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Abstract. We are interested in the models of anomaly-based Host Intrusion De-
tection Systems (HIDS) which have been built following the intuition that the
“normal” behavior of a program can be characterized by the sequences of system
calls (N -gram) it invokes during its executions in a sterile environment.

The N -gram model is very simple and very efficient but it is characterized by rel-
atively high degree of false alarms, mainly because correlations among syscalls
are lost. Furthermore, it has been shown that such a HIDS model is unable to
detect two particular forms of computer attacks, namely mimicry and Impossible
Path Execution (IPE). Quite recently, various authors started to propose variations
to the N -gram model in order to improve its “precision”, trying to overcome the
limitations of the original model adopting a better characterization of a program
behavior. However, even these models suffer of some limitations with respect
to some forms of IPE and, with various degree of resistance, to some forms of
mimicry attacks as well.

In this paper we address the IPE and the mimicry problem in the N -gram based
HIDS model, and we provide a contribution which, for our point of view, will be
very useful for the solution of the problem. More precisely, we devised a kernel-
level module to which we will refer to as obfuscator, which interacts with an
underlying HIDS and whose main scope is to “randomize” sequences of system
calls produced by an application to make them unpredictable by any attacker.
Intuitively speaking, any attacker who wants to execute a traditional mimicry
against a program, has to know at least a randomized trace which is, however,
hardy predictable as its content strongly depends on the execution environment.
The same reasoning can be applied, with some changes, to the case of IPE attacks.

We implemented a prototype of the obfuscator module on a Linux system and
we have been able to experimentally verify that the idea is a viable solution to
detection of both the mimicry and the IPE attacks. Furthermore, with respect to
other solutions described in literature, it turned out that our module affected the
performance of a testbed server with a slowdown factor of only 0.07%.

Key words: HIDS, Anomaly Detection, Mimicry Attacks, Impossible Paths Ex-
ecution Attacks.



1 Introduction

An Intrusion Detection System (IDS) is a security technology attempting to identify (in
quasi real time) and isolate computer systems intrusions. A very broad classification
generally adopted distinguishes between Host Intrusion Detection Systems (HIDSs)
and Network Intrusion Detection Systems (NIDSs). Host-based IDSs mainly monitor
operating system activities on specific hosts in order to detect intrusion attempts, while
Network-based IDSs examine network traffic. Any category of IDS can be further di-
vided into two subcategories on the basis of the mechanism adopted for detecting ma-
licious activities. More precisely, we distinguish between signature-based IDS (also re-
ferred to as misuse detection) and anomaly-based IDS. A misuse detection IDS detects
attacks as instances of attack signatures, i.e., sets of rules or filters which character-
ize a malicious event. Anomaly detection instead focuses on normal system behaviors,
rather than attack behaviors, i.e., a normal behavior profile is created for any activity
performed on the system, which has to be monitored, and any deviation from such a
profile is flagged as a potential attack. In this paper we are interested in the models of
anomaly-based HIDSs, which have been built following the idea initially introduced by
Forrest et al. [5,8]. These systems are built following the intuition that the “normal” be-
havior of a program p can be characterized by the sequences of system calls it invokes
during its executions in a sterile environment. In the original model the characteris-
tic patterns of such sequences, known as N -grams, are placed in a database and they
represent the language l characterizing the normal behavior of p. To detect intrusions,
sequences of system calls of a given length are collected during a process runtime, and
compared against the contents of the database. The Hamming distance between the col-
lected string and l is computed, and when it exceeds a certain threshold, an alarm is
raised by the HIDS.

The N -gram model is very simple and very efficient but it is characterized by a
relatively high degree of false alarms [6], mainly because correlations among syscalls
are lost, since there is no provision for storing information about the position where the
syscalls are invoked. Furthermore, in [16] it has been shown that such a HIDS model
is unable to detect two particular forms of computer attacks, namely the mimicry and
IPE. Quite recently various authors started to propose variations to the N -gram model
in order to improve its “precision”, i.e. its ability to correctly detect a computer instru-
sion, with a particular attention to both the IPE and mimicry attack. All these models
try to overcome the limitations of the original model adopting a better characterization
of a program behavior. Such a characterization is obtained by saving for any consid-
ered syscall, additional information such as the value of the program counter, the stack
configuration, and information regarding the control flow graph (see [12,16,4,7]). How-
ever, even these models suffer of some limitations. For example, in [16,4] it has been
shown that the callgraph model proposed in [16] as well as the model proposed in [12]
are not able to deal with some forms of IPE, while in [17,10] it has been shown that
all the models above mentioned are susceptible, with various degrees of resistance, to
some forms of mimicry attacks. In this paper we address the IPE and mimicry problem
in the N -gram based HIDS model, and we provide a contribution which, for our point
of view, could be very useful for the solution of the problem. More precisely, following
an idea described in [3] we devised a kernel-level module to which we will refer to as
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obfuscator which interacts with an underlying HIDS, and whose main scope is to “ran-
domize” sequences of system calls produced by an application in order to make them
unpredictable by any attacker. Such a module, intercept a syscall s invoked by a process
p, store the execution coordinates of s and force the kernel to execute s (or some other
syscall s′), besides the normal execution, a further random number of times with “null”
effects. Thus, the execution trace t produced by a single syscall s will be of the form
sΣ∗, where Σ is the alphabet containing a symbol for any syscall. t will be registered
by the underlying HIDS, which in our specific case, will be an N -gram HIDS, and any-
time p is executed, and a syscall u is executed, the obfuscation module will be in charge
of: verifying (using the syscall coordinates) that u belongs to the original code and not
to a compromised version of it, and reproducing the same execution trace in accordance
with that stored by the HIDS. Intuitively speaking, any attacker who wants to execute a
traditional mimicry against p has to know at least a randomized trace t, which is how-
ever hardy predictable as its content strongly depends on the execution environment.
The same reasoning can be applied, with some changes, to the case of IPE attacks.

