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Abstract. Software security has become an increasing necessity for guaranteeing, as much as
possible, the correctness of computer systems. A number of techniques have been developed over
the past two decades to mitigate software vulnerabilities. Learning-based anomaly detection tech-
niques have been pursued for many years due to their ability to detect a broad range of attacks,
including novel attacks. More recently, taint-tracking techniques (also known as information-flow
techniques) have become popular due to their high accuracy and the ability to detect a broad range
of attacks.
We believe that the discriminating power of anomaly detectors can be improved by combining
them with fine-grained taint analysis. To this end, we propose anomalous taint detection, an ap-
proach which couples taint analysis and learning-based anomaly detection approaches to auto-
matically infer taint-enhanced security policies, while keeping false positives low and increasing
the accuracy of the underlying models. The intuitive justification for this is that an attack involves
a combination of a vulnerability, and an attackers ability to exercise this vulnerability. Anomaly
detection techniques detect behavioral deviations that occur when a vulnerability (targeted by an
attack) is exercised. Fine-grained taint information provides clues about the ability of the attacker
to exercise this vulnerability.
We developed a prototype implementation of our approach which showed that is effective to pro-
vide protection from data attacks as well as memory errors which corrupt code pointers. False
positives rate are discussed as well.

1 Introduction

A number of techniques have been developed over the past two decades to mitigate software vulnera-
bilities. Learning-based anomaly detection techniques [37,35,9,15,29,21,20,2] have been pursued for
many years due to their ability to detect a broad range of attacks, including novel attacks. More re-
cently, taint-tracking techniques (also known as information-flow techniques) [30,23,5,26,24,38] have
become popular due to their high accuracy and the ability to detect a broad range of attacks.

It can be observed that an attack involves a combination of a vulnerability, and an attackers ability
to exercise this vulnerability. Anomaly detection techniques detect behavioral deviations that occur
when a vulnerability (targeted by an attack) is exercised. Fine-grained taint information, on the other
hand, can provide information about the ability of the attacker to exercise this vulnerability, signifi-
cantly increasing the odds that an attack is in progress. One of the advantages of anomaly detection or,
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to be more precise of dynamic learning-based techniques, is that they are able to automatically infer
security policies by observing and characterizing applications’ events, as successfully shown in recent
and past research efforts [37,35,9,15,29,21,20,2]. For instance, sequences of system calls can be used
as a starting point to define a possible behavior of an application [15], statistical models can help to
characterize system calls arguments usage [21,20], and machine learning techniques can be adopted
to infer relationships among the arguments of different system calls [2]. Unfortunately, all these tech-
niques suffer of false positives (FPs) and attempts to limit them generally increase false negatives
(FNs) as well. Moreover, by building profiles of legitimate behaviors, anomaly detection approaches
are generally victim of mimicry attacks [36,35,17,33,32], where an attacker tries to stick his attack to
be compliant to the inferred profile.

Although we do not attempt to solve all the dynamic learning issues, we believe its drawbacks
can be mitigated by enhancing anomaly-based techniques with information provided by taint analysis.
More precisely, by combining taint analysis and anomaly detection, only tainted traces – that is events
such as system calls that have at least one tainted argument – which are normally a small percentage
of the total number of the observed events, are further characterized. This provides two main benefits.
First, FPs can be lowered and model accuracy increased, which, in turn, decreases FNs as taint is a
property of data but it does not depend on the observed data itself. For instance, an untainted system
call argument a observed during a learning phase will most likely remain untainted during a normal
detection run, regardless of the data characterization actually observed for a. An anomaly would occur
if a became tainted during detection as this would be considered as a manifestation of an attack. The
second benefit is that the approach focuses its analysis on tainted events. Therefore, untainted events
are not characterized anymore and thus, for these events, the incompleteness of dynamic learning
approaches with respect to observed data and exercised paths does not represent an issue anymore.
In fact, any unseen/unknown untainted events will not be considered during detection phase further
constraining FPs.

Unfortunately, as protection mechanisms improve, so do the attacks. For instance, recently Chen et
al. [6] pointed out that is no longer necessary to exploit a memory error vulnerability with the goal to
hijack a legal process’ control-flow to cause harm. In fact, damage can also be caused by overwriting
arbitrary security sensitive data and data pointers. Even if this seems to be a strict restriction, Chen et
al. showed that these attacks can be as powerful as the classic ones (i.e., which corrupt code pointers).

Motivated by these observations, in this paper we propose an approach to provide a more compre-
hensive protection against data attacks. In particular, we make the following contributions:

1. We propose anomalous taint detection, a technique which combines taint and anomaly detection-
based approaches. As aforementioned, this permits to automatically infer a process behaviors by
considering only tainted traces. Thus, FPs can be limited and attacks detection accuracy and resis-
tance to mimicry attacks improved.

