
Attacking a Trusted Computing Platform
Improving the Security of the TCG Specification

Technical Report RT 05-05

D. Bruschi, L. Cavallaro, A. Lanzi, M. Monga
Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano
Via Comelico 39/41, I-20135, Milano MI, Italy

{bruschi, sullivan, andrew, monga}@security.dico.unimi.it

Abstract

We describe a flaw which we individuated in the
Object-Independent Authorization Protocol (OIAP),
an authorization protocol which represents one of
the building blocks of the Trusted Platform Module
(TPM), the core of the Trusted Computing Platform
(TP) as devised by the Trusted Computing Group
(TCG) standards. In particular we show that the
protocol fails to protect messages exchanges against
straight replay attacks. Using such a flaw an at-
tacker could compromise the correct behavior of a TP,
thus undermining its main property namely trust. A
proposed solution, which requires the modification of
the OIAP authorization protocol in order to provide
“real” protection against replay attack, has been de-
vised and described as well.

1 Introduction

Security is probably one of the Computer Science
fields where the research community has spent most
of its efforts in these last years. Since the begin-
ning, it was clear that the construction of a secure
system, i.e., a system which satisfies the confidential-
ity, integrity and availability properties, under any
circumstances, is not feasible. The main difficulties
in reaching such an objective are represented by the

fact that computer security is based on the chain
paradigm, i.e., a computer system is only as “strong”
as its weakest link. Thus, the security property has to
be verified by any secure component of the software
stack, the firmware, the hardware and, of course, the
environment in which the system operates and, in
general it is impossible to prove if a complex system
computes exactly what its designer want.

On the other hand, security is a mandatory re-
quirement for many computer applications. Thus, re-
searchers in this last years proposed various security
solutions aimed at improving the security of a plat-
form by reducing its exposure to attacks (see for ex-
ample perimetrical defenses, strong authentications,
antivirus, OS memory protections and so on).

From the architectural point of view the main char-
acteristic of these solutions was based on the idea of
providing an external layer of protection to the var-
ious objects (OS, application) “without interfering”
with the object itself. Even if such an approach has
been proven quite effective in protecting computer
system, it also has shown some drawbacks. The most
important one is the limited capacity of blocking un-
known forms of attacks.

Many proposals appeared in literature in order
to overcome such a limit: one of the most relevant
contribution in such a direction is the research on
Trusted Computing Platforms (TP) inspired by a
work of Arbaugh et al. [8]. Roughly speaking a

1



Trusted Computing Platform is characterized by the
property of either computing according to its “ini-
tial specification” or promptly detecting any unau-
thorized modification of its components.

Various proposals of TP appeared recently in liter-
ature (see [12, 21]); in this paper we will investigate
the solution proposed by the the Trusted Comput-
ing Group (TCG) [4], a multi-vendor consortium for-
merly known as the Trusted Computing Platform Al-
liance (TCPA). The TCG has proposed several spec-
ifications for systems that, by using a modified BIOS
and a supplementary chip hardwired on the mother-
board, can systematically verify the integrity of each
software component. The basic building block of
a trusted platform is the Trusted Platform Module
(TPM), a hardware component which is supposed to
verify the integrity of the system, and grant the access
to protected resources only to trusted components.

In order to grant this access, the TPM refers to a
couple of authorization protocols, by which it veri-
fies the credentials of principals interested in having
access to critical protected resources. These proto-
cols are the Object-Independent Authorization Pro-
tocol (OIAP) and the Object-Specific Authorization
Protocol (OSAP) and they are defined in the TCG
specification1 [7].

These protocols were specifically designed to re-
sist to replay and Man-in-The-Middle (MiTM) at-
tacks, with the introduction, respectively, of the so-
called “rolling nonces” paradigm and Keyed-Hashing
for Message Authentication (HMAC) [2].

In this paper we will show that the OIAP specifica-
tion issued by TCG, is not strong enough to protect
a system from every replay attack. In fact, we dis-
covered that when multiple sessions are on going, a
replay attack is possible, and an intruder can subvert
the correct behavior of a TP, without no one noting it.
In particular, using such an attack, an intruder can
modify memory regions protected by the TPM, com-
promising the correct behavior of the platform and,
more importantly, without being detected. This last
issue is very important, as it undermines one of the
most fundamental properties of a TP and the one on

1Version 1.2 of the TCG specification introduces another
“authorization” protocol, DSAP, but its treatment is beyond
the scope of this paper.

which the trust towards the platform is built, namely
promptly recognize an unauthorized modification of
data.