In order to evaluate the feasibility of our idea we implemented a prototype of the
obfuscator module on a Linux system. Using such an implementation we have been
able to experimentally verify that the idea is a viable solution to detection of both the
mimicry and the IPE attacks. Furthermore, with respect to other solutions described in
literature, it turned out to be very efficient. We measured the overhead imposed by the
obfuscator on an Apache web server during the navigation of a small dynamic web site.
It turned out that our module affected the performance of the server with a slowdown
factor of only 0.07%

The paper is organized as follows. In § 3 we introduce some preliminary notions
about mimicry and IPE attacks as well as on syscall management in Linux. In § 4 we
describe our obfuscator model design as well as its integration with a N -gram anomaly
HIDS (§ 5), while § 6 shows how our obfuscator module is able to defeat both mimicry
and IPE attacks. Technical details about the obfuscator implementation are given in
§ 7 and in § 8 preliminary experimental results will be reported. § 9 faces few evasion
techniques that might be used against our approach as well as countermeasures that can
be deployed in order to avoid such evasions. § 2 gives related works in the area whilst
the paper ends with § 10 where some final remarks will be provided.

2 Related Works

The idea of using syscall obfuscation for preventing computer intrusions has been intro-
duced by [3], where an obfuscation scheme based on the randomization of the system
call mappings has been used for dealing with some type of buffer overflows.

The mimicry attack has been introduced in [16] and extensively described in [17],
where it has been shown that it can be applied to all HIDS models based on syscall trac-
ing. In order to improve the resilience of HIDS to mimicry attacks, many improvements
have been recently suggested. All these improvements are based on the same strategy:
record together with any monitored sycall additional information which enables the
HIDS, in the monitoring phase, to check that the syscalls the monitored process is exe-
cuting are invoked by the process itself and they are not invoked by any injected code as
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well as enabling the HIDS to check whether syscall-aware functions, that is, functions
which eventually invoke syscalls, return in their right position of application code. Do-
ing so, the attacker will not be able to keep control over the execution of his malicious
code. The information used so far for accomplishing such a task are the value of the
program counter at any syscall invocation and the call stack configuration at the time of
syscall invocation ([12,16,4]).

When such strategies are adopted, the only thing which an attacker can do is to force
an application to execute a single syscall which deviates from the normal behavior, but
due to the use of call stack configuration, at the end of the syscall execution the control
would return to the original code. Thus, given such a constraint, the realization of a
mimicry attacks seems to be possible only from a theoretical point of view.

Instead, in [10] it has been shown that even such a limited power is enough to a
clever attacker for mounting a mimicry attack. More precisely in this paper the authors
describe some techniques which enable an attacker to regain control of the program
execution flow after a syscall is completed. In particular, the alternation of invoking
system calls and regaining control can be repeated until the desired sequence of system
calls is executed.

IPE attack has been described in [16]. The most significant contribution on such
an issue is probably contained in [4]. In such a paper the authors propose an anomaly
detection method that utilizes return addresses information extracted from call stack, for
fighting, among the others, the IPE attacks; various strategies, of increasing complexity,
for performing such an attack have been introduced, and it has been shown that such an
attack, when suitably crafted, can evade detection by all of the syscall-based HIDS.

Today both mimicry and IPE represent the biggest conceptual weaknesses of the
HIDS concept as originally introduced by Forrest et al. and subsequently developed by
other authors. The idea we present in this paper can be used for implementing a strategy
which can contribute to solve such an issue.

3 Preliminaries

In this section we recall some basic notions on mimicry and Impossible Path Execu-
tion attacks as well as on kernel mechanisms and few definitions, which will be used
throughout the paper.

3.1 Mimicry Attack

The mimicry attack was first described by Wagner et al. [17,16] as an attack that can
be performed on syscall-based HIDS. In its simplest form, to which we will refer to as
traditional mimicry, it basically consists of attacking an application by mimicking one
of the legal syscall sequences stored by the HIDS. System calls contained in the legal
sequence which are not worth for executing the attack will be “nullified”, and all the
remaining will be truly executed.

Recently, Kruegel et al. [10] propose a variation of the traditional mimicry attack, to
which we will refer to as automatic mimicry. Up to date, automatic mimicry can defeat
all existing syscall-based HIDS models.
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Traditional Mimicry Attack The traditional mimicry attack bases its success on two
assumptions that are usually satisfied:

1. the attacker knows the system calls traces yielded by the process and stored by the
HIDS;

2. the attacker has full control over the execution flow once it has been hijacked toward
the execution of the injected [11] or already present [18] malicious code.

On the basis of such assumptions, an attacker can choose a trace that is meaningful
for his attack, and build an injection vector that will permit him to somehow execute the
selected system calls trace. Such a trace will contain “dummy” syscalls, that is, those
used only to simulate the legal sequence, which will produce “null” effects, and those
used by the attacker for specifying the malicious behavior needed to gain control of the
system. Hence, as depicted in Figure 1, only the meaningful syscalls are actually exe-
cuted successfully while the ones that have to be mimicked, are “nullified”, by simply
making them to fail due to incorrect syscall arguments, for example.

normal sequence: S1 S2 | S3 S4 S5 S6

where the normal sequence is the sequence provided by the process,
learnt by the IDS, whereas | represents the location of the vulnerability and Si

represents a generic syscall i.

attack sequence: Ss
3 S

s
4 S5 Ss

6

where the attack sequence, built by the attacker, comprises the simu-
lated “nullified” system call i (Ss

i ) as well as the system call the attacker
wishes to execute (S5).

