memory errors
even more, describing a step-by-step exploitation of an error
in the NCSA HTTP daemon [28]. Shortly after, Peiter Zatko
(Mudge) released a private note on how to exploit the now
classic memory errors: stack-based buffer overflows [29]. So
far, nobody really discussed memory error countermeasures,
but after Mudge’s notes and the better-known document by
Elias Levy (Aleph One) on stack smashing [30], discussions
on memory error and protection mechanisms proliferated.

The introduction of the non-executable (NX) stack opened
a new direction in the attack-defense arms-race as the first
countermeasure to address specifically code injection attacks

in stack-based buffer overflows. Alexander Peslyak (Solar De-
signer) released a first implementation of an NX-like system,
StackPatch [31], in April 1997. We discuss NX in Section III.

A few months later, in January 1998, Cowan et al. proposed
placing specific patterns (canaries) between stack variables
and a function’s return address to detect corruptions of the
latter [7]. We discuss canary-based defenses in Section IV.

After the first stack-based countermeasures, researchers
started exploring other areas of the process address space–
specifically the heap. In early 1999, Matt Conover and the
w00w00 security team were the first to describe heap overflow
exploitations [32]. We discuss heap attacks in Section V.

On September 20, 1999, Tymm Twillman introduced format
string attacks. In his Bugtraq post, he describes an exploit
against ProFTPD [33]. Format string exploits became popular
in the next few years and we discuss them in Section VI.

The idea of adding randomness to prevent exploits from
working (e.g., in StackGuard) was brought to a new level
with the introduction of Address Space Layout Randomization
(ASLR) by the PaX Team in July 2001. The first release
randomized only stack locations to hamper exploits from
finding a suitable location in memory to jump to (i.e., to
execute code). Randomization became a hot topic in the
following years and we discuss the various types of ASLR
and its related attacks in Section VII.

Around the same time as the introduction of ASLR, an-
other type of vulnerability, the NULL pointer dereference,
was disclosed in May 2001 [34]. Many assumed that such
dereferences were unlikely to cause more harm than a simple
denial of service attacks. In 2008, however, Mark Dowd
showed that NULL pointer dereferences could be used for
arbitrary code injection as well [35]. We discuss NULL pointer
dereferences in more detail in Section VIII.

III. NON-EXECUTABLE STACK

Stack-based buffer overflows [30] are probably the most
common and well-understood memory error vulnerabilities.
They occur when a stack buffer overflows and overwrites
adjacent memory regions. The most common way to exploit
them is to write past the end of the buffer until the function’s
(saved) return address is reached. The corruption of this code
pointer permits to execute arbitrary code when the function
returns. A non-executable stack prevents such attacks by
marking bytes of the stack as non-executable. Any attempt
to execute the injected code triggers a program crash. The
first non-executable stack countermeasure was proposed by
Alexander Peslyak (Solar Designer) in June 1997 for the Linux
kernel [31], [36], [37] (Figure 2).

Just a few months after introducing the patch, Solar De-
signer himself described a novel attack that allows attackers
to bypass a non-executable stack [38]. Rather than returning
to code located on the stack, the exploit crafts a fake call stack
mainly made of libraries’ function addresses and arguments.
Returning from the vulnerable function has the effect of
diverting the execution to the library function. While any dy-
namically linked (and loaded) library can be the target of such

Fi
g.

1.
G

en
er

al
tim

el
in

e

Fig. 2. Detailed Timeline of Non-eXecutable Stack.

diversion, the attack is often dubbed return-into-libc because
the return address is typically replaced with C library functions
with appropriate arguments (e.g., system("/bin/sh")).

A refinement to Solar Designer’s non-executable stack
patch was quickly proposed to withstand return-into-libc at-
tacks [38]. However, shortly thereafter, Rafal Wojtczuk (Ner-
gal) followed-up circumventing Solar Designer’s refinement
by taking advantage of specific ELF mechanisms (i.e., dy-
namic libraries, likely omnipresent functions, and dynamic
libraries’ function invocation via PLT, the ELF Procedure
Linkage Table) [39].

McDonald [40] built on such results and proposed return-
into-libc as a technique to act as a first stage loader to run the
injected code in a non-executable segment. By returning to
the mprotect system call on UNIX-like operating systems
(OSes) or the VirtualProtect API on Windows-based
OSes, attackers could explicitly set previously unmarked code-
injected data regions as executable. This technique is com-
monly used to bypass generic non-executable data protection.

The PaX Team went far beyond a non-executable stack
solution. With the PaX project released in the year 2000 [41],
they offered a general protection against the execution of code
injected in data segments. PaX prevents code execution on all
data pages and adds additional measures to make return-into-
libc much harder. Under PaX, data pages can be writable, but
not executable, while code pages are marked executable but
not writable. Most current processors have hardware support
for the NX (non-executable) bit and if present, PaX will use it.
In case the processor does not provide hardware support for
making pages executable, PaX can emulate such support in
software. In addition, PaX randomizes the mmap base so that
both the process’ stack and the first library to be loaded will
be mmapped at a random location, effectively the first form
of address space layout randomization (Section VII).

One of the first attacks on PaX’ ASLR was published
by Nergal [39] in December, 2001. He introduced ad-
vanced return-into-libc attacks and exposed several weak-
nesses of the mmap base randomization. He showed that it
is easy to obtain the addresses of libraries and stacks from
/proc/[pid]/maps for a local exploit. Moreover, if the
attacker can provide the payload from I/O pipes rather then
the environment or arguments, then the program is exploitable.
The information about library and stack addresses can also
leak due to format bugs in the program (Section ??).

OpenBSD version 3.3, released in May 2003, featured
various buffer overflow solutions [42], broadly divided in four
categories. The first measure was to cleanse poorly written

pmap modules and enforcing PROT_EXEC as an independent
flag rather than an implied one when a user requests a page
with PROT_READ. This worked for many architectures but
not the popular i386 and PowerPC (because of the way they
execute permissions on a per-page basis, only the stack could
be made non-executable). As a next step OpenBSD enforced
what it termed WˆX (a term that has since found wide
adoption): memory cannot be both writable and executable.
As a third step it made .rodata segments accessible only
with PROT_READ permissions (unlike earlier implementa-
tions that offered PROT_READ|PROT_EXEC permissions).
By providing a separate and read-only .rodata segment,
BSD prevented attackers from looking for data that look like
instructions and executing those. Lastly, OpenBSD adopted
ProPolice (Section IV).

By this time all major OSes were picking up on buffer
overflow solutions. Red Hat introduced new security ena-
hancements to combat buffer overflow attacks in its Enterprise
Linux Version 3 [43]. It featured a new kernel-based security
solution termed ExecShield [44]. Similar to PaX, ExecShield
makes a large part of the virtual memory address space
non-executable, rather than just the stack. ExecShield also
randomizes various parts: stack, location of shared libraries,
start of programs heap, and the text region, with position
independent executables (PIE). Exec Shield also includes a
version of ProPolice, known as Stack Smashing Protector
(SSP) (see Section IV).

In August 2005, Microsoft released Service Pack 2 (SP2)
of the Windows XP OS, which included Data Execution
Protection (DEP)—which prevented code execution from a
programs’ memory [15]. Like PaX, DEP came in two flavors:
an hardware-enforced DEP and a software-enforced one.

Non-executable stack was considered a strong protec-
tion against code-injection attacks and vendors soon backed
up software implementations by hardware support for non-
executable data. However, techniques like return-into-libc soon
showed how non-executable memory can only partially miti-
gate memory errors from being exploited.

In 2005, Krahmer [45] was the first to focus on short
code snippet reuse instead of entire libc functions for exploit
functionality—a direction that reached its zenith in return-
oriented programming. This had another advantage also: the
original return-into-libc attacks worked well on x86 CPUs, but
much less so on 64-bit architecture where function arguments
are passed within registers. In return oriented programming
(ROP), attackers chain Krahmer’s snippets together to create
gadgets that perform predetermined but arbitrary computa-
tions [19]. The chaining works by placing short sequences of
data on the stack that drive the flow of the program whenever
a return instruction executes.

Recently, researchers have proposed ROP-specific counter-
measures, but they have not seen deployment in mainstream
OSes yet. Conversely, low-overhead bounds checkers [5], [6]
and practical taint-tracking [46] may be viable solutions to
defeat control-hijacking attacks.

Fig. 3. Detailed Timeline of Canary-based Protections.

IV. CANARY-BASED PROTECTIONS

Canaries represent a first line of defense to hamper classic
buffer overflow attacks. The idea is to use hard-to-predict
patterns to guard control-flow data. The first such systems,
StackGuard, was announced on December 18, 1997 [47] and
released on January 29, 1999 [7]. When entering a function,
StackGuard places a hard-to-predict pattern—the canary—
adjacent to the function’s return address on the stack. Upon
function termination, it compares the pattern against a copy.
Any discrepancies would likely be caused by buffer overflow
attacks on the return address and lead to program termination.