However, we have been able to devise a solution
which will make the OIAP immune to replay attacks
as the one described in this paper.

The paper is organized as follows: in Section 2 we
describe the notation used throughout the paper, in
Section 3 we recall the main concepts of the TCG
specification with a focus on the authorization proto-
cols (Section 4), in Section 5 we describe the attack
we found and a possible exploitation (Section 7, in
Section 7 we propose a modification of the protocols
to protect a system against our attack, and finally, in
Section 8, we draw some conclusions.

2 Notation

In this section we describe the notation which will
be used throughout the paper which is required for a
better understanding of the manuscript.

In the following we will use capital characters for
denoting strings over the binary alphabet, while cap-
ital bold letters will denote generic entities, such as
hosts, hardware/software components, generic users
and so on.

• X.Y denotes X concatenated to Y ;

• A → B: M denotes that A sends the message
M to B;

• Si denotes the identifier of the i-th authorization
session;

• A′, A′′, · · · indicates further “instances” of an ob-
ject A; for example, if A is a pseudo random
number, A′ would indicate another pseudo ran-
dom number, different from A, generated from
the same pseudo-random number generator, so
that A and A′ have the same features.

2



3 Trusted Computing Plat-
forms

Security mechanisms may themselves be modified by
malicious code [1, 10] so that it may be hard to de-
tect such a violation. This is the key consideration
that led the Trusted Computing Group (TCG) [4],
to propose a new architecture, the so-called Trusted
Computing Platform, which proposes to protect criti-
cal parts of a system by using cryptographic protocols
and other features described ahead, implemented at
the hardware level.

The specification defined by the TCG [7] states
that Trusted Platforms (TPs) are computing plat-
forms that add to themselves the property of trust.
In other words, they provide proper mechanisms to
verify, in a secure way, that the data yielded by them
were not tampered with. When a manipulation is
performed, a “violation” is detected and reported to
the user who will decide whether to trust or not the
data provided by the TPs.

The TPs trust mechanism is based on two hard-
ware components, namely the Core Root of Trust
for Measurement, CRTM, and the Trusted Platform
Module, TPM. Both build up the so-called root of
trust, they are hardwired on the TP motherboard
and have to be “trusted”2 in order to consider the
whole computing platform a TP.

Generally speaking, TP can provide three main
functionalities:

1. identity : a TP can be identified in a unique and
secure way;

2. measurement : a “complete” integrity snapshot
of software and hardware components of the TP
may be computed;

3. protected storage: the TPM acts as a cryp-
tographic portal, providing protection to sen-
sible data (passwords, cryptographic keys,
passphrases, data and so on).

2Trust here means that the behavior of these components
have to be certified by trusted third parties.

A TP starts its execution by running the CRTM
code3 [5], whose main task is to begin the integrity
measurement process, which consists of computing a
cryptographic hash of every hardware and software
component (both code and data), in order to get a
“unique” fingerprint of the system. These measure-
ments are then stored into a trusted environment pro-
vided by the TPM, through the use of a well defined
API [7, 6].

The TPM is both the root of trust for storing and
for reporting. The former goal is obtained by storing
the measurement values into several tamper-resistant
areas, called shielded locations. These are protected
memory regions which can be accessed only by using
special protected capabilities, which require the use of
some form of authorization, defined more extensively
in Section 4. The most important shielded locations
are the Platform Configuration Registers, PCR, and
Data Integrity Registers, DIR4, which are also used to
effectively store integrity measurements and to pro-
vide a secure and authenticated boot sequence [9].
Reporting, instead, is performed by the TPM by com-
municating the computed integrity measurements to
a challenger, through a challenge/response protocol,
to permit a trusted verification of the TP software
integrity, as defined in [9, 19].

4 Authorization Protocols

A prominent role inside a TP is played by the autho-
rization protocols. These protocols are used anytime
a subject has to issue some command (for a list of
such commands, see [7]) for accessing protected TP
resources. The authorization protocols main scope
is to provide a secure execution of the command by
guaranteeing that it is executed by a subject who is
entitled to do so, and in compliance with any confi-
dentiality and integrity policy regarding the involved
resource.