Fig. 1. Traditional Mimicry Attack

It is not difficult to see that the following proposition hold.

Proposition 1 (Traditional Mimicry Attack) An attacker A can perform a traditional
mimicry attack on a process p only if he knows the system call traces yielded by p.

Automating Mimicry Attack One of the key point that a successful traditional mimicry
exploits, is the possibility, for the attacker, to control the execution flow once it has been
diverted. In fact,it is rather easy for an attacker, to perform such a task successfully1.

1 Assuming no particular OS protection mechanisms, such as Address Space Layout Random-
ization (ASLR) [15,1,13] and non-executable data area [14,9,15] are deployed.
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Recently, however, Kruegel et al. [10] proposed a variation on the traditional mimicry
attack as well as a proof of concept tool, which enable an attacker to have full control
over the execution flow of a process by manipulating particular code pointers, thus cir-
cumventing the syscalls coordinates checks. In such a context, a vulnerability is usually
triggered by overwriting particular code pointers, such as stack return addresses, Global
Offset Table (GOT) entries2, function pointers, longjmp buffers and so on.

3.2 Impossible Path Execution Attack

Impossible paths can be defined as a sequence of instructions that can never be executed
under normal circumstances due to a particular program structure. A typical example
of this situation is represented by an if () then ... else ... statement. If the CPU ends up
by executing some instructions in the true branch, there is no way to jump into the false
one3 no matter how many training runs we performed. It is simply an impossible path
to follow due to the structure of the program and the if/then/else semantic. If properly
individuated, an impossible path can be exploited by an attacker in order to execute
application code in a way that would not otherwise be possible; security-critical checks
as well as “jumping” over unwanted (from a security viewpoint perspective) code can
be, more or less, easily bypassed by Impossible Path Execution (IPE) attacks.

As shown in [19,4] some HIDS models are able to detect some kind of IPE attacks
but fail in detecting all of them.

Figure 2 depicts an example of code snippet originally proposed by [4] and slightly
modified in order to better show how an IPE attack can be successfully perpetrated,
while remaining completely undetected by the most prominent HIDS models such as
those proposed in [12,16,8]. Let us suppose that the function is_regular(uid)
(line 20) invokes the open system call twice in order to open, respectively, /etc/passwd
and /etc/group to check whether the given uid represent a regular user or not (im-
plementation not shown). Afterwards, the true “if” branch is executed if the user repre-
sented by uid has no particular privileges, whilst the execution will fall into the false
one otherwise: entering the true branch and “jumping” into the false one represents an
impossible path. In Figure 3, an undetected IPE attack sequence performed against an
N-gram HIDS model is reported. In particular, a regular user camouflaged as an at-
tacker, by entering the true branch of the if statement (lines 21-27) and by exploiting
the stack-based buffer overflow in read_next_cmd at line 8, is able to divert the pro-

2 A dynamically-linked ELF executable makes use of a Procedure Linkage Table (PLT) and a
Global Offset Table (GOT) in order to call library functions. The application performs a direct
call to the library function PLT entry which in turn ends by indirectly calling the relocated
library function thanks to the value stored in its GOT entry filled by the run-time dynamic
linker (rtdl). The rtdl resolves the symbols at some point so that subsequent calls are performed
without involving the rtdl itself, but by simply using the address stored in the corresponding
GOT entry. From a security viewpoint, an unmonitored overwrite of such an entry can make
code hijacking easily possible.

3 As suggested by “best programming practice”, we assume no spaghetti code at all, and hence
no local jump, i.e. goto, from one branch to the other.
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gram p execution flow in order to enter the false branch which eventually will give him
full privileges4.

It may be argued that IPE attacks could be difficult to perform since they depend
on too many factors (program structure, vulnerability “at the right position”, common
syscall sequences spread all over the execution flow, and so on) but, however, as pointed
out by Feng et al. [4], they should not be left unconsidered since it may be quite easy,
for an attacker, to deliberately introduce the “right” conditions in program source code
that may lead to an execution of an impossible path.

1: u_char *read_next_cmd(void) {
2:
3: u_char input_buf[64];
4: u_char *p;
5:
6: umask(2);
7: ...
8: strcpy(&input_buf[0], getenv("USERCMD"));
9: /* memory leak? :-) */
10: p = (char *)strdup(input_buf);
11: return p;
12: }
13:
14: void login_user(int uid) {
15:
16: char *cmd;
17:
18: /* why do you call it "poor programming style"?! :-) */
19:
20: if (is_regular(uid)) {
21:
22: /* unprivileged mode */
23: cmd = read_next_cmd();
24: setuid(uid);
25: /* yes, system is safe ;-) */
26: system(cmd);
27:
28: }
29: else {
30:
31: /* superuser! */
32: cmd = read_next_cmd();
34: setuid(0);
35: system(cmd);
36:
37: }
38: return;
39: }

Fig. 2. Code snippet that might be exploited by performing a successful IPE attack.

4 For the sake of simplicity we assume the system library function invokes only the execve
system call.
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The execution of the code snippet shown in Figure 2 yields the following
syscalls sequences (normal sequence), accordingly to the syscall-based HIDS
rules presented in [8] (3-grams traces)

O O U S E true branch (S and E at lines 24, 26)
O O U S E false branch (S and E at lines 34, 35)

These sequences produce the following traces (it is worth noting that S and
E are invoked by different memory locations but the N -gram model does not
take it into account, considering them as the same syscalls).
O O U
O U S
U S E

By exploiting the stack-based buffer overflow vulnerability at line 8 (Figure 2),
the attacker diverts the execution flow so that the syscalls S and E at lines
34-35 will be invoked while keeping the execution flow in-trace, accordingly
to the learnt syscalls traces above reported.