StackGuard assumed that corruption of the return address
only happens through direct buffer overflows. Unfortunately,
indirect writes may allow one to corrupt a function return
address while guaranteeing the integrity of the canary. Stack-
Shield [48], released later in 1999, tried to address this issue
by focusing on the return address itself. Upon function entry,
the return address is copied to a separate region of the address
space, not reachable from the stack with a straight overflow.
Upon function termination, the (safe) copy of the function’s
return address is checked against the actual function’s return
address. Any mismatch is likely caused by an overflow cor-
rupting the return address on the stack and leads to program
termination.

StackShield shows that in-band signaling should be avoided.
Unfortunately, as we will see in the next Sections, mixing up
user data and program control information is not confined to
the stack: heap overflow (dynamic memory allocator metadata
corruption) and format bug vulnerabilities intermixed (in-
band) user and program control data in very similar ways.

Both StackGuard and StackShield, and their Windows coun-
terparts, have been subject to a slew of evasions, showing
how such defenses are of limited effect against skilled at-
tackers [49], [50]. On Windows, David Litchfield introduced a
novel approach to bypass canary-based protections by corrupt-
ing specific exception handling callback pointers (structured
exception handing, SEH, exploits) used during the program
cleanup phase, when return address corruption is detected [51].

Matt Miller subsequently proposed a solution to protect
against SEH exploitation in 2006 [52] that was adopted by
Microsoft (Windows Server 2008 and Windows Vista SP1).
It organizes exception handlers in a linked list with a special
and well-known terminator that is checked for validity when
exceptions are raised. As SEH corruptions generally make
such terminators unreachable, they are often easy to detect.
Unlike alternative solutions introduced by Microsoft [53], [54],
Miller’s countermeasure is backward compatible with legacy
applications. Besides, if used in conjunction with ASLR, it

Fig. 4. Detailed Timeline of Heap Attacks.

hampers the attackers’ ability to successfully exploit SEH.
Despite their initial weaknesses, canary-based protection

spun off more counter measures. ProPolice, known also as
Stack Smashing Protection (SSP), built on the initial concept
of StackGuard, while addressing its shortcomings [55]. In
particular, it rearranged the layout of variables on the stack
to avoid pointer corruptions by buffer overflows. SSP was
successfully implemented as a low-overhead patch for the
GNU C compiler 3.x and was included in mainstream from
version 4.1. FreeBSD, OpenBSD, DragonflyBSD, and Ubuntu
all use Stack Smashing Protection as a standard protection
against stack overflows.

V. HEAP ATTACKS

When defense mechanisms against stack-based buffer over-
flow exploitations were deployed, heap-based memory errors
were not taken into consideration yet (see Figure 4).

The first heap-based buffer overflow can be traced to Jan-
uary 1998 [56], while a paper published by the underground
research community on heap-based vulnerabilities appeared a
year later [32]. While this represented low hanging fruit (as
more advanced heap-based exploitation techniques were yet to
be disclosed), it nonetheless pointed out that memory errors
were not confined to the stack.

The first description of more advanced heap-based memory
error exploitations was reported by Solar Designer in July,
2000 [57]. The exploit again shows how in-band control in-
formation (heap management metadata) are a bad practice and
should always be avoided, unless integrity checking mecha-
nisms are in place. While a successful heap-based exploitation
(heap management metadata corruption) is harder than its
stack counterpart, the resulting attack is more powerful. In
the end, the attacker obtains on a write-anything-anywhere
primitive that allows him to eventually execute arbitrary code.
Detailed, public disclosure of heap-based exploitations ap-
peared in [58], [59]. Such papers dug into the intricacies of
the System V and GNU C library implementations, providing
the readers with all the information required to write robust
heap-based memory error exploits.

Initially, limited to UNIX environments, Windows OSes
were not immune from heap exploitation either. BlackHat 2002
hosted a presentation by Halvar Flake on the subject [60],
while more advanced UNIX-based heap exploitation tech-
niques where published in August 2003 [61]. It describes how
to obtain write-anything-anywhere primitive and information

leaks, that an attacker can use to exploit a system, even when
ASLR is in use.

More about Windows-based heap exploitations followed
in 2004 [62]. With the introduction of Windows XP SP2,
later that year (August), the heap became non-executable. In
addition, SP2 introduced heap cookies, canary-like protections,
and safe heap management metadata unlinking (whose unsafe
version was responsible for the write-anything-anywhere prim-
itive). Before long, however, the first working exploits against
Microsoft latest updates appeared [63], [64], [65], [66], [67],
[68]. The heap exploitation story continues in 2004 with even
more esoteric exploitation techniques [69], which worked even
against dynamic memory allocator enhanced with integrity
checks placed to detect in-band management data corruptions.

During these frentic years, attackers kept jumping from
UNIX systems to Windows-based OSes at will. With the
release of Windows Vista in January 2007, Microsoft further
hardened the heap against exploitation [70]. However, as
with the UNIX counterpart, there were situations in which
application-specific attacks against the heap could still be
executed [71], [72].

In 2009 and 2010 a report appeared where proof of concept
implementations of almost every scenario described in [73]
were shown in detail [74], [75].. [75] also discusses the
effectiveness of ASLR and a non-executable heap as a defense
mechanism against heap-based exploitations. As expected,
non-executable heaps can be defeated with return-into-libc-
based approaches. Conversely, novel techniques, such as heap
spraying and heap Feng Shui (see Section VII), were intro-
duced to withstand ASLR.

Over time, we can identify three different generations in
heap exploitations: (1) classic overflows to corrupt adjacent
memory locations, (2) heap management metadata corruptions
providing a write-anything-anywhere primitive that allows
for execution of arbitrary code, and (3) heap spraying and
application-specific attacks to bypass heap protection mecha-
nisms. Both the first and second generation of attacks have
been mitigated by hardening dynamic memory allocators.
Examples include the introduction of heap cookies, safe heap
management metadata unlinking, and the addition of consis-
tency checks during allocation and deallocation of heap.

Apart from heap-specific mitigation approaches, dynamic
memory allocators also benefit from alternative defenses
against memory error—e.g., non-executable heap and heap
randomization enabled together to detect arbitrary code ex-
ecution on the heap. Unfortunately, as shown in Section III,
NX protections can be bypassed by return-into-libc or return-
oriented programming attacks. Similarly, exploiting heap-
based memory errors on a randomized heap is nowadays
mostly achieved with heap spraying, a third generation of heap
attacks (see Section VII).

We conclude that, although some special cases allowing for
successful heap exploitations, heap allocators have become re-
silient against most attacks. Application-specific heap exploits
are still sometimes possible [74], [75], but in the end, allocator
implementations have become stable enough to prevent easy

Fig. 5. Detailed Timeline of Format String Attacks.

heap exploits. Research and industry efforts should probably
focus on providing both effective and efficient protection
against heap spraying attacks, as they are responsible for a
large portion of malware infections [18].

VI. FORMAT STRING ATTACKS

Format string vulnerabilities affect the printf family of
functions. These variable arguments functions take usually a
format string as an argument and a series of additional argu-
ments, accordingly to the formatting string. If the format string
is under the control of an attacker (e.g., printf(buf)), the
vulnerability can be exploited. Depending on the formatting
directive used, double words can be directly (e.g., %x) or
indirectly (e.g., %s) retrieved from the vulnerable process
address space. Moreover, the number of bytes written so far
by such functions can also be written at the next address to
be retrieved from the stack (typically), by using the %n or one
of its variants (e.g., %hn, %hhn, %k$n).

Similarly to the second generation of heap attacks, but
unlike classic buffer overflows, format string vulnerabilities
are easily exploited as a write-anything-anywhere primitive,
potentially corrupting the whole address space of a victim pro-
cess. Besides, format bugs also allow to perform arbitrary read
of the whole process address space. Disclosing confidential
data (e.g., cryptographic keys and seeds used by some memory
error countermeasures [7], [10]), executing arbitrary code, and
exploring the whole address space content of a victim process
are all viable possibility.

Format string vulnerabilities were first discovered in 1999
while auditing ProFTPD [33], but it was in the next couple
of years that format strings gained much popularity. A format
string vulnerability against WU-Ftpd was disclosed on Bugtraq
in June 2000 [76], while Tim Newsham was the first to
dissect the intricacies of the attack, describing the fundamental
concepts along with various implications of having such
vulnerability in your code.