The two main authorization protocols are the

3Usually the whole BIOS or the BIOS Boot Block for com-
pound BIOSes.

4This is true in the TCG specification version 1.1, since the
version 1.2 generalized the concept by introducing Non-Volatile
memory area and related capabilities.

3



Object-Independent Authorization Protocol (OIAP)
and the Object-Specific Authorization protocol
(OSAP). The former enables a user to open an
authorization session which can be used to issue
the same authorized command several times during
the same session, potentially acting on different
protected TPM resources. The latter works in a
similar way, but allows to issue different authorized
commands acting on the same TPM protected
resource, using the same authorization session. In
this paper we concentrate our attention on the
OIAP.

4.1 OIAP

The OIAP is used whenever a subject needs to send
the same command GC to many different protected
resources, during the same authorization session.
The protocol works as follows and it is more formally
depicted in Figure 1. Let U be a generic subject that
wish to use a resource R protected by the TPM root
of trust T, and AR a secret shared between U and
T.

Initially U request to open an authorization session
with T (step 1, Figure 1) and T send back to U the
session information needed to correctly handle the
authorization session itself (step 2, Figure 1). If such
a step is correctly performed, U will send to T the
command GC to execute, which embeds the prove
that she knows AR (step 3, Figure 1). Afterwards,
T will verify the message authenticity and integrity
and, if they are satisfied, T will execute GC on behalf
of U, sending back to U the result obtained (step 4,
Figure 1). Otherwise the connection will be closed
by T. Figure 1 depicts the OIAP above described,
where resAuth = {Rx.GC.S1.N

′
e, No}, Rx is either

Rc or Re accordingly to the substep 4 chosen, and
let CMD OIAP be the command issued by U for ini-
tiating an authorization session; this command does
not necessitate to be authorized, i.e., every entity can
issue it, let GC be the authorized command which
U wants to execute on R, let Rc be a success return
code, let Re be an invalid authorization code, let D be
the data related to GC (it may be empty), let RES
be the result of the execution of GC on R (it may
be empty), let Ne be a 160-bit non-predictable even

random number used to provide the freshness prop-
erty, let No be a 160-bit non-predictable odd random
number, and finally let Auth = {GC.S1.Ne.No} be
the concatenation of data on which the key-hashed
cryptographic function has to be computed.

1. U → T: CMD OIAP
2. T → U: S1, Ne

3. U → T: GC.R.D.S1.Ne.No.H(AR, Auth)

if the verification of H(AR, Auth) is successful,
then T execute GC on R and

4a. T → U: Rc.GC.RES.N ′
e.No.

H(AR, resAuth)

else

4b. T → U: Re.GC.RES.N ′
e.No.

H(AR, resAuth)

Figure 1: Description of the OIAP

4.2 OIAP Threats

As any communication protocol, OIAP is subjected
to replay, Man-in-The-Middle (MiTM) and Denial of
Service (DoS) attacks. By the TP specification it
turns out that, in the design of the TPM, only the
first two types of attacks have been addressed while
DoS has been voluntarily neglected [9]. Indeed, the
specification does not avoid someone to be in the mid-
dle of a communication5, but it tries to provide a pro-
tection against a Dolev-Yao MiTM, which acts like
“an active saboteur, [one] who may impersonate an-
other user and may alter or replay the message” [11].
In order to deal with such attacks, namely replay and
packet mangling, the OIAP adopts, respectively, the
rolling nonces paradigm and HMAC.

Nonces are pseudo-random unique non-predictable
numbers which are used just once6. Rolling nonces

5Note that OIAP has been designed in order to also work
in a network environment [7].

6Nonce can be interpreted as “Number [to be used] once.

4



are exchanged back and forth between the involved
parties, in order to permit them to check the freshness
of messages [17]. In fact, T can verify (see Figure 1,
step 3), that the received nonce is equal to Ne, as
chosen and sent in step 2 by U. More generally, any
involved party is able to verify the freshness prop-
erty for each exchanged message and, as long as the
parties verify this property, no replay attacks would
succeed.

On the other side, TCG-based TPs are able to
detect packets alteration by deploying HMAC, but
they are not able to distinguish between common net-
work errors and real packet mangling performed by
a MiTM. This will play a fundamental role in the
OIAP attack we devised as explained in Section 5.