Fig. 3. IPE attack

3.3 Syscall Invocation and Kernel Information

In this section we briefly recall how the Operating System kernel reacts when a syscall
is invoked.

When a system call is invoked by a process p, the CPU switches to the kernel mode
execution and some information such as the program counter (PC) and few registers
are saved by the hardware itself onto the kernel mode stack. Afterwards, the kernel
saves others information about the process state onto its own stack as well, and after
performing few sanity checks, it retrieves the right syscall number and it executes the
corresponding kernel code that actually implement that system call. Among the data
saved onto the kernel mode stack, we are particularly interested in the Process Return
Address (PRA) and the Function Return Addresses (FRAs), where:

– PRA is the address of the next instruction of p to execute once the syscall has been
served.

– FRAs are the function return addresses stored on the program p stack that are re-
trieved whenever a syscall-aware function, that is a function which invokes a syscall
s, is executed. Using these addresses it is easy to determine the unique call site of
s. FRAs can be obtained by “walking the stack” using the frame pointer in order to
return back into the caller stack frame until we hit the main return address.

Syscall execution process is usually performed in the following three phases:

1. save information: in this phase information about the state of the running process
are saved onto the kernel-mode stack;
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2. execute the syscall: in this phase the kernel invokes the correspondent system call
service routine;

3. restore information: in this phase the kernel restores the PRA and the saved values
in order to enable the process to carry on its execution.

4 The Obfuscator Module

In this section we will describe the architecture of our model, depicted in Figure 4, that
is composed by two main components:

– obfuscator module;
– an N -gram based HIDS.

While the latter has already been extensively described in literature, we will con-
centrate our attention on the obfuscator module, the core concept of this work.

OBFUSCATOR MODULE

      KERNEL-SPACE

 syscall 
 replay

syscall 
request

   N-gram
     HIDS

Monitored
Process P

    USER-SPACEsyscalls
listening
on P

Fig. 4. System Architecture

The main scope of the obfuscator is to introduce “random noise” in traces learnt
by an HIDS, so that they cannot be replicated or mimic by an attacker. The obfuscator
works in a transparent way, without any modification of the underlying syscall-based
HIDS.
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The obfuscator module o we have devised works as follows. When a monitored pro-
cess p calls a syscall s, o intercepts s and checks if s belongs to p (i.e. it does not belong
to an attack vector); in the affirmative case the syscall is executed with “null” effects k
times, and it is “normally” executed once5 (where k is a customizable obfuscator pa-
rameter, unknown to the attacker). Thus, the trace t registered by the HIDS will contain
k instances of either the same syscall or a different type of syscall. Generally speaking
t ∈ sΣ∗, where Σ is the alphabet of all the system calls (see Figure 5).

Obfuscation phase

Giving a normal sequence S1 S2 S3 S4, the obfuscator module produces an
obfuscated sequence such as S1 Sr

1 S2 Sr
2 S3 Sr

3 S4 Sr
4, where Sr

i represents
the repeated system call i. It is this sequence that will be learnt by the IDS.

Fig. 5. Obfuscation Phase

In order to practically realize such a strategy two critical issues have to be addressed,
namely how to distinguish between syscalls issued by a process and those issued by
injected code, and how to execute “null” syscalls. In the following two sections we will
explain the strategies we devised for solving such problems.

Recognize Proper Syscalls The first task which the obfuscator has to realize is to be
able to distinguish between the syscalls generated by the original code and a compro-
mised version of it. If the obfuscator were not be able to recognize the syscalls belong-
ing to the monitored process, it would apply the obfuscation process on all syscalls even
those provided by attacker, thus allowing the attacker to perform the attack successfully.

A syscall is said to belong to a given process, if it is called either from its own code
segment, like a statically linked binary on UNIX systems, or from a code segment of
mmap’d areas where usually dynamic libraries are mapped, like a dynamically linked
binary on UNIX systems. Any other syscall called by other points of the process address
space will not be subjected to the obfuscation process.

In order to recognize the syscalls that belong to the process and to correctly iden-
tify their call site, we define two spatial coordinates represented by FRAs, PRA pairs.
Figure 6 shows a code snippet where it is possible to see:

Claim 1 The PRA and FRAs address are enough in order to claim that a syscall is in-
voked by a given process as well as correctly infer if it is invoked from different memory
locations.

If the attacker injects the code in data area such as stack or heap and executes his
own syscalls from there, these syscalls will be recognized as not belonging to the mon-

5 Technically speaking, there are user/kernel context switches but, if the syscall has just to be
repeated, no kernel code implementing it will be executed during “null” syscalls execution.
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itored program and, consequently, they will not be obfuscated. Thus, the resulting se-
quence will be out-of-trace and the HIDS will detect a trace different from the registered
ones. The only way for the attacker to sneak the HIDS is either to predict the obfuscated
sequence or to use different attack techniques such as the one proposed by Kruegel et
al. [10] and few others described in § 9.

0x080483a9: push %ebp
0x080483aa: mov %esp,%ebp
0x080483ac: sub $0x8,%esp
0x080483af: movl $0x2,(%esp)

2) 0x080483b6: call 0x80482a8 (PLT entry which calls 0x400d0fc0)
0x080483bb: leave FRA
0x080483bc: ret
...
0x080483c6: mov $0x0,%eax
0x080483cb: sub %eax,%esp

1) 0x080483cd: call 0x80483a9
0x080483d2: leave FRA
0x080483d3: ret
...
0x400d0fc0: mov %ebx,%edx
...
0x400d0fc6: mov $0x3c,%eax

3) 0x400d0fcb: int $0x80
0x400d0fcd: mov %edx,%ebx PRA
0x400d0fcf: ret

Fig. 6. Spatial Coordinates

Assumption 1 (Function Return Addresses) The function return addresses may be
retrieved with low-overhead; for instance, we suppose that the binary was compiled
with the frame pointer feature so that every function, even system call wrapper, presents
a prologue and an epilogue.