2. We developed a prototype implementation of the proposed approach which transforms a program
P to PT , a semantically-equivalent taint-enhanced version of it. Then, by leveraging on taint infor-
mation, PT is further enhanced to perform (i) an attack-free training phase (as in every learning-
based anomaly detection approach) where properties of tainted sinks’ arguments, that is, relevant
events (e.g., system calls or security sensitive functions) are learnt and modeled to generate a be-
havioral profileM of PT , and (ii) a detection phase during which single events of PT are observed
at run-time and checked one at a time to see whether they are consistent to the learnt behavioral
profileM. ShouldM be inconsistent with respect to these traces, an alarm will be raised.

3. We evaluated our approach in terms of effectiveness in detection accuracy of data attacks, FPs
rate, and resistance to some form of mimicry attacks [36,35,17,33,32].



The rest of the paper is organized as follows. We describe how anomalous taint detection, the
approach proposed in this paper, provides a more comprehensive protection from data corruption at-
tacks [6] in § 2. Implementation overview is provided by § 3, while evaluation of the proposed approach
in terms of effectiveness, and false positives rate is given in § 4. Discussion on the approach is provided
by § 5, and related literature is described in § 6. We conclude the paper with § 7 which provides future
direction as well.

2 Anomalous Taint Detection

An important benefit of taint analysis approach is that it can accurately detect many classes of attacks
without requiring application-specific policy development. In fact, the enforced policies are generic
and easy to specify. However, to provide more comprehensive protection against other general data
attacks [6] or unknown types of attacks, it becomes necessary to develop application-specific policies
that can tightly constrain the behavior of the protected application. Development of such policies can
be time-consuming. Moreover, it could be hard to describe manually, what a policy should look like.
On the other end, anomaly detection techniques have had an advantage in this regard: they do not
require manual effort for developing behavior profiles; instead, profiles are automatically learnt using
training data that is acquired during normal operation of an application.

The drawback of anomaly detection techniques is that in practice, they suffer from a high rate
of false positives (FPs). This is because of the fact that training can never be exhaustive, and hence
some unseen (but legitimate) behaviors will be classified as attacks. We believe that the discriminating
power of anomaly detectors can be improved by combining them with fine-grained taint analysis. The
intuitive justification for this is as follows. Note that an attack involves a combination of a vulnerability,
and an attackers ability to exercise this vulnerability. Anomaly detection techniques detect behavioral
deviations that occur when a vulnerability (targeted by an attack) is exercised. Now, fine-grained taint
information can provide information about the ability of the attacker to exercise this vulnerability.
More concretely, consider a system that detects anomalous system call arguments. Such a system may
detect an anomalous argument to an execve system call, which raises a suspicion. If, in addition,
this argument is tainted, then it significantly increases the odds that an attack is in progress. Based on
this observation, we propose a mixed approach which combines anomaly detection and fine-grained
taint-tracking.

Since taint is a property of data, our proposed approach will be focused on learning properties of
system call arguments rather than their names. LetΣ be the set of all the sinks, and s(a1, a2, · · · , an) ∈
Σ a generic sink, where a1, a2, · · · , an are sink’s arguments. As mentioned earlier, our approach uses
taint analysis and anomaly detection using a learning-based approach to learn taint information of
sinks’ arguments. For instance, our model considers all the system calls and some function of interest
(e.g., print-like functions used in format string attacks) as sinks.

As other approaches [2,29,21], our analysis is context-sensitive. That is, it considers contexts for
each system call that can be utilized to refine argument learning. For instance, our approach can dis-
tinguish between open system calls made from two different locations, and can thus learn different
properties for the arguments of the two calls. This increases accuracy of the model if, say, one of the
open’s is used to open a configuration file, while the other is used to open a data file specified by a
user. In fact, intuitively, the former system call uses an untainted file name argument, while the latter
uses a tainted one. This improves the likelihood of detecting an attack, should the untainted file name
argument be marked tainted during the detection of our approach.



As other anomaly-based approaches, our strategy roughly consists of two phases, namely a learn-
ing phase, and a detection one. During the learning phase our approach builds a profileM of a moni-
tored application, based on the information we describe below. Afterwards, when the learning phase is
terminated, the application is executed in detection mode and a new profileM′

is created incremen-
tally. ShouldM deviate fromM′

, an alarm will be raised.
In the following, we describe what kind of taint information is learnt by our strategy, and how this

can be used to detect memory error exploits.

Using Coarse-grain Taint Information

Taint information associated to a sink argument ai are learnt. For aggregate data such as struct’s
and arrays, the taint status of all bytes of the data will be combined into one. Multiple taint values, e.g.,
corresponding to data dependencies versus control dependencies, are learnt separately.

At detection time, an alarm can be raised if an argument that was not tainted during training is
now found to be tainted. This approach can detect many buffer overflow attacks that modify system
call arguments, as opposed to modifying control flows. Examples of documented attacks that can be
detected by this extension are (a) an attack on the popular WU-FTPD that corrupts a userid argument
to a seteuid system call [6], and (b) an attack on Netkit telnet server that overwrites the name of
a login program, which is subsequently used as an argument to execve system call [6] (see § 4.1).