5 The Attack

Our attack leverages on two OIAP features:

1. the authorization session created by a genuine
CMD OIAP command is kept opened indefi-
nitely by T, unless:

• the TPM chooses to close it explicitly;

• an erroneous7 message is received by the
TPM.

2. the authorization session is closed by the user’s
application if an erroneous message is received.

Feature two is not explicitly stated in the TCG
specification, however, it is a common practice, for a
client application, to close a connection if something
goes wrong (network errors, malformed packets, and
so on) [3].

Roughly speaking, when several command sessions
are involved an attacker may be able to subvert the
TP trusting mechanism by performing what P. Syver-
son in his taxonomy ([20]) calls straight replays.
Straight replay attacks occur when “a message is sent
straight from the sender to the intended recipient in
different protocol rounds or in different protocol runs

7i.e., a message with wrong parameters or an invalid
HMAC.

though it may be just delayed or have other text ap-
pended to it for altering generally the significance of
the message” [13].

Precisely, the attack we propose can be divided into
three phases, namely message storing phase (Fig-
ure 2), message re-sending phase (Figure 3) and re-
play attack phase (Figure 4), that have to be com-
pleted in order to perform the whole replay attack
successfully (Figure 5).

During the explanation of the three above men-
tioned phases, we use the notation X∗ for denoting
an intruder which impersonates the entity X. We also
assume that X∗ follows the Dolev-Yao model [11] so
that it is able to intercept all the messages, store,
drop or forward them. Note that, as already said,
packets mangling is permitted but is detected by the
involved parties which cannot, however, distinguish
between either network errors or MiTM presence.

For the sake of simplicity, it’s worth noting that
what follows it is based on an intruder which plays
only on a single protocol run at any given time (from
his perspective), so he is enforced to execute the at-
tack’s phases in a sequential order. It is also worth
noting that the proposed replay attack can be more
complex and somewhat tricky to understand, when
the intruder wants to monitor different protocol runs
(between the involved parties) in parallel since the
attack’s phases may be not sequentially executed.

5.1 Attack Schema

The main message storing phase goals may be sum-
marized in the following list:

• to permit the intruder to capture command sent
by the user U, in order to be able to replay it
later;

• to keep the authorization session on the T side
opened.

During this phase, in fact, the attacker retrieves suc-
cessfully a message originating from the user (step 3a,
Figure 2), and stores it in order to be able to in-
ject the message into another run of the protocol. In
the meantime the authorized session remains opened,

5



Message storing phase

1a. U → T∗: CMD OIAP
1b. U∗ → T: CMD OIAP
2a. T → U∗: S1.Ne

2b. T∗ → U: S1.Ne

3a. U → T∗: GC.R.D.S1.Ne.No.
H(AR, Auth)

3b. T∗ → U: reset

Figure 2: The OIAP message storing attack phase.

Message re-sending phase

4a. U → T∗: CMD OIAP
4b. U∗ → T: CMD OIAP
5a. T → U∗: S2.N

′
e

5b. T∗ → U: S2.N
′
e

6a. U → T∗: GC.R.D′.S2.N
′
e.N

′
o.

H(AR, Auth)
6b. U∗ → T: GC.R.D′.S2.N

′
e.N

′
o.

H(AR, Auth)
7a. T → U∗: Rc.GC.RES′.N ′′

e .N ′
o.

H(AR, resAuth)
7b. T∗ → U: Rc.GC.RES′.N ′′

e .N ′
o.

H(AR, resAuth)

Figure 3: The OIAP message re-sending attack
phase.

Replay attack phase

8a. U∗ → T: GC.R.D.S1.Ne.No.
H(AR, Auth)

8b. T → U∗: Rc.GC.RES.N ′
e.No.

H(AR, resAuth)

Figure 4: The OIAP replay attack phase.