One of the most extensive articles on format string vul-
nerabilities was published by Scut of the TESO Team in
September 2001 [77]. Along with detailing conventional for-
mat string exploits he also presented novel hacks to exploit
the vulnerability. Response-based brute force attacks, which
take advantage of the format reply output, and blind brute
force attacks allowed to overcome some of the complex bits
of the attack. Besides, by having a write-anything-anywhere
primitive at hand, Scut showed that it was easy to target
the corruption of alternative control-flow data (e.g., global
offset table entries, dtors). Not only such targets where stored
at well-known locations in memory, but they also allowed

Fig. 6. Detailed Timeline of ASLR Approaches.

to bypass some basic stack-based protections (e.g., canaries,
return address integrity checks) [78].

Protection against format string attacks were proposed
in [79]. FormatGuard, the codename of the approach, uses
static analysis to compare the number of arguments supplied
to printf-like functions with those actually specified by the
function’s format string. Any mismatch would then be consid-
ered as an attack and the process terminated. Unfortunately,
the effectiveness of FormatGuard is bound to the limits of
static analysis, which leaves exploitable loopholes.

Luckily, format string vulnerabilities are generally quite
easy to spot and the fix is often trivial. Moreover, since 2010,
the Windows CRT disables %n directives by default [80].
Similarly, the GNU C library FORTIFY_SOURCE patches
provide protection mechanisms, which make format string
exploitations hard. Although the low hanging fruit had been
harvested long ago, the challenge of breaking protection
schemes remains still exciting [81].

VII. ADDRESS SPACE LAYOUT RANDOMIZATION

Memory error exploitations usually require an intimate
knowledge of the vulnerable process address space to succeed.
In particular, attackers must often find suitable addresses to
corrupt or to divert the execution to. Consequently, any attempt
to randomize the memory locations of such objects would
increase the likelihood of resisting to memory error attacks.

The PaX Team proposed the first form of address space
layout randomization (ASLR) in 2001 [41]. ASLR can be sum-
marized succinctly as to introduce randomness in the address
space layout of userspace processes. Such a randomness would
make a class of exploits fail with a quantifiable probability and
would also allow their detection as failed attempts will most
likely crash the vulnerable process.

This section details how ASLR works and what ASLR-
related events occurred after its first introduction (Figure 6).

PaX-designed ASLR underwent many improvements over
the time. The year 2001 was definitely the most prolific for the
team. The first PaX-devised ASLR implementation provided
support for mmap base randomization (July). When random-
ized mmap base is enabled, dynamically linked code (e.g.,
shared objects) are mapped at a different, randomly selected
offset each time a program starts. This causes dynamically-
linked library functions to be located at different addresses,
which makes makes return-int-libc attacks difficult. Stack-
based randomization followed quickly in August 2011. While

code injection per-se is not avoided by stack-based random-
ization, finding the injected code becomes hard. Position-
independent executable (PIE) randomization were proposed
in the same month. PIE binaries are similar in spirit to
dynamic shared objects. That allows to load PIE binaries
at arbitrary addresses, which reduces the risk of performing
successful return-into-plt or more generic return-oriented pro-
gramming attacks. As stack-based buffer overflows and code
injection attacks in the kernel were becoming popular, the
PaX Team proposed a kernel stack randomization in October
2002. Finally, similar to the way the mmap base address was
randomized to avoid return-into-libc attacks, the PaX Team
released a patch to randomize the heap of processes.

The PaX project was first released as a series of patches
for the Linux kernel, but it was OpenBSD the first to in-
clude such concepts in its mainstream kernel [14]. How-
ever, the OpenBSD team independently conceived its own
exploit mitigation techniques, including simple stack random-
ization [82], stack-smashing protection (SSP), non-executable
memory, dubbed as WˆX [42] and mmap base address ran-
domization [83]. However, OpenBSD did not support kernel
stack randomization, as that would have broken the POSIX
standards. To this end, an intense debate between de Raadt and
the PaX Team about who first proposed randomization-based
protections, non-executable memory and whether standards
were broken or not, was started shortly thereafter in April
2003 [84], [85], [86], [87].

Red Hat ExecShield added support for ASLR in August,
2004 [43]. That latest version supports stack, mmap base
address and heap randomization. It also supports PIE binaries,
providing a comprehensive kernel-enforced randomization.

The Linux kernel enabled stack and mmap base address
randomization by default since their 2.6.12-rc1 kernel, released
on March 2005 [88]. The first patches for randomization were
released on January 2005 [89], by Arjan van der Ven, who,
at that time, was also working on the Red Hat ExecShield
project. It took until April 2008 to Linux to include heap
and PIE randomization [90]. Although it lacks kernel stack
randomization, Linux supports full ASLR since 2008 [91].

Microsoft added ASLR support to their new Windows
operating system as well. The first Windows version with
stack, heap and library randomization was Windows Vista
Beta 2, released on May 26, 2006 [92]. Shortly after this
release, Ali Rahbar stated in his analysis of Microsoft Win-
dows Vista ASLR that the implementation suffered from the
presence of bugs [93]. In a response, Howard refuted these
accusations [94]. Later, when Windows Vista was officially
released, another analysis of ASLR on Windows Vista was
done by Whitehouse [95]. He concludes that “the protection
offered by ASLR under Windows Vista may not be as robust as
expected”. It is uncertain what happened after this when Win-
dows 7 was released. Although the deficiencies in the ASLR
implementation have been acknowledged by Microsoft, there
is little to find about any follow up. In June, 2010, however,
Alin Rad Pop published a paper discussing the use of ASLR
and DEP in third-party Windows applications. He concludes

that third-party are quite slow in adding ASLR support to
their applications. In June 2010, only Google Chrome and
Adobe Flash Player were using full ASLR protection. Popular
applications like Adobe Reader, Mozilla Firefox and Apple
iTunes did not have full ASLR support when being executed
on the Windows platform [96].

Apple introduced partial ASLR support in the Mac OS X
10.5, dubbed as library randomization [97]. Although stack
and heap protections are supported via non-executable data,
as its name suggests, only library functions are actually
randomized, and full ASLR is not supported yet.

Broadly speaking, only coarse-grained—often kernel-
enforced—forms of ASLR were actually deployed. Such ran-
domization techniques are generally able to randomize the
base address of specific regions of a process address space
(e.g., stack, heap, mmap area). That is, only absolute addresses
are randomized, while relative offsets (e.g., the location of any
two objects) in the library is fixed. An attacker is just left
with retrieving the absolute address of a generic object of the
library of interest: any other object (e.g., library functions used
in return-into-libc attacks) can be reached as an offset from it.

To overcome such limitations, Bhatkar et al. proposed fine-
grained address space randomization (ASR) approaches to
allow for arbitrary fine-grained objects randomization [98],
[11]. They first propose a randomization scheme that, through
binary-rewriting techniques, is able to obfuscate the stack,
mmap and heap base addresses, and the code section layout of
legacy programs. Because it relies on specific information to
be present in the binary, the approach effectiveness is bound
to the accuracy in which such information are available (e.g.,
function randomization relies on the ability to detect function
boundaries) [98]. Conversely, the second approach describes a
source-to-source transformation technique that produces self-
randomizing PIE-like binaries.

Heap spraying attacks (described in the next section) were
instead addressed in August 2009 by Nozzle [99], which
monitors heap utilization and raise an alarm when a high
fraction of the heap region contains suspicious objects. Earlier,
in July 2009, Egele et al. proposed a similar technique that uses
emulation to identify JavaScript strings likely representing
shellcode. By integrating this detector in the browser, they
could successfully detect thousands of infected websites used
to carry out drive-by-download attacks [18].

A. Attacking ASLR

One of the first attacks against ASLR was presented by
Nergal in 2001 [39]. Although the paper mainly focuses on
bypassing non-executable data protections, the second part
addresses PaX randomization. Nergal describes a novel tech-
nique, dubbed return-into-plt, that enables to call directly the
dynamic linker’s symbol resolution procedure, which is used
to obtain the address of the symbol of interest. Such an attack
was however defeated when PaX released PIE.

In 2002, Tyler Durden showed that certain buffer overflow
vulnerabilities could be converted into format string bugs,
which could then be used to leak information about the address

space of the vulnerable process [100]. Such information leaks
would become the de-facto standard for attacks on ASLR.

In 2004, Shacham et al. showed that ASLR implementa-
tions on 32-bit platforms were of limited effectiveness. Due
to architectural constraints, and kernel design decisions and
modus operandi the available entropy is generally limited and
leaves brute forcing attacks as a viable alternative to exploit
ASLR-protected systems [101].

Tilo Müller provides an in-depth discussion about attacks
against ASLR in [102]. He mentions a number of variations
to the popular return-into-libc (e.g., return-into-text, return-
int-bss, return-into-data, return-into-return) and many other
attack types. Some of these techniques, such as return-into-
text or return-into-got, could indeed be useful to bypass non-
executable data protections as well. He concludes that “ASLR
and, therefore, e.g., a standard Linux installation, is still
highly vulnerable against memory manipulation.” Note that
Linux implemented heap-based and PIE-based ASLR only two
months after Müller’s research.