The Obfuscation Process In order to introduce unpredictability in the syscall traces,
we have redefined the the kernel syscall invocation mechanism, for monitored pro-
cesses, which will be performed as follows. When a syscall s is invoked by the process,
the kernel will normally execute s but before the restore phase will take place, we mod-
ify the PRA and force a new invokation of s. Thus, once s is terminated, a kernel/user
context switch will take place and the control will again return to s which, this time,
however, will be invoked by skipping the execution phase (simulated syscall). In this
way given a syscall s, the obfuscated trace will be of the form ss∗; however, the mech-
anism just described can be easily extended in order to produce obfuscated traces of the
form sΣ∗.

In the latter case we obtain a system (obfuscator + HIDS) which is more robust
against some types of attacks, such as timing and bruteforce, that will be showed in § 9.
For the sake of simplicity we will refer to the first approach throughout the paper, unless
differently stated.
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5 Obfuscator & HIDS

In this section we will describe how our system can be used for detecting intrusion
attempts. Such a task is performed in two phases, namely learning and detection phase.
Scope of the first phase is to “collect” obfuscated syscall traces. While in the detection
phase such traces will be used for detecting intrusion attempts.

5.1 Learning Phase

The learning phase is performed in two main steps. In the first one, the HIDS is disabled
and the obfuscator determines the information it needs in order to properly obfuscate
system calls. Afterwards, the HIDS is enabled and the obfuscator starts to produce the
obfuscated traces, while the HIDS performs its canonical learning phase. It is worth
noting that the learning phase performed by the HIDS and obfuscator module must be
the same, because if it were not the case the HIDS could learn traces which will not be
obfuscated but could be used by the attacker to perform a successful mimicry attack.

More precisely, the obfuscator learning phase can be further divided in two sub-
steps performed in the following order:

1. On-line Learning
During this step, the obfuscator retrieves, for every system call s that has to be
obfuscated, invoked by the process p, the following information:

– Process Return Address (PRA);
– Function Return Address (FRAs);
– Syscall Number: this information represents the type of syscall which is in-

voked by the process; it can be retrieved by the obfuscator since it is stored
onto the kernel mode stack;

These information, which represents the syscall coordinates (see § 4) are used to
determine whether s is invoked from different call site or not and, only in the affir-
mative case, they will be stored in the obfuscator repository.

2. Off-line Fixing
During this step, the obfuscator scans its repository obfuscating each syscall in an
unique way (more details on this strategy will be given in § 6.1), determining the
following parameters:

– Rep Syscall: represents the number of times that a syscall must be obfuscated;
– Real Syscall: this syscall represents the syscall that is really executed by the

kernel and invoked by the process;
– Simulated Syscall: a set of syscalls which contains the syscalls used to perform

the obfuscation process, and will never be executed by the kernel but will be
registered by the HIDS inside the current trace.

In the naive model we can obfuscate all syscalls executed by p but this approach
implies big overhead during the detection phase. In order to optimize such an aspect,
we decided to restrict the number of syscalls to obfuscate. For performing such a task
we referred to the work of Xu et al. who, in [19], have individuated 22 “dangerous”
syscalls which can be used to take control on a GNU/Linux system. These syscalls
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represent good obfuscation points to mitigate the mimicry attack, so we decided to
focus the obfuscation process on them. In order to make effective the protection of
dangerous syscalls, we also have to protect syscalls belonging to their neighborhood;
more precisely we have to protect all the syscalls that:

– are “close” enough to the dangerous syscalls, by belonging to a fixed customizable
neighborhood and,

– belong to the paths of the control flow which contain the dangerous syscalls.

If we protected only dangerous syscalls we could enable an attacker who knows the
trace before and after the protected syscall, to mimic it and reach the dangerous syscall
and executes it at least once, performing successfully the attacks. So, to avoid this, once
the appropriate syscalls to obfuscate have been successfully collected, we employ static
analysis in the learning phase of the obfuscation module. More precisely, before the
on-line obfuscator learning phase (see § 5.1, item 1) takes place, we need to localize all
the flow paths belonging to the dangerous syscalls and all syscalls that belong to such
paths.

Such a task can be performed as follows:

– the Control Flow Graph (CFG) associated with the binary of the monitored pro-
gram, is built;

– basic blocks containing dangerous syscall-aware functions are individuated and,
through the CFG, we also localize adjacent basic blocks which contain syscall-
aware functions and whose flow reaches the dangerous syscall-aware functions ba-
sic block. These functions will represent the points on which apply the obfuscation
process.

– finally, once we gather all the basic blocks we are interested in, we collect for all
the syscalls involved, the syscalls information, such as syscall type as well as its
call site.

In the Figure 7, we show two examples of CFG where inside the dark-grey basic
blocks we found the dangerous syscall, whereas inside the light-grey basic blocks we
found the syscalls belonging to its neighborhood that will be subjected to the obfusca-
tion process.