U U*/T*

CMD_OIAP()

AUTH_INFO(S1)

AUTH_CMD(S1, DATA1)

RES(S1, GARBAGE)

AUTH_CMD(S1, DATA1)

T

CMD_OIAP()

AUTH_INFO(S1)

CMD_OIAP() CMD_OIAP()

AUTH_INFO(S2)AUTH_INFO(S2)

AUTH_CMD(S2, DATA2) AUTH_CMD(S2, DATA2)

AUTH_RES(S2, RESDATA2)AUTH_RES(S2, RESDATA2)

AUTH_CMD(S1, DATA1)

AUTH_RES(S1, RESDATA1)

U(S1)

U(S1)

F(S1)

U(S2)

S(S2)

U(S2)

S(S2)

S(S1)

Callout:
U(S) Auth session S is in UNKNOWN state

Auth session S is in FAILED state

Auth session S is in SUCCESS state

F(S)

S(S)

Figure 5: Overall OIAP replay attack.

while the user may be fooled by a reset8 message as
seen in step 3b, Figure 2.

At this point, the message re-sending phase may
take place. This phase plays a fundamental role and
has to be successfully completed in order to permit
the intruder to perform a meaningful9 replay attack.
Its main objective is to let the intruder wait for an
user action and, therefore, take the appropriate deci-
sion about what to do next (see the next phase). The
possible user’s actions are:

(a) open a new authorization session and re-send the
faulty command acting on different data;

8This message resembles a “legal” reply message, such as
the one sent at step 4a, shown in Figure 1, but with some er-
roneous bits in it, giving the “illusion” of a temporary network
error.

9Meaningful here means that the intruder has the ability to
replay every message captured by the message storing phase
(obviously), but replaying a just stored message makes no sense
because that would exactly execute what the user U wanted
to.

6



(b) re-send the faulty command on the same data;

(c) execute another kind of authorized command.

Note that in this phase the intruder simply works
as a forwarder between the user and the TP. More-
over, we will consider only the case (a), as only in this
case the attack we envisaged can produce significant
consequences during a single protocol run (intruder’s
view-point).

In fact, in the last replay attack phase, the intruder
may replay the captured message (we recall that the
“first” authorization session is still pending, due to
feature 1, Section 5) and overwrite a TPM protected
data resource, without the user knowledge, compro-
mising the TP integrity and its trust property. For
the sake of clarity and to better understand the re-
lationship between the attack phases, a simple NFA
which model the intruder’s behavior during a single
protocol run, is depicted in Figure 6, where q0 rep-
resents the automaton initial state and edges’ labels
refer to the actions the user may perform.

q2

q0epsilon-step

q1

epsilon-step

(a)

(c)

(b), (c)

Figure 6: NFA modeling intruder’s behavior.

6 Attack Scenario

In order to better understand the consequences of the
replay attack described above, we propose an attack
scenario along with a “rough” measurement model
(a simple Proof of Concept), which show how it is
possible to subvert the integrity property of the TP
post-boot environment10 components, such as soft-
ware packages, eluding in such a way the sense of
trust provided by the TP.

It’s worth recalling (see Section 3) that one of the
TP main functionality is to provide software mea-
surements, that is, a “complete” integrity snapshot

10It is the environment in which the TP switch after the OS
kernel is loaded and executed.

of software and hardware components of the TP it-
self. So, the main goal of this process is to perform
such measurements and store the result into TPM
shielded locations, in order to be able to detect any
unauthorized modification of the measured compo-
nents.

The TCG specification only defines measurement
model for the pre-boot environment11 [5] while it is
not stated anything about the post-boot environ-
ment.

We think that it may be possible to classify post-
boot measurement models that can be adopted on
TCG-based TPs as:

• detection measurement models, where the TP
provides the mechanisms that will enable an en-
tity to check for the TP components integrity.
It’s worth nothing that, given a certain environ-
ment measurement, it’s up to this entity to trust
the TP or not;

• prevention measurement models, where the TP
provides the mechanisms that are able to detect
and potentially stop any unauthorized modifica-
tion of the TP components.

While it has been done some research about detec-
tion measurement models, such as the one proposed
by [18, 15], to our knowledge, nothing has been pro-
posed as prevention measurement model for TCG-
based TPs post-boot environment yet.

6.1 Attack Environment

In the attack scenario described here below, we con-
centrate our attention on the deployment of a sim-
ple and bare prevention measurement model we are
working on (a full and precise description of this
model is out of the scope of this paper), we give a
description of the players involved in the attack along
with their roles and, finally, we conclude the attack
scenario describing the attack itself.

11This is the environment in which the platform starts when
it’s turned on. The TP remains in this environment until the
OS kernel is loaded and executed.