FHM crew and others explored the possibility to use specific
instruction of non-randomized shared libraries. The linux
gate shared library is a virtual dynamically-linked shared
object (VDSO) that bridges user and kernelspace interactions
(i.g., system call invocations) by using fast instructions (e.g.,
sysenter and sysexit), if available on the considered
architecture. Early Linux kernel did not randomize the virtual
address of the linux gate VDSO and that was thus used in
return-into-lib-like attacks [103].

Finally, Fresi-Roglia et al. [104] detail a return-oriented
programming [19] attack able to bypass WˆX and ASLR.
Such an attack chains code snippet of the original executables
and, by copying data from the global offset table, is then able
to compute the base addresses of dynamically linked shared
libraries. Such addresses are later used to build classic return-
into-lib attacks. The attack proposed is estimated to be feasible
on 95.6% binaries for Intel x86 architectures (61.8% for x86-
64 architectures). This high success rate is caused by the fact
that modern OSes do not adopt or lack PIE (Fresi-Roglia et al.
propose a solution, which is low-overhead, does not require
recompilation, and represents a valid alternative to PIE)

A different class of attacks against ASLR protection, called
heap spraying, was described first in October 2004 when
SkyLined published a number of heap spraying attacks against
Internet Explorer [105], [106], [107]. By populating the heap
with a large number of objects containing attacker-provided
code, it is possible to increase the likelihood of success in
referencing (and executing) such code.

Heap spraying is mostly used to exploit cross-platform
browser vulnerabilities. Since scripting languages like
JavaScript and ActionScript are executed on the client’s ma-
chine (typically in web browser clients), heap spraying has
become the main infection vector of end-user hosts. The
technique has been improved in March 2007 [108], where a
novel and reliable technique for precise manipulation of the
browser heap layout using specific sequences of JavaScript
allocations is presented.

Dion Blazakis went far beyond heap spraying by describ-
ing pointer inference and JIT spraying techniques [109]. He
admits that “[...] these techniques leverage the attack surface
exposed by the advanced script interpreters or virtual machines
commonly accessible within the browser. The first technique,
pointer inference, is used to find the memory address of a
string of shellcode within the ActionScript interpreter despite
ASLR. The second technique, JIT spraying, is used to write
shellcode to executable memory by leveraging predictable
behaviors of the ActionScript JIT compiler bypassing DEP”.

Wei et al. followed-up and proposed dynamic code genera-
tion (DCG) spraying, a generalized and improved JIT spraying
technique [110]. (Un)luckily DCG suffers from the fact that
memory pages, which are about to contain dynamically-
generated code, have to marked as being writable and exe-
cutable. However, Wei et al. found that all DCG implementa-
tions (i.e., Java, Javascript, Flash, .Net, Silverlight) are vulner-
able against DCG spraying attacks. A new defense mechanism
to withstand such attacks were eventually proposed [110].

Finally, return-oriented programming, introduced in Sec-
tion III, may also be used to bypass non-PIE ASLR-protected
binaries (as shown by [104]. In fact, for large binaries, the
likelihood of finding enough useful code snippets to build a
practical attack is non-negligible [111].

B. ASLR Effectiveness

Despite the persistent arms-race, address space (layout)
randomization techniques have shown their effectiveness in
providing protection against a broad class of memory errors,
not limiting themselves to just buffer overflows.

The underlying idea is inspired by nature, where diversity
plays a fundamental role for the survivability of the species.
Roughly speaking, the key observation here is that memory
error exploitations generally rely on finding suitable memory
addresses to be used as part of the attack. As a consequence,
forms of process address space diversification, such as ASLR,
generally aim at randomizing such memory addresses to make
them unpredictable to an attacker.

Unfortunately, the main drawback of ASLR is its probabilis-
tic nature. By relying on keeping secrets, ASLR is vulnerable
to information leakage. Likewise, architectural constraints
limit the degree of address space randomization and, finally,
common forms of ASLR randomize only the base addresses
of a process memory segments, leaving exploitable loopholes.

Ever since its first implementation in mid 2001, a number
of ASLR evasions techniques were discussed by both the
academia and underground community. While the first attacks
had focused on targeting memory regions not protected by
randomization yet, the remaining could be divided in two
categories: brute force [101] and information leakage [104],
[112].

Return-oriented programming attacks could be mitigated by
moving to 64-bit architectures and full ASLR, including the
support of PIE binaries (given that no other information about
the vulnerable process address space leak). Unfortunately, very

Fig. 7. Detailed timeline for NULL Pointer Dereferences

few binaries are found to be PIE, to date, which leaves return-
oriented programming techniques a viable vector to exploit
non-executable and ASLR-protected systems [104].

Other diversity-inspired deterministic solutions have re-
cently been explored by the research community [113], [114],
[115]. Such approaches combine diversification with replica-
tion and, depending on the underlying technique, they are
able to deterministically withstand code and data pointer
corruptions. Unfortunately, the high overhead imposed along
with subtle behavior inconsistencies that may arise, leave such
approaches confined to research environments.

VIII. NULL POINTER DEREFERENCE

NULL pointers are, by convention, pointers that do not
have any actual referent. They are generally used to represent
specific conditions, e.g., lists termination and string termina-
tions, in low-level programming languages, like C. Besides,
OSes typically do not map the first page of a process virtual
address space to catch NULL pointer dereference attempts. In
fact, NULL pointer dereference vulnerabilities are generally
extremely difficult—if not impossible—to exploit. Barnaby
Jack presented some research on NULL pointer dereference
exploitation for specific architectures [116], while Matt Miller
(skape) and Ken Johnson (Skywing) explored such exploita-
tions on the Windows operating systems [117].

It is Mark Dowd, however, that presented a top-notch
research to exploit a NULL pointer vulnerability against
the Adobe Flash Player [118]. By leveraging functionality
provided by the ActionScript virtual machine, Mark is the
first to point out that such vulnerabilities will unlikely be
exploitable by conventional-only techniques. Conversely, his
findings show that classic attack techniques combined with
application-specific attacks are successful in producing reliable
likely cross-platform exploits [35].

A large number of such vulnerabilities have been reported
more recentlyIn June, 2009 Julien Tinnes and Tavis Or-
mandy [119] described a technique to evade a check per-
formed by the Linux Security Module (LSM) hooks sub-
system. The relevant code in security/capability.c
prevents VM pages below mmap_min_addr to be mem-
ory mapped (to hamper classic NULL pointer dereference
attacks). Unfortunately, processes with specific capabilities
(i.e., CAP_SYS_RAWIO) could bypass this security check.

Similarly, Brad Spengler described a Red Hat Linux-based
exploit that allowed specific SELinux domains to map the
zeroth page [120]. The exploit is interesting in many aspects,
but first and foremost, because it points out how compiler

optimizations may, once again, be responsible of WYSIN-
WYX events [121] and open unexpected loopholes [122].
Patches were provided, but ways to bypass them still existed,
as reported by Dan Walsh [123].

Finally, August 2009 saw Julien Tinnes and Tavis Ormandy
once again leading actors describing another NULL pointer
vulnerability concerning the way the Linux kernel deals with
unavailable operations for some network protocols [124].

Undoubtedly, security practitioners termed 2009 as the year
of kernel NULL pointer dereference [125].

IX. ALTERNATIVE DEFENSES (AND ATTACKS)

In this section, we quickly introduce a number of memory
error-related vulnerabilities, attacks, and defenses that do not
easily blend into the discussion faced earlier.

To start with, libsafe was one among the first buffer
overflow prevention mechanisms proposed in 2001 [126]. The
underlying idea is to determine upper bounds on the buffers
size automatically. The assumption made by libsafe is
simple: local buffers should never extend beyond the end
of the current stack frame. Of course, such a computation
can only be made at run-time, right after the execution
of the function in which the buffer is accessed starts. The
library is dynamically loaded and potentially vulnerable library
functions are replaced by libsafe-provided ones. Although
libsafe does not offer a comprehensive solution to memory
errors, it detects return address corruptions, retrofits existing
binaries, and has a low-overhead impact on the performance.

A successful memory error exploitation usually requires to
corrupt code or data pointers of interest1. PointGuard aims at
protecting all pointers from corruptions [128]. The underlying
idea focuses on encrypting pointer values in memory and
decrypting them right before use by the CPU. Unfortunately,
PointGuard is vulnerable to information leak (via format
string) and partial overwrite attacks [22].

Code-injection attacks aim to exploit memory error vulner-
abilities to hijack a process execution flow to the attacker-
injected code. Instruction set randomization (ISR) is a tech-
nique aimed at withstanding code injection attacks [13], [12].
Similar in principle to PointGuard, ISR-based approaches
encrypt a program instructions with randomly a per-process
randomly generated key and decrypt them right before execu-
tion by the CPU. As we have discussed earlier, other attack
vectors (e.g., return-into-libc or the more generalized return-
oriented programming) can easily bypass such defenses.