This simple flow analysis allow us to cover all the paths which reach the dangerous
syscalls. This is very important for our goal because if we were not able to cover all the
flows, the attacker would be able to elude the obfuscation process by using a legal path
that will lead him to reach the dangerous syscall (legal paths are the paths that are not
learnt by the HIDS but may be considered like a false positive because the number of
alarms associated to them, out-of-trace syscalls, are below the HIDS threshold). Things
change a little bit if we want to optimize the “detection” of IPE attacks. In fact, as
pointed out in § 6.1, the learning phase may simply consist in looking for equal N -grams
(that can be suitable target for an IPE attack in the N -gram model) inside the whole
program syscall trace and obfuscate that sub-sequence in order to create a “unique”
program syscall trace. For each sub-sequence obfuscated we store the addresses (FRAs
and PRA) and the obfuscation way of the real syscall presents in such a sub-sequence.
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Fig. 7. Syscall Protection

5.2 Detection Phase

The detection of a computer misuse on a system provided by the obfuscator module
just described and a HIDS, will be performed as follows. During a process p runtime,
every time a syscall is invoked, the obfuscator retrieves the current process obfuscation
parameters from the kernel mode stack. In particular, it also checks whether the FRAs
belong to the application code (process or library code areas) in order to be sure that all
the return addresses have not been tampered with by the attacker. Afterwards, the ob-
fuscator compares these obfuscation parameters with the ones saved during the learning
phase. If a matching is found, the obfuscator perform the obfuscation operation on the
syscall, and the HIDS will detect a legal trace of execution. On the other hand, if no
successful look up is obtained, the obfuscator module will not obfuscate any syscall at
all and the IDS will signal the anomaly.

6 Defeating IPE and Mimicry Attacks

In this section we will explain why the strategy we implemented through the obfuscator
module, is able to prevent IPE and traditional mimicry attacks.

The ability to recognize syscalls give the obfuscator the information needed in order
to choose whether obfuscate a given syscall or not. So, the goal of such a mechanism is
twofold in defeating both IPE and mimicry attacks as showed in the following Sections.

6.1 IPE

As just explained in § 3.2, in the IPE attack the attacker is able to use some syscalls that
follow the appropriate trace, learnt by the HIDS, but which are positioned in different
code locations. If the syscall trace provided by the program did not contains equal
substrings (N -gram), then the attacker would not be able to jump to other piece of
code and most forms of the IPE attacks will not be feasible anymore. Consequently
our idea is to look for equal N -gram inside the syscall trace program and obfuscate
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that sub-string in order to create a “unique” syscall program trace, that is the “unique”
N -gram inside the HIDS database. In the Figure 8 we show the obfuscation process
applied to the vulnerable code reported in Figure 8; whilst the code reported in Figure 2
presents equal N -gram USE in different code locations (the first one at 6, 24, 26 and
the second one at 6, 34, 35) allowing the attacker to perform the IPE attack, after the
obfuscation process takes place, the syscall called at different call site are obfuscated
in different ways, so the jump to line 23 to 34 (IPE attack), would yield the N -gram
Sr

3 S Sr
7 never learnt by the IDS. The power of anomaly IPE signal detection may be

increased by enlarging the number of the “simulated” syscalls used by the obfuscation
process.

System call obfuscation: defeating IPE attacks

Giving the following normal sequence learnt by the HIDS, if the obfuscator
obfuscated every syscall with another one of different type, the HIDS would
see:

O Sr
1 O S

r
2 U S

r
3 S S

r
4 E S

r
5 if the expression E gives true

O Sr
1 O S

r
2 U S

r
6 S S

r
7 E S

r
8 if the expression E gives false

which produces the following traces

O Sr
1 O

Sr
1 O Sr

2

O Sr
2 U

Sr
2 U Sr

3

U Sr
3 S

Sr
3 S Sr

4

S Sr
4 E

Sr
4 E Sr

5

S2 U S6

U S6 S
S6 S S7

S S7 E
S7 E S8

Giving an attack sequence such as U S E, where S and E are those of,
respectively, lines 34 and 35 of Figure 2, thanks to the obfuscator work, the
HIDS would see the Sr

3 S Sr
7 trace which was not learnt before, rising up an

alarm.

Fig. 8. Defeating IPE attacks

6.2 Traditional Mimicry

Suppose that an attacker is able to exploit a vulnerability and that he recognizes, in-
side the original program after the vulnerability, the trace t = ti, ti+1, ..., tk to be
mimicked in order to perform a successful mimicry attack. Moreover, suppose that
c = ci, ci+1, ..., ck is the corresponding array of obfuscation coordinates belonging to
t. Thus, the attacker has two choices for executing t, namely either invoking the proper
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syscall si at coordinates ci or invoking si from another memory location different from
ci, such as data areas. In the latter case the obfuscator sees that the si is invoked from
an unknown memory location with respect to the learning it performed so, obfuscation
process will take place and the sub-sequence will be out-of-trace giving the HIDS, that
runs on top of the obfuscator, the opportunity to raise an alarm. In the former case, in-
stead, thanks to the ci syscall coordinate associated with the syscall si, the obfuscator
will provide the appropriate trace. However, the attacker will not be able to regain the
control of the execution flow because the PRA and the innermost FRA will make the
execution flow to return at the memory location where the syscall-aware function was
invoked.

7 Technical Details

In this section we provide the implementation details of our obfuscation module based
on the Linux kernel, 2.4.x version, running on 32-bit Intel Architecture. We will de-
scribe the main memory structure needed by the obfuscation process and the algorithm
used to apply the obfuscation on the monitored processes.

task struct Modification We decided to store the process obfuscation information
into the in-kernel task_struct structure. This structure is used by the kernel to hold
information about the process, such as its state, its mapped address space, and so on.
We chose such a structure since it is present in memory for all the process lifetime. In
particular we modified the task_struct adding the following fields:

– obfuscation state: this flag is used by the obfuscator in order to know whether the
process is in the obfuscation state or not;

– syscall hash table: every hash table entry contains the information (obfuscation
parameter) provided by the obfuscation learning phase; more precisely we have
PRA, FRAs, syscall number and rep syscall;

– syscall return value: the purpose of this field is to permit to return back to the
process, i.e., it contains, the real syscall return value upon obfuscation termination.