Using Fine-grained Taint Information

For some aggregate data, the above approach may loose too much information by combining the taint
values associated with the data. To improve precision, we can avoid this combination step. For instance,
we can individually learn taint information associated with each field of a struct. This is particularly
useful for some system calls, e.g., recvmsg, sendmsg, readv, writev, where a more detailed
understanding of the involved data structure is required, in order to gather more meaningful taint-
provided information). For arrays, user may select specific array elements for which taint information
needs to tracked individually. Currently, our proof of concept implementation does not exploit this last
feature.

Deriving Application-specific Taint-enhanced Policies

Policy-based and anomaly-based detection techniques possess complementary benefits: the main ben-
efit of policy-based detection is a low rate of false positives, while their drawback is the effort required
for policy development. In contrast, anomaly detection requires no such effort, but in practice, tends to
suffer from a higher rate of false positives. Our strategy combines the strengths of the two approaches
by using models built for taint-based anomaly detection to suggest (taint-enhanced) security policies.

Learning whether a sink argument ai is tainted or not already improves the accuracy of our ap-
proach and, as aforementioned, allows the detection of some data corruption attacks which corrupt
data pointers (see for instance WU-FTPD, and Netkit in § 4.1). However, a better characterization of
the argument considered is needed when more general memory error attacks are involved (e.g., [21]).
To this end, for every sink argument ai, the adopted learning-rules characterize the following properties
depending on whether a sink argument ai is fully or partially tainted.

(a) ai is fully tainted. That is, each byte of ai is tainted. The following argument’s properties are
inferred by the underlying learning-rules:



Maximum length. Since the argument is tainted, this property inferred during training phase
gives an approximation of its probable maximum length lmax which is expected during detec-
tion phase. This helps to detect memory error attacks that try to overflow buffers with the intent
to overwrite security sensitive data used at sinks (see [21] for instance). In fact, during detec-
tion these tainted arguments will exhibit a length l > lmax which, as a direct consequence,
will violate the inferred security policy.

Structural inference. There are situations where characterizing arguments’ lengths is not enough.
An attacker might not try to overflow any buffers but, instead, he might try to modify the nor-
mal structure of the considered argument to bypass some security checks. To this end, the
structure of ai is inferred so that each byte is clustered in proper class. Currently, our model
classifies (or maps) uppercase letters (A-Z) to the class represented by A, lowercase letters (a-
z) to a, and numbers (0-9) to 0. Each other byte belongs to a class on its own. For instance, if
the model sees an open("/etc/passwd", ...) system call invocation, the finite state
automaton (FSA) which is generated for the string /etc/passwd will recognize the lan-
guage /a*/a*. We further simplify the obtained FSA by removing byte repetition, as we
are not concerned about learning lengths with this model. The final FSA will thus recognize
the simplified language /a/a. If during detection the structure of the considered argument is
different from the one learnt, an alarm will be raised.

It can be noted that for particular sinks, trying to infer their (tainted) argument structure can rise
FPs if the structure for that sink is highly unpredictable during learning (i.e., it keeps changing fre-
quently). For instance, when arbitrary dataD are read from the network, they are marked as tainted
as network input is considered untrusted. Let suppose that D is subjected to some application-
specific transformation (e.g., encoding/decoding) or application-specific sanity/security check,
subsequently. Let D

′
be the transformed data. When D

′
reaches other sinks, such as output sinks

(e.g., open, stat, execve) its structure will be either different from the initial one (e.g., en-
coding/decoding), or its structure will have a “fixed shape” (e.g., sanity/security check) when that
particular output sink is reached. Therefore, to try to constrain FPs due to an incorrect character-
ization of the analyzed argument, and to make the learning phase less data-dependent, it makes
sense to enable only the learning of the argument maximum length for particular sinks (e.g., gets
at proper context, for example [21])1.

(b) ai is partially tainted. That is, ai has both tainted and untainted bytes. The tainted portion is
subjected to the learning of the aforementioned properties, while the following learning rules are
considered for the untainted part (ai can have different tainted/untainted portions and all of them
have to be considered. However, our current implementation considers only the first pair):
Minimum length. When an untainted portion of a tainted argument is considered, what is impor-

tant to remember is its minimum length lmin. In fact, considering its maximum length would
be misleading as the argument would likely not have the same length all the time and, as the
argument portion is untainted (i.e., trusted), we are more concerned on the fact that the argu-
ment will always have a minimum number of untainted bytes. Intuitively, this is an indication
that the attacker will not be able to overwrite the whole untainted argument portion. In most
cases the attacker will not be able to overwrite not even a byte of the untainted portion as usu-
ally, lmin will be identical to lmax (e.g., sinks arguments which operate on the same untainted
data). However, for those situations where this is not true, lmin provides a lower bound under
which is not possible to underflow without raising an alarm.

1 Although argument length depends on data, it is not data-dependent in the sense that it does not depend on any
particular data value.



Longest common prefix (LCP). Untainted arguments (or portion of them) should have a more
regular “structure” or shape than the tainted counterpart as they are not directly influenced
by user input. Therefore, our approach learns the longest common prefix for every consid-
ered sink argument which is partially untainted. Should the learnt longest common prefix be
different during detection, an alarm would be raised.

Further discussion about attacks on the proposed approach as well as arguments on the protection
provided are given in § 5.