A. Integer Vulnerabilities

Integer overflows are not memory errors by them-
selves [129]. However, incorrect integer handling can trigger
memory errors, such as buffer overflows or write-anything-
anywhere-like primitive, depending on the involved inte-
ger misinterpretation. The issue arises because of integer
representations on computers. For instance, on IA-32 an
unsigned int type is usually 4 bytes wide, while 2 bytes

1It has been shown, however, that non-control data attacks are as powerful
and dangerous as their control-hijacking counterparts [127].

are needed for an unsigned short int type. If the
value assigned to an unsigned short int variable is
216 − 1− k, that is far from its maximum value of k, adding
k + 1 will cause the variable to wrap around reaching 0 (a
similar reasoning can be made for underflow). This can be used
to bypass security checks or write to arbitrary memory regions,
especially when unsigned int variables are involved2.

A more subtle way to exploit integer overflows is caused by
the fact that two different representations are used depending
whether the considered integer is unsigned or signed. If
improperly considered, such an idiosyncrasy could easily lead
to buffer overflows even when bounds check conditions where
enforced in the first place [6].

Integer overflows were first discussed in the public during
Black Hat 2002 [130]. In the same year, Phrack published two
articles on integer vulnerabilities as well. The first one focused
on basic integer overflows and discussed different types of
integer vulnerability and how they could exploited [129].
Conversely, the second article proposes a compiler-enforced
protection mechanism against integer overflows [131].

Over time, several other attempts of protection against
integer vulnerabilities have been researched. They range from
static type checkers [132] and symbolic execution-based ap-
proaches [133], to safe integer arithmetic libraries, which
provide safe memory allocation and array offset computations
for C [134] and C++ programs [135], [136], [137], but leave
all the burden on the programmer’s shoulders.

Limited integer overflow defense was also introduced in the
Linux kernel by Brad Spengler [138], but, despite all such
efforts, integer errors are still being leveraged to exploit the
memory errors such vulnerabilities expose.

X. DATA ANALYSIS

The previous Sections aimed at providing an as comprehen-
sive as possible view of the most important events and facts
about memory errors. This Section aims at analyzing real-life
evidence as well as statistics about vulnerability and exploit
reports to draw a final speculative conclusion about memory
errors: are we going to be living with them for a while, or are
memory errors an heritage of the past?

We looked up occurrences of vulnerabilities and exploits
over the past 15 years by examining the Common Vulnerabil-
ities and Exposures (CVE) and ExploitDB databases.

Figure 8 shows that memory error vulnerabilities have
grown almost linearly between 1998 and 2007 and that they
started to attract attackers in 2003, where we witness a linear
growth in the number of memory error exploits as well. The
downward trend in discovered vulnerabilities that started in
2007 is remarkable. Instead of a linear growth, it seems that the
number of found vulnerabilities is now reversed. To understand
the reasons, Figure 9 reports the total number of vulnerabilities
as well as the data depicted by Figure 8.

2In fact, unsigned int variables are 32 bits wide and so they can be
used to address the whole default user space process address space on IA-32
machines.

 0

 60

 120

 180

 240

1996 1998 2000 2002 2004 2006 2008 2010
 0

 60

 120

 180

 240

#
V

u
ln

e
ra

b
ili

ti
e

s

#
E

x
p

lo
it
s

Time

Memory Corruption Vulnerabilities/Exploits

Memory Corruption Vulnerablities
Memory Corruption Exploits

Fig. 8. Memory Error Vulnerabilities and Exploits.

 0

 500

 1000

 1500

 2000

1996 1998 2000 2002 2004 2006 2008 2010
 0

 500

 1000

 1500

 2000

#
V

u
ln

e
ra

b
ili

ti
e

s

#
E

x
p

lo
it
s

Time

Memory Corruptions VS Total

Memory Corruption Vulnerablities
Total Vulnerabilities

Memory Corruption Exploits
Total Exploits

Fig. 9. Memory Error Vulnerabilities and Exploits compared to Totals.

Figure 9 shows that the drop in memory error vulnerability
reports is probably caused by a similar drop in the total
number of vulnerability reported. We will try to clarify this
downward trend shortly, but first let us have a look at the
reasons that may have caused the immense growth of vulner-
abilities started in 2003.

A. The Rise. . .

Interestingly, the spike in the number of vulnerabilities
started in 2003 might have been caused by the number of
web vulnerabilities that popped up during that period. An
independent research by Christey and Martin in 2007 seem to
support such a claim [139]. Figure 10 augments the previous
with web vulnerabilities (i.e., XSS, SQL injection, and PHP-
related) and the corresponding exploits.

Figure 10 points out that web vulnerabilities showed up
in 2003 and indeed outgrew the number of buffer overflow
vulnerabilities rapidly. Probably due to its simplicity, the
number of working web exploits also transcended the number
of buffer overflow exploits in 2005.

 0

 500

 1000

 1500

 2000

1996 1998 2000 2002 2004 2006 2008 2010
 0

 500

 1000

 1500

 2000

#
V

u
ln

e
ra

b
ili

ti
e

s

#
E

x
p

lo
it
s

Time

Memory Corruptions and XSS/SQL/PHP VS Total

Memory Corruption Vulnerablities
XSS/SQL/PHP Vulnerabilities

Total Vulnerabilities
Memory Corruption Exploits

XSS/SQL/PHP Exploits
Total Exploits

Fig. 10. Memory Error, XSS, SQL, and PHP Vulnerabilities and Exploits
compared to Totals.

It seems therefore obvious to conclude that the extreme
growth in vulnerability reports that started in 2003 was caused
by the fast growing number of web vulnerabilities. Shortly
after the dot-com bubble in 2001, when the web 2.0 started
to kick-in, novel web developing technique were not ade-
quately tested against possible exploitation techniques. This
is probably due to the high rate at which new features were
constantly asked by end customers: applications had to be
deployed quickly in order to keep up with competitors. This
race apparently left no time to developers to more carefully
perform security audits of the code produced.

B. . . . And the Fall

Figures 9 and 10 show a similar trend in the total number
of vulnerabilities over the years 2006-2010, as reported inde-
pendently in [21] as well. Memory errors were also affected
by that drop and they start a downward trend in early 2007,
indeed. Despite these drops, generic exploits and memory
error-specific exploits kept growing linearly each month.

The reasons of such downward state could be manifold. For
instance, it could be that less bugs are found in source code,
less bugs are reported, or, instead, a combination thereof.

Assuming that the software industry is still growing and that
hence the number of lines of code (LoC) written each month
still increases, it is hard to back the first statement up. More
LoC naturally results in more bugs: software reliability studies
have shown that executable code may contain up to 75 bugs per
1000 LoC [140], [141]. CVEs look at vulnerabilities and does
not generally make a difference between plain vulnerabilities
and vulnerabilities that could be exploited. Therefore, memory
error mitigation techniques could not have contributed to the
drop in (reported) vulnerabilities. Most defense mechanisms
that we have discussed earlier do not result in safer LoC; they
only prevent exploitation of poorly written code.

However, if we look more carefully at the data provided
by analyzing CVE entries, as depicted in Figure 10, we see
that the number of web vulnerabilities follows the same trend

as that of the total number of vulnerabilities. Hence, we think
that both the exponential growth (2003–2007) and drop (2007–
2010) in vulnerabilities is correlated to fundamental changes in
web development. We believe that companies, and especially
their web developers, started to take web programming more
seriously in 2007. For one thing, developers probably became
more aware of how easy things like SQL injections or XSS
could be accomplished, which may have raised web security
concerns, resulting in better code written.

The year 2007 could also have been the period when de-
velopers switched from their home-made content management
systems, managed and hacked together by a single person, to
full-fledged PHP frameworks (e.g., Joomla!, Zend), which
are updated on a regular basis. Such a switch would also result
in a drop of vulnerabilities being reported. Something similar
could have happened to servers codebase (e.g., Apache).
For instance, if at some point Apache’s default PHP inter-
preter underwent a design change, the number of Apache-
reported—but not necessarily related to its core codebase—
vulnerabilities could have dropped significantly.

To substantiate the second statement (i.e., less bugs are
reported), we need to have a more social view on the matter.
There could be a number of reasons why people stopped
reporting bugs to the community.

A first reason could be dubbed “The Great Recession”. In
the years before 2007, security experts were getting paid to
look for vulnerabilities. Things changed when companies ran
out of money: bug hunters were fired or placed in a different
position to do some “real” work instead, resulting in less
people searching for vulnerabilities.