Obfuscation Algorithm The obfuscation algorithm is implemented inside the code
that is in charge of handling syscalls. Such a mechanism is implemented in entry.S
and is divided into three main steps:

1. after the software interrupt is invoked by the process, the CPU switch in kernel
mode and saves few information onto the kernel mode stack. Afterward, the exe-
cution is passed to the system_call entry point, where the kernel keeps going
on to handle the system call trap, by saving the process state information onto its
own stack and then retrieving the pointer to the current process as depicted by
the following code snippet:

system_call:
pushl %eax
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SAVE_ALL
movl %esp, %ebx
andl $0xffffe000, %ebx
...

2. some sanity checks are performed, such as testing whether the syscall is valid (the
syscall is valid if the syscall number is inside a range of syscalls actually imple-
mented in the kernel) so that the right syscall handler can be executed or not. The
following code snippet describes such a phase:

cmpl $(NR_syscalls), %eax
jae badsys
...
call *sys_call_table(0, %eax, 4)
...

3. At the end of the system_call syscall handler before returning back in user
space, the kernel saves the syscall return value (%eax register) onto its kernel mode
stack and set the things up for returning in user space, as shown by the following
code snippet:

movl %eax, 24(%esp)
ret_from_sys_call:

...
RESTORE_ALL

Our modification is placed between the control for the syscall validity and the
syscall handler invocation (second step); the pseudo code of our modification is the
following:

0: get_process_information(pid)
1: if (process must be obfuscated) {
2:
3: if (task_struct[process].obfuscation == 1) {
4:
5: # rewind the return address at the previous
6: # instruction, i.e. at the begin of int $0x80
7: return_process_address -= 4
8:
9: # decrement the number of times the syscall

10: # must be repeated
11: rep_syscall-- ;
12: if (rep_syscall == 0)
13: task_struct[process].obfuscation = 0;
14: }
15: else {
16:
17: # look for the obfuscation parameter

18



18: # into the syscall hash table
19: check_syscall_obfuscator(PRA, FRAs, sysnum)
20:
21: # tell the kernel to obfuscate any subsequent syscall
22: # of this process but this one
23: task_struct[process].obfuscation = 1
24: exec_syscall_handler()
25: }
26:}

In our code, we can recognize two main obfuscation phases:

– the first phase is performed when the process gets marked in order to be obfuscated;
this state is described by the code between lines 15 and 25.

– the second phase is performed when the process has already been marked for ob-
fuscation so just syscall “bouncing” has to be performed as shown in the above
code snipped between lines 3 and 14.

Every time a process invokes a syscall, the obfuscation code gets the process infor-
mation (line 0) and, using them, checks in which state the process is; if the process must
enter in the obfuscation phase, the code retrieves the syscall obfuscation parameter (line
19) for that syscall and update the task_struct obfuscation flag. Otherwise, if the
process is already inside the obfuscation phase, the code rewinds the process return
address in order to point at the begin of the syscall interrupt instruction again (line 7),
updating the rep syscall parameter as well. When the rep syscall reaches 0 (line 13), the
code sets the process obfuscation flag state to 0 (not obfuscated) which means that the
process obfuscation on that syscall is finished.

8 Experimental Results

As a method to test the effectiveness of the obfuscator module devised in this pa-
per, we tried the same mimicry attack performed by Wagner et al. [17] against the
server wuftpd version wu-2.4.2-academ[BETA-15](1) running on a Debian
GNU/Linux operating system with an N-gram based HIDS like the one in [8]. The
empirical test were conducted on two kind of scenarios; the first with the obfuscator
module “turned on” while the second one with it “turned off”. The scenario which had
not the obfuscator running showed, obviously, that a traditional mimicry attack was
possible. On the other hand, such an attack totally failed in the other case. The same
holds for IPE attack as well.

The rest of the section will describe the set of experiments we ran to collect the
measurements about the overhead introduced by our defensive mechanism and related
results. For our experiments we used an Intel Pentium IV processor with 3 GHz clock,
running Debian GNU/Linux operating system as a guest operating system on the VMWare
5.0 virtual machine, with the 2.4.30 Linux kernel and 92 MB of RAM.

Our module acts on the code used by the kernel in order to manage the syscalls,
so we focus our attention on those routines, defined into the entry.S file. In order to
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measure time lapses we use the “timestamp counter” processor register. The counter,
available on all kinds of Pentium processors is a 64 bit register that gets incremented at
each clock tick. Using this measure we are able to provide the most accuracy measure-
ment of the system.

In the first phase of our experiments we have measured three main pieces of code of
our obfuscation model, providing three measurements for each of them: the best time,
the average time and the standard deviation of execution; in particular we have:

– Stack walk time: this time represents the time needed to retrieve the FRAs sequence.
To compute such a time we have considered that, for each protected syscall, we
have to walk 6 stack frame on average. The obfuscator overhead in this case is
122µs ± 507µs (4.2% overhead) on average (reporting 60µs, i.e., 2%, on best).
See Table 1 for further details.

– Replay syscall time: this measure represents the amount of time used to perform the
context switch from kernel to user mode context and vice versa executed during the
obfuscation process. The obfuscator overhead in this case is 144µs± 493µs (8.5%
overhead) on average (reporting 63µs, i.e., 5%, on best). See Table 2 for further
details.

– Hash table access time: this measure represents the amount of time needed to ac-
cess the hash table in order to retrieve the obfuscation parameters. This measure
depends on the number of the syscalls invoked by the function called in the different
program call site which are used to define the hash table size. We have considered
that the hash table contained 500 syscalls on average. Thus, the obfuscator over-
head in this case is 114µs ± 437µs (6.5% overhead) on average (reporting 61µs,
i.e., 1.6%, on best). See Table 3 for further details (the hash table holds 500 syscalls
on average).