3 Implementation

As a first step, the approach proposed in this section takes a program P as input and produces PT , a
semantically-equivalent taint-enhanced version of it. In particular,

– For every taint source and sink, that is for every system call or function of interest invoked by PT ,
a wrapperW is introduced by the transformation approach. This enables our approach to (i) learn
properties of sinks’ arguments, and (ii) mark some source arguments as tainted (e.g., those coming
from the network). Following this reasoning, it is possible to automatically infer and enforce taint-
enhanced security policies for every taint source and sink by using the information and learning
rules described in § 2.

– Tracking of control dependency are fully enabled to be able to further enhance the inferred policies
not only with taint information but also with information on how taint information is propagated
throughout the application lifetime. This information can help to further thwart memory error at-
tacks which corrupt arbitrary non-pointer data and represents an on-going research area we are
exploring. Currently, the implementation of this feature in our proof of concept is not fully com-
plete.

In the following we detail the aforementioned steps, the building blocks of anomalous taint detec-
tion.

1. PT is monitored during the training phase and a log file is created. The log file includes sink’s
names and their context information (e.g., calling site), sink’s arguments and, for each argument,
taint information as well as further characterization, if needed, by using the model described in § 2.
For instance, a typical log entry looks like the following:

read@0x8048f5c 3 arg0={ A:U } arg1={ A:U V[0-98]:T C:99:0:ls -la } arg2={ A:U }

The meaning is as follows. The sink name (read) is followed by its calling site (0x8048f5c).
Next, the number of arguments follows (3) and details about these arguments are considered. For
instance, the entry for the second argument (arg2) tells us that the address (A) where the sink
buffer of size 99 (V[0-98]) is stored at is untainted (A:U), while the buffer content is tainted
(V[0-98]:T). Moreover, the content of the tainted buffer which starts at offset 0 is ls -la2.
These information will be used by the next step.
The learning phase is implemented by using a dynamic shared object transparently loaded into PT

address space which wraps and overrides the original sinks behavior, re-invoking them whenever
necessary.

2 To avoid noise into the log file we actually base64 encode buffer contents which are decoded by the off-line
log analyzer to create the application profile.



2. The log file is analyzed off-line to build a profileM of the behavior of PT by using the information
provided by the previous step. In particular, (i) identical events, that is events whose names and
call sites are identical are merged into a single event instance, and (ii) untainted events are inserted
as part ofM but no further information is gathered or subsequently considered for them (this is
basically done for evaluation reason).
For instance, considering the previous example, the tainted sink read invoked at the calling site
0x8048f5c has the first and third argument untainted, while the second argument a1 is tainted.
Moreover, lmax, the maximum length for a2 is 99 while, accordingly to the learning rules de-
scribed in § 2, its structure is a -a.
The profile created during this step is serialized and re-loaded during the next step. This permits
to update the profile whenever there is the need to do so, without discarding the out-of-dated one.

3. PT is monitored during a detection phase. An on-the-fly behavioral profileM′
of PT is incremen-

tally created. The information contained inM′
are consistent with the one considered in 1. Should

M′
be inconsistent withM an alarm will be raised.

The detection phase is implemented by using a dynamic shared object transparently loaded into PT

address space which wraps and overrides the original sinks behavior, re-invoking them whenever
necessary.

The anomaly detection part of our proof of concept has been implemented by using the C, C++
and Python programming languages with approximately 15, 000 lines of code. The program transfor-
mation prototype which is in charge to taint-enhance a given program P , instead, leverages on the
implementation developed in [38] which has been modified accordingly, where necessary, to suite our
needs.

4 Evaluation

In the following, we present the evaluation of our anomalous taint detection approach. We evaluate our
approach in terms of (i) effectiveness in detecting memory corruption attacks which target arbitrary
data and data pointers [6], and (ii) false positives rate.

4.1 Effectiveness

It can first be observed that taint analysis by itself provides enough protection for memory error attacks
which corrupt security sensitive code pointers, such as function return addresses saved on the stack or
function pointers. Thus, it is possible to avoid considering these memory corruptions thanks to the
taint analysis component adopted by our approach3. Therefore, in the following we consider several
different examples of memory error attacks which corrupt data and data pointers. Moreover, where
necessary, we slightly modify the example to show that our approach is effective regardless of the kind
of memory error vulnerability (e.g., buffer overflow, format string, integer overflow) considered. For
simplicity, we reproduced the vulnerable code snippet of vulnerable programs, as described next, and
we verified that our approach detects the memory corruption attacks performed on these code snippet.

3 Indeed, we could relax this restriction and enhancing our learning rules to consider whether a code pointer
is allowed to be tainted or not. This is not the case generally, but when direct control dependencies are fully
tracked, there might be the situation where a code pointer is marked as tainted based on control dependency
taint propagation.



Format String Attack against User Identity Data A version of WU-FTPD is vulnerable to a format
string vulnerability in the SITE EXEC command [6]. The attack proposed by Chen et al. aimed to
keep the process’ privilege level as high as possible (i.e., root privileges). In this way, a regular
authenticated user could upload a custom /etc/passwd file which, subsequently, allowed him to
log in as root.