A second reason could advocate for a “no full disclosure
due to bounties”. Ten years ago, the discovery of a zero-day
vulnerability would have likely led to a patch, first, and a
correspondence with the application authors/vendor about the
fix, possibly via a public mailing list. Today, large companies,
like Google and Mozilla, give out rewards to bug hunters, as
long as they do not go public with the vulnerability. There is
now real money to be paid for zero-day vulnerabilities.

In contrast, a third explanation could be rooted in having
“less fun”. Developers who used to spend their spare time
on finding bugs and hacking into programs, have lost the
fun part of doing this. On the one hand, programs and their
software companies are becoming more professional over
time. They do not like public disclosure about vulnerabilities
concerning their software anymore: it makes them look bad
and they could lose clients with it. On the other hand, new
mitigation techniques may have made it harder for those spare
time hackers to look for bugs. They could possibly find a
vulnerability, but exploiting it and writing a proof-of-concept
would take considerable more time than it used to.

Finally, the “criminal world” may instead be responsible
for such a downward trend. While more and more people
start buying things online and use online banking systems, it
becomes increasingly more interesting for criminals to move
their activities to the Internet as well. Where companies send
out rewards to finders of vulnerabilities, useful zero-days in

0%

10%

20%

30%

40%

50%

1996 1998 2000 2002 2004 2006 2008 2010
0%

10%

20%

30%

40%

50%

V
u

ln
e

ra
b

ili
ti
e

s

E
x
p

lo
it
s

Time

Memory Corruption as a Percentage of Total Reported

% Vulnerabilities
% Exploits

Fig. 11. Memory Error Vulnerabilities and Exploits (% of Totals).

the underground market would yield even more. Chances that
issues found by criminals are reported as CVE are negligible.

We believe that the drop in vulnerabilities is caused by both
previous statements. The software industry has become more
mature during the last decade, which led to more awareness
about what potential damage a vulnerability could cause.
Web developers or their audits switched to more professional
platforms instead of their home-brew frameworks and elimi-
nated easy vulnerabilities by simply writing better code. This
professionalization of the software industry also contributed
to the fact that bugs are no longer reported to the public,
but being sold to either the program’s owners or the criminal
underground. Full Disclosure [142] as it was meant to be, is
being avoided. As an example for this shift in behavior, re-
searchers got threatened for finding a vulnerability [143]. This
was also recently backed up by Lemos and a 2010-survey that
has looked at the relative trustworthiness and responsiveness
of various organizations that buy vulnerabilities [144], [145].

C. Effectiveness of Deployed Mitigation Techniques

To help us better defining a reasonable final answer on the
matter, we plot in Figure 11 memory error vulnerabilities and
exploits as a percentage on the total numbers reported.

Figure 11 shows the same trend in percentage as that
identified in [21]: memory error-related bugs were a very hot
topic during the years 1996–2004, when more than 20 out of
every 100 bugs were related to memory errors.

To clarify the drop in percentage of memory error vulnera-
bilities and exploits started in 2004, Figure 11 was augmented
with web vulnerabilities and exploits, as shown in Figure 12.

Figure 12 once again shows that the focus of the security
community definitely shifted towards the web when XSS, SQL
injections and PHP-related issues became popular. It seems
fair to conclude that the downward trend of memory error
vulnerabilities is indeed caused by the upward trend of XSS,
SQL, and PHP-related vulnerabilities. The same reasoning
applies to exploits: the usually low technical skill required

0%

15%

30%

45%

60%

75%

1996 1998 2000 2002 2004 2006 2008 2010
0%

15%

30%

45%

60%

75%

V
u

ln
e

ra
b

ili
ti
e

s

E
x
p

lo
it
s

Time

Memory Corruption compared to XSS/SQL/PHP as a Percentage of Total Reported

Memory Corruption Vulnerabilities
Memory corruption Exploits

XSS/SQL/PHP vulns
XSS/SQL/PHP exploits

Fig. 12. Memory Errors Compared to XSS and SQL Injections (% of Totals).

to exploit XSS and SQL issues spiked the number of web
exploits to be almost 3x higher than memory errors.

However, both web vulnerabities and exploits seem to have
become less active over the last two years. This is by far in
clear contrast with the percentage of memory error vulner-
abilities and exploits. These numbers are steady since 2007
and memory error exploits may even increase in popularity in
the near future considering the growth over the first 6 months
of 2010. Not to mention that, besides other popular vectors
(e.g., SPAM and phishing-like attacks), malware infections
are triggered by drive-by-download attacks exploiting memory
errors, even on protected systems [146], [147], [148].

We conclude that memory errors are still a security issue
undermining the safety of our systems. Besides, it is not likely
that they will be vanishing in the next years. It is actually hard
to reason whether mitigation techniques affect the number of
memory error exploits or not. Although the numbers would
probably be worse if none of the such techniques were
deployed, memory error exploits are still alive and contribute
to a significant part of all the exploits. Attackers circumvent
defense mechanisms by applying different techniques, or by
simply exploiting bugs on systems that are not fully protected
yet. Even worse, evidence shows that state-of-the-art detection
techniques fail to protect such vulnerabilities from being
exploited by well-motivated attackers [146], [147], [148].

D. Categorizing Vulnerabilities and Exploits

We furthermore categorized memory error vulnerabilities
and exploits in 6 different classes (based on their CVEs
descriptions): stack-based heap-based, integer issue, NULL
pointer dereference, format string, and other (for whatever
does not fit in the previous categories). Figures 13 and 14 show
such classification for vulnerabilities and exploits, respectively
(the “other” class was left out to avoid noise in the plots).

Figures 13 and 14 allow us to make the following observa-
tions, which may draw a final conclusion. First, format string
vulnerabilities were found all over the place shortly after they
were first discovered. Over the years, however, the number

 0

 40

 80

 120

 160

 200

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

#
V

u
ln

e
ra

b
ili

ti
e
s

Time

Memory Corruption Vulnerabilities Categorized

Stack vulns
Heap vulns

Integer vulns
NULL vulns

Format vulns

Fig. 13. Memory Error Vulnerabilities Categorized.

 0

 16

 32

 48

 64

 80

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

#
E

x
p
lo

it
s

Time

Memory Corruption Exploits Categorized

Stack exploits
Heap exploits

Integer exploits
NULL exploits

Format exploits

Fig. 14. Memory Error Exploits Categorized.

of format string errors dropped to almost zero and it seems
that they are about to get eliminated totally in the near future.
Second, integer vulnerabilities were booming in late 2002, and,
despite a small drop in 2006, they are still out there right now.
Third, despite the large number of NULL pointer dereference
that were found over time, such vulnerabilities do not get
exploited very often. This is probably because exploiting such
vulnerabilities often require application-specific attacks that
are not worth the effort, especially nowadays that memory
errors are more often exploited by cyber-criminals. Last, the
old-fashioned stack and heap memory errors are by far (about
90%) still the most exploited ones, while they counts just for
50% of all the reported vulnerabilities: there is no evidence
that makes us believe this will change in the near future.

XI. CONCLUSION

Despite more than twenty years of research on software
safety, memory errors are still one of the primary threats to the
security of our systems. Not only is this confirmed by statistics,
trends [149], [150], and our study, but it is also supported
by evidence showing that even state-of-the-art detection and
containment techniques fail to protect such vulnerabilities

from being exploited by motivated attackers [146], [147],
[148]. Besides, protecting mobile applications from memory
errors may even be more challenging [151].

Finding alternative mitigation techniques is not an academic
exercise anymore, but a concrete need of industry and society
at large: vendors have recently announced consistent cash
prizes to researchers who will concretely improve on the state-
of-the-art detection and mitigation techniques against memory
error exploitation attacks [152].

However, given the trends in memory error exploitation,
our tentative conclusion is that a mindset is needed where we
assume that code can and will be exploited. In addition to our
efforts on preventing memory corruption, this suggests that we
should pay (even) more attention to the containment of such
attacks.

REFERENCES

[1] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of c,” in USENIX ATC, 2002.

[2] G. C. Necula, J. Condit, M. Harren, S. Mcpeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Trans. on
Progr. Lang. and Syst., vol. 27, 2005.

[3] R. W. M. Jones, P. H. J. Kelly, M. C, and U. Errors, “Backwards-
compatible bounds checking for arrays and pointers in c programs,” in
Third International Workshop on Automated Debugging, 1997.

[4] O. Ruwase and M. Lam, “A practical dynamic buffer overflow detec-
tor,” in Proceedings of NDSS Symposium, Feb. 2004.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
Memory Error Exploits with WIT,” in IEEE S&P, 2008.

[6] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen, “PAriCheck: an efficient pointer arithmetic checker for c
programs,” in AsiaCCS, 2010.

[7] C. Cowan, C. Pu, D. Maier, H. Hintongif, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow Attacks,” in
Proceedings of the 7th USENIX Security Symposium, Jan. 1998.