7



Prevention Measurement Model

This simple measurement model base its functionality
on the following data structures:

• an untrusted measurement list, ML, which is
made of ordered (program, fingerprint) pairs;

• a Non-Volatile (NV) Storage Area, namely
DIR12, provided and protected by the TPM in a
way that only protected capabilities can modify
its value.

We use the DIR register to hold the hash of the
whole ML in order to be able to detect unautho-
rized ML modification, as explained below (it’s
not worth speaking of the way this hash is com-
puted here).

The measurement model is comprised of two dif-
ferent phases, namely a setup and a running phase.
The setup phase objectives are to build up the ML
of the interested software and to store the ML hash
into the DIR by means of TPM protected capabilities
(i.e. TPM authorized commands), while the running
phase goal is either to grant or not the execution of
a particular software belonging to the measurement
list ML computed in the setup phase. More formally,
these phases can be described here below.

Setup phase

Let SW be the set of the software that has to be
measured in order to provide for its integrity and let
ML be the measurement list initially empty, then:

∀p ∈ SW ML = ML ∪ {(p, Fp)}

where Fp represents the fingerprint bound to the
program p. Now it is possible to compute the hash
over the measurement list ML (HDIR = H(ML)),
and store this value into the DIR NV storage area
by means of the TPM_NV_WriteValueAuth authorized
command, which use OIAP as authorization protocol.

12The TCG specification version 1.2 speak of protected gen-
eral purpose NV Storage Area, which replace the limited DIR
register defined in the TCG specification version 1.1.

After this initial phase, the running phase takes place
whenever the TP is running13.

It’s worth pointing out that this NV (DIR) usage
differs from the PCR usage. In fact, the former makes
use of TP authorized commands, such as the afore-
mentioned TPM_NV_WriteValueAuth, that writes a
value directly into the pointed NV area, thus over-
writing everything stored there [9, 7], while the lat-
ter case makes use of other non-authorized TP com-
mands that trigger the TPM to perform a chained
hash internally, taking care of what is stored in the
referenced PCR [9, 7].

As already noted, a NV shielded location must be
used in order to keep integrity values through TP
reboot. Such a feature, in fact, would not be possible
to achieve using PCRs shielded location.

Running phase

Upon setup phase accomplishment, whenever a TP
user/process wants to execute a “protected” software,
A, which belongs to the ML, the loader performs the
following steps, granting or not A execution:

1. hA = H(A)

2. ML
′
= ML

3. ML
′
= ML

′
\ {(A, fA)}

4. ML
′
= ML

′
∪ {(A, hA)}

5. H
′

DIR = H(ML
′
)

6. if (H
′

DIR == HDIR) then

“grant A execution”

else

“deny A execution”

13Note that is possible to perform again the setup phase
whenever a software update is needed or whenever a “new”
software has to be added to the measurement list.

8



Players & Roles

The attack scenario here proposed encompasses the
presence of three main players that are described in
the following list along with a brief description of
their roles.

• TP administrator plays a central role in a TCG-
based TP. She is the only person able to issue
authorized commands in order to exploit the TP
features, such as identity, measurement and pro-
tected storage.

• Host administrator is in charge of administering
the TP performing actions which are common to
normal system administrators, such as software
updates, users and resources managements, and
so on;

• the attacker is the active saboteur who wants to
subvert the trust property introduced by the use
of the Trusted Platform.

It’s worth nothing that the role played by TP ad-
ministrator and Host administrator, is different – al-
though it may be related – and so, it may be covered
by different people.

Attack Description

The possible attack description which follows is based
on the deployment of the prevention measurement
model aforementioned.

Let T be a remote TP, which performs the secure
boot procedure [9], aimed at proving that the whole
TP firmware and software components, have not been
compromised. During the boot process, the CRTM
perform integrity measures of all the TP components
and such values are compared with the ones recorded
into the TPM DIR. If everything matches, OS kernel
is loaded into memory and executed.

Let U be a remote TP administrator who needs
to upgrade some TP software components. U has to
perform the following actions:

1. download a new software from an official site;

2. verify some sort of digital signature, if possi-
ble, by trusting the new package if the signature
matches;

3. update the remote DIR integrity value, via the
OIAP, by issuing the TPM_NV_WriteValueAuth
authorized command [7].