By considering the following code snippet, part of the function getdatasock, it is clear that this
goal can be achieved by overwriting the pw->pw_uid field which contains the cached credential of
the current authenticated user4.

1 FILE *getdatasock(...) {
2 ...
3 seteuid(0);
4 setsockopt(...);
5 ...
6 seteuid(pw->pw_uid);
7 ...
8 }

Our approach detects this attacks in two different ways. It either considers whether the seteuid’s
argument is tainted, or it detects structural divergence in the tainted arguments of the printf-like
function used to exploit the format string vulnerability. While the latter method relies on the presence
of a particular memory error vulnerability, the former detects corruptions caused by untrusted input.
In particular, our approach learns that the seteuid argument pw->pw_uid at line 6 is always un-
tainted during the learning attack-free phase5. On normal situation, this also holds during detection
phase, where no attacks are conveyed. On the other end, any corruption of the user credential repre-
sented by pw->pw_uid will affect the taintedness value of the seteuid’s argument of line 6, thus
disclosing the attack attempt. It is worth pointing out that, in this context, our anomaly detection com-
ponent leverages on the information provided by the underlying taint-tracking mechanism and not on
the data actually encountered and characterized during the learning phase. As a result, our approach is
less subjected to mimicry-like attacks than, for instance, learning-based anomaly detection approaches
which rely only on statistical properties of the observed data. Depending on the context, an approach as
the one proposed in [21], for instance, would likely exhibit FPs, or be more vulnerable to mimicry-like
attacks. In fact, a learning phase which observes a limited number of authenticated users would open
the possibility for an attacker to impersonate one of the observed legitimate users. On the other end,
a more conservative learning phase which considers only one authenticated user would most likely
constrain the application usability (for instance, the root user can never be used by the approach
proposed in [21] neither during training nor during detection, otherwise the proposed attack would be
effective).

4 Although, it is not completely clear whether the attack proposed in [6] properly works or not (the used injection
vector would have the effect to write 10 in the pw->pw_uid field, in the best case (for the attacker)), it should
be possible to achieve what is claimed in the paper anyway, even if requires a slightly more complicated attack
pattern.

5 Even if pw->pw_uid is derived from user input, the result of this system call is marked as untainted. More-
over, also the result of the function getpwnam, which would likely be used to obtain information on the
credential of a user, is marked as untainted. This holds for several other system calls/functions of interest, but
not for others (e.g., the number of bytes read by read is marked as tainted as it can be used to influence loops
or similar actions.



Heap Corruption Attacks against Configuration Data In the following we report two heap-based
memory error vulnerabilities and attacks as described by Chen et al. in [6].

Null HTTPD The proposed attack exploits a heap-based buffer overflow vulnerability. It aims to over-
write the CGI-BIN configuration string prefix to change it from the value /usr/local/httpd/cgi-bin
(default value) to the string /bin. Every CGI script/program invoked by the client will be searched in
this new CGI directory, allowing an attacker to easily invoke the shell interpreter, for instance.

In this scenario, it can be observed that the available options for the attacker are mainly two: (a)
to either completely overwrite the original CGI-BIN configuration string, or (b) partial overwrite
the configuration string. In this latter case, the goal could simply be to execute commands in a sub-
directory of the original CGI-BIN or, alternatively, perform a directory traversal to reach the intended
directory. Depending on the attacker choices, it is possible to observe different scenarios. For simplic-
ity, let us consider that the sink of interest here is the open system call.

(a) During the training step our approach would learn that the first argument of the open system call
invoked at a context C is possibly a combination of untainted data (i.e., the original CGI-BIN
configuration string) and tainted one (i.e., the command derived from untrusted input), if any.
When an attempt to exploit the memory error is made, it is clear that during the detection phase
the open’s first argument has no untainted component. Thereby, our system will raise an alarm
for the anomalous event as, in this case, both the minimum untainted string length and the longest
common prefix policies are violated.

(b) This case is similar to the previous one because even if we still do have some untainted data, the
length l of these data observed during detection phase is less then the one learnt during the training
phase (with lmin > 0).
However, it is worth noting that lmin could be less or equal to l (e.g., the open system call invoked
at context C operates on different untainted strings). To be successful, an attack should perform
a directory traversal attack in order to backward-traverse the original directory while keeping the
length of the untainted data consistent to what has been learnt. Since a directory traversal attack
exhibit clear patterns, and the injected bytes are tainted as they come from an untrusted source, our
structural inference learning rule would discover the divergence with the structure learnt during
the training phase (unless, of course, such a pattern would have been learnt, at the same context,
for the considered sink and argument, during such a step).

Netkit Telnetd The attack proposed in [6] exploits a heap-based buffer overflow vulnerability. It
aims to corrupt the program name which is invoked upon login request by referencing the loginprg
variable as shown by the following code snippet.

void start_login(char *host, ...) {
addarg(&argv, loginprg);
addarg(&argv, "-h");
addarg(&argv, host);
addarg(&argv, "-p");
execv(loginprg, argv);

}

As a result of a successful attack, the application invokes the program interpreter /bin/sh -h -p -p
(underlined characters are tainted). Our approach detects this attack in a similar way as it detects the
attack launched on Null HTTPD described above.