Best time Average Time Standard Dev. Time N. Trials
stack walk 60 µs (181185 ticks) 122 µs (367404 ticks) 507 µs (1523697 ticks) 10000
no stack walk 58 µs (174908 ticks) 117 µs (353906 ticks) 484 µs (1454984 ticks) 10000
Overhead 2 µs (3.4%) 5 µs (4.2%) NA NA

Table 1. Stack walking measurement

Best time Average Time Standard Dev. Time N. Trials
replay syscall 63 µs (188572 ticks) 114 µs (343328 ticks) 493 µs (1481410 ticks) 10000
no replay syscall 60 µs (180855 ticks) 105 µs (315372 ticks) 410 µs (1230820 ticks) 10000
Overhead 3 µs (5%) 9 µs (8.5%) NA NA

Table 2. Syscall replay measurement
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Best time Average Time Standard Dev. Time N. Trials
Access Hash Table 61 µs (182040 ticks) 114 µs (342760 ticks) 437 µs (1313528 ticks) 10000
no access Hash table 60 µs (180757 ticks) 107 µs (322267 ticks) 443 µs (1330344 ticks) 10000
Overhead 1 µs (1.6%) 7 µs (6.5%) NA NA

Table 3. Hash table access measurement

In the second phase of our test we have considered the server web Apache version
2.0.55-4, and a small dynamic web site with the following features: total size 500 KB,
12 static HTML pages, 6 CGI scripts, and 6 PHP scripts with an average page size of
4 KB. We have set our obfuscator module in order to replay four times the dangerous
syscalls and their neighbors and we set the deep protection (the number of neighbor
syscalls to obfuscate) to 2. In the first step we have collected data during the surfing of
the site without the obfuscator module; afterwards we have measured the same surfing
with the obfuscator on. In the Figure 9, we have reported the Total Syscall Execution
Time during the surfing with the obfuscator on, we show in light gray color the normal
execution time of syscalls made by the Apache and in black one the overhead execution
time inserted by our obfuscator module, the higher impulses in the middle of the graphic
are associated to the I/O syscalls such as new_select and poll.

Fig. 9. Total Syscall Execution Time
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In Figure 10 and 11, we have reported the same data-set collected during the surfing,
showing for each syscall made by the Web server the normal execution time on average
(light grey) and the overhead execution time on average (dark). We have labelled each
data with the correspondent syscall number.

Fig. 10. Average Syscall Execution Time (1)

Our measurements show that for the whole surfing of the web site the Total Syscall
Execution Time is 106.481s; we have added only 75.131ms delay for the obfuscation
process, that is the 0.07% total overhead. Consequently, we can consider our system a
very low-overhead one.

9 Evasion Techniques

We recognized some evasion techniques that might be used to elude the obfuscator
system. For each technique we will describe its base concept and we will discuss about
the countermeasures that can be adopted.

9.1 Bruteforce Attack

In order to elude the obfuscator module, an attacker could perform a brute force attack
trying to obtain the obfuscated trace yielded by the obfuscator module. In fact, if an at-
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Fig. 11. Average Syscall Execution Time (2)

tacker were able to build the appropriate obfuscation trace, then the HIDS would accept
it, even if the code was executed in data area such as stack or heap. Easy combinatorial
formulæ can be used to show that such an attack is not feasible.

9.2 Timing Attack

In the case our obfuscator module adopts the strategy of repeating the same syscall k
times, a timing attack can be realized for predicting the number of times that a particular
syscall has been repeated. In order to achieve such a task, the attacker must gather the
following information:

– Tse (Time syscall execution): this measure represents the amount of time that a
particular “real” syscall, takes in order to be executed.

– Tsr (Time syscall replay): this measure represents the time used to replay the syscall,
that is the time to perform the context switch between kernel-space to user-space
and vice versa.

– Tne (Time network environment): this measure is needed only if the attacker per-
forms this attack in network environment, and it represents the round-trip delay
introduced by the network path.
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– Tas (Time structures access): this measure represents the time to access the structure
of obfuscator used to retrieve the obfuscator parameter. This time may be accuracy
compute because the obfuscator structures are known.

– Ttr (Time total response): this measure represents the times of reply to perform a
particular operation on behalf of the protected process, for sake of simplicity we
consider that the operation is associated to one syscall.

Once an attacker retrieves these information, he is able to compute the formulæ 1 in
order to obtain the number of times a particular syscall is issued.

Nreps =
Ttr − Tas− Tne− Tse

Tsr
(1)

In order to mitigate such an attack we can obfuscate the execution time by introduc-
ing a fixed quantum time delay as big as the Tsr time. These quanta of time obfuscate
the real number of times that a syscall is repeated, so the attacker will not be able to
build the appropriate trace.

9.3 Automatic Mimicry Attack

The key aspect of the automatic mimicry is the execution flow regain, that is a technique
the permit to regain the control of the execution flow at some points, in order, for exam-
ple, to permit the attacker to provide malicious parameters associated to “dangerous”
syscall. Moreover, this attack does not even need to know a proper syscall trace and
this is the main reason why our obfuscation technique fails to detect it. However, the
main obfuscator architecture herein proposed, may be used, properly adapted, in order
to prevent such an attack as well. Preliminary ideas about defeating automatic mimicry
attacks using our obfuscator model as main framework are an ongoing project and can
be found in [2].

10 Conclusion & Future Works

This paper presented a novel defensive technique, represented by the obfuscator mod-
ule, which works in transparent way and low overhead, and it is used in order to protect
the N-gram based HIDS against known attacks such as mimicry attack and most forms
of IPE. We are working in order to improve the obfuscator to defeat the automating
mimicry and all forms of IPE, to detect by data-flow analysis non-data control attacks
and to improve the signal anomaly in order to distinguish between anomalies yielded
by false positive and by some attacks.
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