Unfortunately, before the OIAP takes place,
the attacker A, who acts as U∗ and T∗,
starts the message storing phase, capturing the
TPM_NV_WriteValueAuth authorized message which
is used by the administrator to overwrite the remote
DIR value. We also assume that A has Host admin-
istrator privileges on the TP either because he is an
insider or he has gained unauthorized access.

On the other hand, the TP administrator will per-
form the message re-sending phase, by issuing the
same command acting on the same parameters (point
(b) of Section 5) since she may think that the received
faulty message was due to some communication error.
As a result, she may now authorize the installation
of a new “trusted” software package.

Sooner or later the Host administrator become
aware about the presence of a bug in the just installed
and measured software package, so she promptly
downloads a new patched version of it, verifies its
signature and let the TP administrator to perform
again the OIAP in order to update the “trust” state
of the remote TP, so that a new patched version can
be installed in the system.

At this point, A can perform the replay attack
phase, by replaying the message captured in the mes-
sage storing phase. By doing so, he is able to over-
write the new “trusted” DIR integrity value with the
old one referring to an incorrect measure of the in-
stalled software, fundamentally flawing the integrity
property and the sense of trust the user places in
the TP mechanisms. In fact, A re-install the bugged
software, replay the old measured value which has
the effect to be stored into the DIR, overwriting any
register content.

9



7 A proposed solution

Even if the rolling nonces paradigm is a good can-
didate to protect against replay attacks, as already
noted in [16, 14], it may be a weak countermeasure
under some circumstances.

In our case the main problem is due to the fact that
a coherent and synchronized “session knowledge”, be-
tween the involved parties, is missing and, at the end
of our replay attack, T and U, have a different knowl-
edge about the session state. Thus, in order to avoid
the replay attack just described, we have to provide
the protocol with the mechanisms which enable the
parties to share a common knowledge on the sessions
state.

The solution we devised requires a modification to
the TPM and it is based on the introduction of a
new field computed by the user, which is added to
any authorized exchanged message between the par-
ties. Such a field contains the knowledge which any
user has about the state of all previously opened
authorization sessions. Moreover, in transmission
such a field is protected from tampering attempts by
HMAC.

This session-state field is a bitmask which is filled
in the following way:

• set the i-th bit to 0 if the i-th authorization ses-
sion is considered either open or in an unknown
state;

• set the i-th bit to 1 if the i-th authorization ses-
sion is considered in a failed state, i.e., a reset
message is received by the user as a response to
an issue of an authorized command (see step 3b,
Figure 2).

Every time that the TPM finds an incoherent
state between user sessions and the TPM ones (e.g.
user’s S1 failed and TPM S1 unknown), it closes the
“wrong” session. Doing so, every pending sessions
held by an attacker cannot be used anymore, denying
any further attempt to execute a previously stored
authorized message.

U U*/T*

CMD_OIAP()

AUTH_INFO(S1)

AUTH_CMD(S1, DATA1, B0)

RES(S1, GARBAGE)

AUTH_CMD(S1, DATA1, B0)

T

CMD_OIAP()

AUTH_INFO(S1)

CMD_OIAP() CMD_OIAP()

AUTH_INFO(S2)AUTH_INFO(S2)

AUTH_CMD(S2, DATA2, B1) AUTH_CMD(S2, DATA2, B1)

AUTH_RES(S2, RESDATA2)AUTH_RES(S2, RESDATA2)

AUTH_CMD(S1, DATA1, B0)

AUTH_RES(S1, ERR, RESDATA1)

U(S1)

U(S2)

C(S1)
S(S2)

no action

Callout:
U(S) Auth session S is in UNKNOWN state

Auth session S is in FAILED state

Auth session S is in SUCCESS state

F(S)

S(S)

Auth session S is CLOSEDC(S)

The bitmask B is defined by the d binary
rappresentation

Bd

Figure 7: Overall OIAP replay attack’s solution.

8 Conclusions

In this paper, we analyzed one of the core compo-
nents of the Trusted Computing Platform proposed
by the Trusted Computing Group. In particular, we
focused our attention on the Object-Independent Au-
thorization Protocol, which is involved whenever a
TPM protected resource has to be used.

Although the TCG specification tried to protect
this sensible protocol from both replay and MiTM
attacks (more precisely packet mangling actions), our
analysis showed that that the protocol is flawed by
design and a replay attack is indeed possible.