[8] T. cker Chiueh and F. hau Hsu, “Rad: A compile-time solution to buffer
overflow attacks,” in ICDCS, 2001.

[9] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “Com-
prehensive shellcode detection using runtime heuristics,” in ACSAC,
2010.

[10] P. Team, “Address Space Layout Randomization,” http://pax.grsecurity.
net/docs/aslr.txt, March 2003.

[11] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techniques for
comprehensive protection from memory error exploits,” in USENIX
Security Symposium, August 2005.

[12] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovi, “Random-
ized instruction set emulation,” ACM TISSEC, 2005.

[13] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering Code-
Injection Attacks With Instruction-Set Randomization,” Oct. 2003.

[14] T. de Raadt, “Exploit Mitigation Techniques (in OpenBSD, of course),”
http://www.openbsd.org/papers/ven05-deraadt/, Nov. 2005.

[15] Microsoft, “A detailed description of the Data Execution Prevention
(DEP) feature in Windows XP Service Pack 2, Windows XP Tablet
PC Edition 2005, and Windows Server 2003,” September 2006.

[16] SANS, “CWE/SANS TOP 25 Most Dangerous Software Errors,” http:
//www.sans.org/top25-software-errors/, Jun 2011.

[17] Symantec, “Symantec report on the underground economy,” 2008.
[18] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending

Browsers against Drive-by Downloads: Mitigating Heap-Spraying
Code Injection Attacks,” in DIMVA, July 2009.

[19] H. S. Ryan Roemer, Erik Buchanan and S. Savage, “Return-Oriented
Programming: Systems, Languages, and Applications,” ACM TISSEC,
Apr 2010.

[20] Y. Younan, W. Joosen, and F. Piessens, “Code injection in C and
C++: A Survey of Vulnerabilities and Countermeasures,” Katholieke
Universiteit Leuven, Belgium, Tech. Rep. CW386, July 2004.

[21] H. Meer, “Memory Corruption Attacks The (almost) Complete His-
tory,” in Blackhat USA, July 2010.

[22] S. Alexander, “Defeating compiler-level buffer overflow protection,”
;login: The USENIX Magazine, vol. 30, no. 3, July 2005.

[23] J. P. Anderson, “Computer Security Technology Planning Study. Vol-
ume 2,” Oct. 1972.

[24] C. Schmidt and T. Darby, “The What, Why, and How of the 1988
Internet Worm,” July 2001.

[25] CERT Coordination Center, “The CERT FAQ,” Jan. 2011.
[26] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the

reliability of UNIX utilities,” CACM, vol. 33, no. 12, Dec. 1990.
[27] K. Seifried and E. Levy, “Interview with Elias Levy (Bugtraq),” 2001.
[28] T. Lopatic, “Vulnerability in NCSA HTTPD 1.3,” February 1995.
[29] P. Zatko, “How to write Buffer Overflows,” 1995.
[30] Aleph1, “Smashing The Stack For Fun And Profit,” Phrack Magazine,

vol. 49, no. 14, Nov. 1996.
[31] S. Designer, “Linux kernel patch to remove stack exec permission,”

http://seclists.org/bugtraq/1997/Apr/31, April 1997.
[32] M. Conover and w00w00 Security Team, “w00w00 on Heap Over-

flows,” http://www.cgsecurity.org/exploit/heaptut.txt, Jan. 1999.
[33] T. Twillman, “Exploit for proftpd 1.2.0pre6,” September 1999.
[34] “CVE-2001-1342,” May 2001.
[35] M. Dowd, “Application-Specific Attacks: Leveraging the ActionScript

Virtual Machine,” April 2008.
[36] S. Designer, “Non-executable stack patch,” June 1997.
[37] ——, “Linux kernel patch from the Openwall Project.”
[38] ——, “Getting around non-executable stack (and fix),” August 1997.
[39] Nergal, “The Advanced Return-Into-Lib(c) exploits (PaX Case study),”

Phrack Magazine, vol. 58, no. 4, Dec. 2001.
[40] J. McDonald, “Defeating Solaris/SPARC Non-Executable Stack Pro-

tection),” March 1999.
[41] The Pax Team, “Design & Implementation of PAGEEXEC,” 2000.
[42] T. de Raadt, “The OpenBSD 3.3 Release,” May 2003.
[43] A. van de Ven, “New Security Enhancements in Red Hat Enterprise

Linux v.3, update 3,” August 2004.
[44] I. Molnar, “Exec Shield,” May 2003.
[45] S. Krahmer, “x86-64 buffer overflow exploits and the borrowed code

chunks exploitation technique,” September 2005.
[46] E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s fastest

taint tracker,” in RAID, Menlo Park, CA, September 2011.
[47] C. Cowan, “StackGuard: Automatic Protection From Stack-smashing

Attacks,” Dec. 1997.
[48] StackShield, “Stack Shield: A ”stack smashing” technique protection

tool for Linux,” Dec. 1999.
[49] Bulba and Kil3r, “Bypassing StackGuard and StackShield,” Phrack

Magazine, vol. 56, no. 5, Jan. 2000.
[50] G. Richarte, “Four different tricks to bypass StackShield and Stack-

Guard protection,” June 2002.
[51] D. Litchfield, “Defeating the Stack Based Buffer Overflow Prevention

Mechanism of Microsoft Windows 2003 Server,” in Blackhat Asia,
Dec. 2003.

[52] M. Miller, “Preventing the Exploitation of SEH Overwrites,” September
2006.

[53] Microsoft, “/SAFESEH.”
[54] B. Bray, “Compiler Security Checks In Depth,” February 2002.
[55] H. Etoh and K. Yoda, “Protecting from stack-smashing attacks,” June

2000.
[56] DilDog, “L0pht Advisory MSIE4.0(1),” Jan. 1998.
[57] S. Designer, “JPEG COM Marker Processing Vulnerability,” July 2000.
[58] MaXX, “VUDO Malloc Tricks,” Phrack Magazine, August 2001.
[59] Anonymous, “Once Upon a Free(),” Phrack Magazine, August 2001.
[60] H. Flake, “Third Generation Exploits,” in Blackhat USA Windows

Security, February 2002.
[61] jp, “Advanced Doug lea’s malloc exploits,” Phrack Magazine, vol. 61,

no. 6, August 2003.
[62] D. Litchfield, “Windows Heap Overflows,” in Blackhat USA Windows

Security, Jan. 2004.
[63] M. Conover and O. Horovitz, “Windows Heap Exploitation

(Win2KSP0 through WinXPSP2),” in SyScan, Dec. 2004.
[64] A. Anisimov, “Defeating Microsoft Windows XP SP2 Heap protection

and DEP bypass,” Jan. 2005.
[65] N. Falliere, “Critical Section Heap Exploit Technique,” August 2005.
[66] B. Moore, “Exploiting Freelist[0] on XP SP2,” Dec. 2005.
[67] M. Conover, “Double Free Vulnerabilities,” Jan. 2007.
[68] J. McDonald and C. Valasek, “Practical Windows XP/2003 Heap

Exploitation,” in Blackhat USA, July 2009.

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://www.openbsd.org/papers/ven05-deraadt/
http://www.sans.org/top25-software-errors/
http://www.sans.org/top25-software-errors/
http://seclists.org/bugtraq/1997/Apr/31
http://www.cgsecurity.org/exploit/heaptut.txt

[69] P. Phantasmagoria, “Exploiting the wilderness,” February 2004.
[70] A. Marinescu, “Windows Vista Heap Management Enhancements,” in

Blackhat USA, August 2006.
[71] N. Waisman, “Understanding and Bypassing Windows Heap Protec-

tion,” June 2007.
[72] B. Hawkes, “Attacking the Vista Heap,” in Blackhat USA, August 2008.
[73] P. Phantasmagoria, “The Malloc Maleficarum,” Oct. 2005.
[74] blackngel, “Malloc Des-Maleficarum,” Phrack Magazine, June 2009.
[75] ——, “The House Of Lore: Reloaded,” Phrack Magazine, vol. 67,

no. 8, Nov. 2010.
[76] BugTraq, “Wu-Ftpd Remote Format String Stack Overwrite Vulnera-

bility,” June 2000.
[77] Scut, “Exploiting Format String Vulnerabilities,” September 2001.
[78] G. . Riq, “Advances in format string exploitation,” Phrack, July 2002.
[79] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman, “Format-

Guard: Automatic Protection From printf Format String Vulnerabili-
ties,” in USENIX Security Symposium, August 2001.