Stack Buffer Overflow Attack against User Input Data The exploitation of this stack-based buffer
overflow vulnerability was somewhat tricky but the authors of [6] were able to bypass the directory
traversal sanity check enforced by the application. In summary, after the directory traversal check
and before the input usage, a data pointer is changed so that it points to a second string which is
not subjected to the application-specific sanity check anymore, thus it can contain the attack pattern
(similar to a TOCTOU). As in the attack previously reported, also this memory error exploit is detected
in a similar way. In fact, if the tainted argument does not contain attack patterns during the training
phase (e.g., directory traversal ../ pattern), an attack attempt during detection phase will present a
different structure from the one previously observed.

Straight Overflow on Tainted Data The following example has been recently proposed by Mutz
et al. in [21]. The memory error attack is simple. The user_filename array obtained at line 7
(gets function) is guarded by a security check (privileged_file function at line 9) which
checks whether user_filename specifies a name of a privileged file or not. In affirmative case,
the program prints an error message and quits. Otherwise (i.e., non privileged file), more data is read
into the array user_data, through the function gets at line 14, and the file name specified by
user_filename is opened at line 15. Instead of corrupting write_user_data return address,
an attacker can overwrite past the end of user_data and overflow into user_filename. As the
overflow happens after the security check performed at line 9, an attacker can specify a privileged file
name for user_filename that will be replaced subsequently by the overflow attack.

1 void write_user_data(void) {
2

3 FILE * fp ;
4 char user_filename[256];
5 char user_data[256];
6

7 gets(user_filename);
8

9 if (privileged_file(user_filename)) {
10 fprintf(stderr, "Illegal filename. Exiting.\n");
11 exit(1);
12 }
13 else {
14 gets(user_data); // overflow into user_filename
15 fp = fopen(user_filename, "w");
16 if (fp) {
17 fprintf(fp, "%s", user_data);
18 fclose(fp);
19 }
20 }
21 }

Our approach detects this data attack by learning the maximum length lmax of the tainted argu-
ments of the gets invoked at line 7, and 14, during the learning phase. It is possible to infer the
structures of their arguments as well, but due to the nature of the program, this might raise too many
FPs. Of course, using lmax by itself could raise FPs as well, as it highly depends on the accuracy of
the learning step. Nonetheless, this does not depend on the value of the observed data, and therefore
on the precision of the underlying statistical models.

Format Bug to Bypass Authentication The following example has been proposed by Kong et al.
in [16]. Even in this example, the memory error attack is simple. Normally, the variable auth is set



to 1 or 0 depending on the fact that the right authentication credential is given as input or not (line 5).
An attacker, can exploit the format string vulnerability at line 11 and overwrite auth with a non-null
value so that the subsequent check of the credential at line 12 will grant an access to the system.

1 void do_auth(char *passwd) {
2 char buf[40];
3 int auth;
4

5 if (!strcmp("encrypted_passwd", passwd))
6 auth = 1;
7 else
8 auth = 0;
9

10 scanf("%39s", buf);
11 printf(buf); // format string
12 if (auth)
13 access_granted();
14 }

The proposed attack can be stopped by modeling tainted format string directives.By modeling the
tainted format string of the printf function invoked at line 11 our approach learns whether tainted
format directives have been used during the training step, along with their structure (structural infer-
ence on tainted arguments). If no tainted formatting directives are learnt during the learning phase, than
no tainted formatting directives can be subsequently encountered during detection phase without rais-
ing an alarm. On the contrary, the approach checks whether tainted formatting directives encountered
during detection phase are consistent with the ones learnt during the training phase. Since the training
phase should be attack-free, no dangerous and tainted patterns should have been learnt. Thus, it should
be hard to mimicry those patterns in order to successfully exploit the format string vulnerability, as
this require the use of tainted % format string directives (required both to corrupt memory and to leak
information).

Untainted Format String Attacks As pointed out in [7] it is possible to exploit format string vul-
nerabilities in such a way to being able of writing untainted data to untainted memory locations. Even
if this attack might be hard to perform in a real setup, our anomalous taint detection provides pro-
tection against it, by using the learning rules defined for tainted sinks’ arguments (in a format string
vulnerability, the format string is still, however, tainted even when the address to write to is not).

4.2 False Positives

Table 1 shows the false positives rate we obtained by conducting experiments on the ProFTPD ftp
server and Apache web server. It is possible to note that the overall FPs rate for these applications are
in the order of 10−4 and 10−3, respectively. Table 2, instead, highlights what models were responsible
for the overall false positives rate obtained.