We proposed a solution to solve the problem, based
on the idea of recording and sharing the session state
between the communicating parties. It is our opinion
that the proposed solution can be improved in order
to allow also for further misuse detection allowing a
party to detect MiTM presence. Work is in progress

10



for investigating such issues.

References

[1] Announcing adore-ng 0.31.
http://www.securityfocus.com/archive/1/348843/
2003-12-30/2004-01-05/0.

[2] HMAC: Keyed-Hashing for Message Au-
thentication. ftp://ftp.rfc-editor.org/in-
notes/rfc2104.txt.

[3] IBM Watson Research Center, Global Se-
curity Analysis Lab: TCPA Resources.
http://www.research.ibm.com/gsal/tcpa/TPM-
2.0.tar.gz.

[4] Trusted Computing Group.
http://www.trustedcomputinggroup.org.

[5] TCG PC Specific Implementation Specifica-
tion. http://www.trustedcomputinggroup.org,
August 2003.

[6] TCG Software Stack (TSS) Specification.
http://www.trustedcomputinggroup.org, Au-
gust 2003.

[7] Trusted Platform Module Main Specifica-
tion, Part 1: Design Principles, Part 2:
TPM Structures, Part 3: TPM Commands.
http://www.trustedcomputinggroup.org, Octo-
ber 2003.

[8] W. A. Arbaugh, D. J. Farber, and J. M. Smith.
A secure and reliable bootstrap architecture. In
SP ’97: Proceedings of the 1997 IEEE Sym-
posium on Security and Privacy, pages 65–71.
IEEE Computer Society, 1997.

[9] B. Balacheff, L. Chen, S. Pearson, D. Plaquin,
and G. Proudler. Trusted Computing Platforms:
tcpa technology in context. Prentice Hall PTR,
2003.

[10] D. Bruschi, D. Fabris, V. Glave, and E. Rosti.
How to unwittingly sign non-repudiable docu-
ments with Java applications. In ACSAC ’03:

Proceedings of the 19th Annual Computer Se-
curity Applications Conference, page 192. IEEE
Computer Society, 2003.

[11] D. Dolev and A. C. Yao. On the security of
public-key protocols. In IEEE Transactions on
Information Theory, 1983.

[12] P. England, B. Lampson, J. Manferdelli,
M. Peinado, and B. Willman. A Trusted Open
Platform. Computer, 36(7):55–62, 2003.

[13] T. Kwon and J. Song. Clarifying straight replays
and forced delays. SIGOPS Oper. Syst. Rev.,
33(1):47–52, 1999.

[14] G. Lowe. Breaking and fixing the needham-
schroeder public-key protocol using fdr. In
TACAs ’96: Proceedings of the Second Interna-
tional Workshop on Tools and Algorithms for
Construction and Analysis of Systems, pages
147–166. Springer-Verlag, 1996.

[15] J. Marchesini, S. Smith, O. Wild, J. Stabiner,
and A. Barsamian. Open-source applications of
tcpa hardware. In In 20th Annual Computer Se-
curity Applications Conference. IEEE Computer
Society, 2004.

[16] C. Meadows. Analyzing the Needham-Schroeder
Public-Key Protocol: A Comparison of Two Ap-
proaches. In ESORICS ’96: Proceedings of the
4th European Symposium on Research in Com-
puter Security, pages 351–364. Springer-Verlag,
1996.

[17] Peter Ryan and Steve Schneider and Michael
Goldsmith and Gavin Lowe and Bill Roscoe.
Modelling & Analysis of Security Protocols.
Addison-Wesley, 2000.

[18] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and
Leendert van Doorn. Design and Implementa-
tion of a TCG-based Integrity Measurement Ar-
chitecture. In 13th USENIX Security Sympo-
sium, 2004.

[19] R. Sailer, X. Zhang, T. Jaeger, and L. van
Doorn. Design and Implementation of a TCG-
based Integrity Measurement Architecture. In

11



Proceedings of the 13th USENIX Security Sym-
posium, pages 223–238, 2004.

[20] P. Syverson. A taxonomy of replay attacks. In
Proceedings of the 7th IEEE Computer Security
Foundations Workshop, 1994.

[21] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel
Rosenblum, and Dan Boneh. Terra: a vir-
tual machine-based platform for trusted comput-
ing. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems princi-
ples, pages 193–206. ACM Press, 2003.

12