[80] Microsoft, “Disable %n format string,” 2010.
[81] C. Planet, “A Eulogy for Format Strings,” Phrack, Nov. 2010.
[82] T. de Raadt, “The OpenBSD Project,” http://cansecwest.com/core03/

theo-csw03.mgp, April 2003.
[83] ——, “The OpenBSD 3.4 Release,” Nov. 2003.
[84] greydns and T. de Raadt, “OT: PaX question,” April 2003.
[85] P. Team, T. de Raadt, and D. Schellekens, “[OT] PaX,” April 2003.
[86] D. Schellekens, P. Team, and Anonymous, “Recent OpenBSD changes

vs PaX,” April 2003.
[87] B. Spengler, “PaX: The Guaranteed End of Arbitrary Code Execution,”

Oct. 2003.
[88] A. van de Ven, “Patch 0/6 virtual address space randomisation,” Jan.

2005.
[89] ——, “Changes from v2.6.11 to v2.6.12-rc1,” March 2005.
[90] L. Torvalds, “Linux 2.6.25 ChangeLog,” April 2008.
[91] D. Calleja, “Linux 2.6.25,” May 2008.
[92] M. Howard, “Address Space Layout Randomization in Windows Vista,”

May 2006.
[93] A. Rahbar, “An analysis of Microsoft Windows Vista’s ASLR,” Oct.

2006.
[94] M. Howard, “Alleged Bugs in Windows Vistas ASLR Implementation,”

Oct. 2006.
[95] O. Whitehouse, “An Analysis of Address Space Layout Randomization

on Windows Vista,” March 2007.
[96] A. R. Pop, “DEP/ASLR Implementation Progress in Popular Third-

party Windows Applications,” June 2010.
[97] A. Inc., “Mac OS X Leopard Security,” Oct. 2007.
[98] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation:

an Efficient Approach to Combat a Broad Range of Memory Error
Exploits,” in USENIX Security Symposium, August 2003.

[99] P. Ratanaworabhan, B. Livshits, and B. Zorn, “Nozzle: A Defense
Against Heap-spraying Code Injection Attacks,” in Proceedings of the
USENIX Security Symposium, August 2009.

[100] T. Durden, “Bypassing PaX ASLR Protection,” Phrack Magazine,
vol. 59, no. 9, July 2002.

[101] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the Effectiveness of Address-Space Randomization,”
in ACM CCS, Oct. 2004.

[102] T. Müller, “ASLR Smack & Laugh Reference,” February 2008.
[103] FHM Crew, “ASLR bypassing method on 2.6.17/20 Linux Kernel,”

September 2008.
[104] G. Fresi-Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically

returning to randomized lib(c),” in ACSAC, Dec. 2009, pp. 60–69.
[105] SkyLined, “Internet Explorer IFRAME src&name parameter BoF re-

mote compromise,” Oct. 2004.
[106] ——, “Internet Exploiter 3: Technical details,” Nov. 2004.
[107] ——, “Microsoft Internet Explorer DHTML Object handling vulnera-

bilities (MS05-20),” April 2005.
[108] A. Sotirov, “Heap Feng Shui in JavaScript,” in Blackhat Europe, March

2007.
[109] D. Blazakis, “Interpreter Exploitation: Pointer Inference and JIT Spray-

ing,” in Blackhat DC, July 2010.
[110] T. Wei, T. Wang, L. Duan, and J. Luo, “Secure dynamic code generation

against spraying,” in ACM CCS, 2010.
[111] J. Salwan, “ROPgadget tool v3.3,” Nov. 2011.

[112] E. Buchanan, R. Roemer, H. Shacham, , and S. Savage, “When Good
Instructions Go Bad: Generalizing Return-Oriented Programming to
RISC,” in ACM CCS, Oct 2008.

[113] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a se-
cretless framework for security through diversity,” in USENIX Security
Symposium, 2006.

[114] D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified Process Replicae
for Defeating Memory Error Exploits,” in Intern. Workshop on Assur-
ance (WIA), 2007.

[115] B. Salamat, T. Jackson, A. Gal, and M. Franz., “Orchestra: Intrusion
Detection Using Parallel Execution and Monitoring of Program Vari-
ants in User-Space,” in EuroSys, 2009.

[116] B. Jack, “Vector Rewrite Attack: Exploitable NULL Pointer Vulnera-
bilities on ARM and XScale Architectures,” 2007.

[117] M. M. (skape), “Exploiting the Otherwise Non-exploitable on Win-
dows,” 2006.

[118] “CVE-2007-0071,” April 2008.
[119] J. Tinnes and T. Ormandy, “Bypassing Linux’ NULL pointer derefer-

ence exploit prevention (mmap min addr),” June 2009.
[120] B. Spengler, “Enlightenment,” September 2009.
[121] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what

you execute,” ACM Trans. on Program. Lang. and Syst., July 2010.
[122] J. Corbet, “Fun with NULL pointers,” July 2009.
[123] D. Walsh, “Confining the unconfined,” July 2009.
[124] J. Tinnes and T. Ormandy, “Linux NULL pointer dereference due to

incorrect proto ops initializations,” August 2009.
[125] M. J. Cox, “Red Hat’s Top 11 Most Serious Flaw Types for 2009,”

http://www.awe.com/mark/blog/20100216.html, Feb 2010.
[126] A. Baratloo, T. Tsai, and N. Singh, “Libsafe: Protecting Critical

Elements of Stacks,” Dec. 1999.
[127] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-

data attacks are realistic threats,” in USENIX Sec. Symposium, 2005.
[128] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard: Protect-

ing Pointers From Buffer Overflow Vulnerabilities,” August 2003.
[129] Blexim, “Basic Integer Overflows,” Phrack, Dec. 2002.
[130] M. Dowd, C. Spencer, N. Metha, N. Herath, and H. Flake, “Advanced

Software Vulnerability Assessment,” in Blackhat USA, August 2002.
[131] O. Horovitz, “Big Loop Integer Protection,” Phrack, Dec. 2002.
[132] D. Brumley, T. cker Chiueh, R. Johnson, H. Lin, and D. Song, “RICH:

Automatically Protecting Against Integer-Based Vulnerabilities,” in In
Symp. on Network and Distributed Systems Security, March 2007.

[133] T. Wang and Z. Lin, “IntScope: Automatically Detecting Integer
Overflow Vulnerability in X86 Binary Using Symbolic Execution,” in
In Symp. on Network and Distributed Systems Security, February 2009.

[134] M. Howard, “Safe Integer Arithmetic in C,” February 2006.
[135] D. LeBlanc, “Integer Handling with the C++ SafeInt Class,”

urlhttp://msdn.microsoft.com/en-us/library/ms972705, Jan. 2004.
[136] ——, “SafeInt 3 on CodePlex!” September 2008.
[137] ——, “Safeint,” http://safeint.codeplex.com/, March 2011.
[138] F. von Leitner, “Catching Integer Overflows in C,” Jan. 2007.
[139] S. Christey and R. A. Martin, “Vulnerability Type Distributions in

CVE,” May 2007.
[140] V. R. Basili and B. T. Perricone, “Software errors and complexity: an

empirical investigation,” CACM, vol. 27, no. 1, 1984.
[141] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large

industrial software system,” in ISSTA, 2002.
[142] K. Zetter, “Three minutes with rain forrest puppy,” 2001.
[143] D. Goodin, “Legal goons threaten researcher for reporting security

bug,” 2011.
[144] R. Lemos, “Does Microsoft Need Bug Bounties?” May 2011.
[145] D. Fisher, “Survey Shows Most Flaws Sold For $5,000 Or Less,” May

2010.
[146] VUPEN, “Google Chrome PWNED on Windows, exploit leaps over

sandbox/ASLR/DEP,” May 2011.
[147] S. Fewer, “Pwn2Own 2011: IE8 on Windows 7 hijacked with 3

vulnerabilities,” May 2011.
[148] VUPEN, “Safari/MacBook first to fall at Pwn2Own 2011,” March

2011.
[149] NIST, “National Vulnerability Database.”
[150] Symantec, “Vulnerability Trends.”
[151] M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and

C. Wolf, “Mobile security catching up? - revealing the nuts and bolts
of the security of mobile devices,” in IEEE S&P, 2011.

http://cansecwest.com/core03/theo-csw03.mgp
http://cansecwest.com/core03/theo-csw03.mgp
http://www.awe.com/mark/blog/20100216.html
http://safeint.codeplex.com/

[152] M. BlueHat, “Microsoft BlueHat Prize Contest,” 2011.

	Introduction
	A helicopter view of memory error history
	Non-Executable Stack
	Canary-based Protections
	Heap Attacks
	Format String Attacks
	Address Space Layout Randomization
	Attacking ASLR
	ASLR Effectiveness

	NULL Pointer Dereference
	Alternative Defenses (and Attacks)
	Integer Vulnerabilities

	Data Analysis
	The Rise…
	…And the Fall
	Effectiveness of Deployed Mitigation Techniques
	Categorizing Vulnerabilities and Exploits

	Conclusion
	References