As shown by Table 2, the majority of false positives were caused by violation of the LCP and
structural inference models (number of false positives and their rate in parenthesis). After a quick
examine, LCP violations can be ignored as it turned out they were caused by a small bug in our
prototype implementation (a comparison which compared one less character during detection than the
one learnt during the learning phase). As for structural inference, we expected such a high number
false positives as the model proposed in § 2 is a simple non-probabilistic model. In fact, the main goal



# App # Traces (Learning) # Traces (Detection) FP Overall FP rate
1 proftpd 68, 851 983, 740 200 2.0× 10−4

2 apache 58, 868 688, 100 2000 2.9× 10−3

Table 1. Overall False Positives.

of our anomalous taint detection approach is to couple taint analysis with anomaly detection so that
each technique can improve its drawbacks by exploiting the advantages provided by the other. The
approach, in fact, is general enough so that more powerful learning-rules, such as the one proposed in
literature [20,2], can be plugged into it. Therefore, if we consider only FPs caused by violation to the
taintedness of sinks’ arguments, it is easy to see that this policy performed fairly well for ProFTPD
(3× 10−5 FPs rate), while it performed well for Apache, by not reporting FPs at all.

# App Taint LCP Min Struct Inf. T. Max Overall FPs
1 proftpd 30 (3.0× 10−5) 30 (3.0× 10−5) 0 (0) 140 (1.4× 10−4) 0 (0) 200 (2.0× 10−4)
2 apache 0 (0) 300 (4.3× 10−4) 0 (0) 1700 (2.4× 10−3) 0 (0) 2000 (2.9× 10−3)

Table 2. False Positives Breakdown.

Table 3 shows how untainted unknown traces, along with FPs caused by violation of the taintedness
of sinks’ arguments, would have raised the FPs rate if they would have been considered (i.e., if taint
information would not have been considered). FPs for ProFTPD would have been increased of one
order of magnitude, while the one for Apache would have been increased from 0 to the order of 10−4.

# App Unknown untainted traces Taintedness of sinks args FPs (taint information)
1 proftpd 210 (2.1× 10−4) 30 (3.0× 10−5) 240 (2.4× 10−4)
2 apache 300 (4.3× 10−4) 0 (0) 300 (4.3× 10−4)

Table 3. Unknown/Untainted Traces.

Finally, the following table shows the percentage of tainted events the have been encountered
during the learning and detection phase. As the table depicts, half of the traces of Apache have
been considered during detection, while only a small fraction of them have been characterized for
ProFTPD. No characterization has to be done for the remaining traces thus avoiding any alarm to be
raised due to imprecision of the models generated by the underlying learning-rules.

# App # Traces (Learning) # Tainted (%) # Traces (Detection) # Tainted (%)
1 proftpd 68, 851 2, 986 (4.3%) 983, 740 7, 120 (0.72%)

2 apache 58, 868 46, 059 (82.1%) 688, 100 35, 470 (51.5%)

5 Discussion

The taint-tracking mechanism of any taint-based analysis provides deterministic protection when a
memory error exploit corrupts a code pointer (absolute or partial overwrite). In fact, code pointers are



usually initialized and manipulated by application code (e.g., function return addresses), which is con-
sidered to be trusted6, therefore untainted. As a direct consequence, mimicry attacks [36,35,17,33,32]
which rely on hijacking the execution flow of the vulnerable process to either invoke in-trace system
calls (or, more generally, sinks), or to corrupt security sensitive data by executing foreign code are no
longer possible.

Unfortunately, while this class of arbitrary code execution and mimicry attacks are defeated, others
could still be possible. More precisely, mimicry attacks can target sinks’ arguments, or generically
tamper the process address space with the intent to corrupt security sensitive data. In fact, learning-
based rules are used to automatically infer a security policy to be enforced on system calls or functions
of interest (i.e., sinks). Unfortunately, sometimes these rules could be either over permissive or over
restrictive. False negatives (FNs) and false positives (FPs) are, respectively, the consequence of this
characterization. Following this reasoning, it is possible to distinguish these cases:

Untainted sinks arguments. Taint information is used by the whole approach to infer security poli-
cies to be enforced on sinks during detection phase. This already gives a better process behavior
characterization than compared to previous models (see [37,35,9,15,29,21,20,2]), especially when
the rules learn that particular sinks’ arguments are untainted (see § 4). Generally, previous mod-
els had focused their attention on every event of the monitored process to better characterize its
behavior. Of course, over simplified models carry minimal information and are more likely to
be defeated by mimicry-like attacks. Likewise, over specialized events characterizations as well
as unknown unseen events encountered during detection phase, would lead to high false positives
rates, as already described in § 1. In our approach, instead, a sink argument a found to be untainted
during training phase, must be untainted during detection as well. Therefore, a large number of
mimicry attacks that aim to tamper with untainted data are no longer possible, as attack-provided
data or, more generally, input data are always considered untrusted and thus marked as tainted.
Moreover, untainted events, that is sinks whose arguments are untainted, encountered during de-
tection phase are not considered as attacks’ manifestations, therefore lowering the overall false
positives (FPs) rate.
As described in § 2, things change a little when a combination of tainted and untainted arguments
are characterized. In fact, the untainted part is characterized by using the minimum length, and
longest common prefix models. These models are highly dependant on the value of the data seen
during training. However, these data are untainted, therefore (i) they cannot be modified by an
attacker without raising an alarm (in our threat model, network inputs – and thus attacker-provided
inputs as well – are always marked as tainted), and (ii) depending on the considered sink, they
should be more “predictable”, and thus easier to characterize which in turn contributes to further
constraining FPs rate.

Tainted sinks arguments. Unfortunately, tainted sinks arguments can be controlled by an attacker.
Therefore, mimicry attacks are still possible on the models – maximum length, and structural
inference – used to characterize these tainted inputs. However, as basic taint analysis low-level
policies limit the execution of foreign or already present code which does not logically follow the

6 As noted elsewhere, it is possible to relax this requirement as function pointers might be initialized based
on tainted control dependency conditions. A conservative approach is to permit the code pointer to be either
untainted or tainted due to control dependency taint propagation. In the latter case, an enumerated set of ad-
missible and legal addresses learnt during training is maintained and checked against for consistency during
detection. The main drawback is that a “selected” mimicry attack could be executed (instead of an arbitrary
one). However, the ability to cause meaningful damage is constrained.



normal execution flow, it is harder for an attacker to stick to the models inferred during training
phase. In fact, this extremely relies on the type of memory error vulnerability involved [39] and
the position where the vulnerability is located. Nonetheless, a critique of the adopted models in
this context follows.
(a) Maximum length. As described in § 2, the main purpose of this simple model is to provide an

upper bound to the number of bytes considered for a given sink argument. An over permissive
model (i.e., upper bound too high) would permit overflows to occur during detection phase.
As a direct consequence, variables adjacent to the overflown buffer could be controlled by an
attacker potentially missing attacks (e.g., mimicry-like). On the other end, an over restrictive
model (i.e., upper bound too low) would wrongly characterize a given sink argument. As a
direct consequence, FPs would be more likely to occur.

(b) Structural inference. As already noted in related literature [20], there are cases where an at-
tacker is able to craft its input in order to stick to the considered model yet being able to cause
harm. As described in § 2, the purpose of the structural inference model is to learn the struc-
ture of a given sink argument. While the model herein considered could be more vulnerable
to mimicry-like attacks, others (e.g., [20]) are not.

We remark on the fact that some of the considered model are not new (see for instance [20,21],
which also propose a better structural inference model). Moreover, it is important to note that the
learning rules and models considered herein can be definitely replaced by more accurate models
(e.g., temporal relationship among system calls arguments [2], other statistical models [21]). The
strategy of coupling taint analysis with anomaly detection offers independent benefits from the
underlying learning-rules and models adopted, as already pointed out in § 2 and § 4.

Security sensitive data. The learning-rules adopted by our approach not only consider whether a sink
argument is tainted or not, but also keep track of how security sensitive data or, more generally,
memory locations, have become tainted. In fact, as pointed out in § 2 and showed in § 4.1, taint
marks carry different values depending on whether they originate from data or control dependency
taint propagation, or a combination of both. As shown in § 4.1, this permits to thwart memory error
attacks which target arbitrary non pointers data as well.

Finally, it is worth reminding that the approach proposed in this paper can, sometimes, detect
memory error exploits attempts even before reaching a sink argument (e.g., format string and tainted
formatting directive). While the approach described in the previous sections is generally vulnerability-
independent, it can also be more successful depending on the underlying vulnerability considered (e.g.,
format string versus buffer overflow). For instance, one of the conditions that must hold to success-
fully exploit a format string vulnerability [28,12] is that the formatting string has to be controlled by
the attacker. This means, that the format string has to be tainted. Therefore, our approach provides
protection in two ways. First, during learning it signals that a particular formatting string is tainted.
As there is usually no reason to have a tainted format string, the application could be right fixed (e.g.,
by substituting printf(buf) with printf("%s", buf)). Second, if this is not possible, as the
learning step has to be performed in an attack-free environment, no dangerous formatting directives
should be learnt. Therefore, the inferred structure will not contain any dangerous tainted formatting
directive (e.g.,%x or %n).

6 Related Literature

Information flow analysis has been researched for a long time [1,10,8,19,34,22,27]. Early research
was focused on multi-level security, where fine-grained analysis was not deemed necessary [1]. More



recent work has been focused on language-based approaches, capable of tracking information flow at
variable level [25]. Most of these techniques have been based on static analysis, and assume consid-
erable cooperation from developers to provide various annotations, e.g., sensitivity labels for function
parameters, endorsement and declassification annotations to eliminate false positives. Moreover, they
typically work with simple, high-level languages. In contrast, much of security-critical contemporary
software is written in low-level languages like C that use pointers, pointer arithmetic, and so on. As
a result, information flow tracking for such software has been primarily based on runtime tracking of
explicit flows that take place via assignments.

Recently, several different information flow-based approaches, often known as taint analysis as
they are concerned with data integrity, have been proposed [23,38,5,16,31]. They give good and
promising results when employed to protect benign software from memory errors [23,38], and a
broader class of attacks [38] by usually relying, for instance, on some implicit assumptions which
are common grounds on benign software (e.g., no tainted code pointers should be de-referenced, no
tainted SQL directive should be used). Other researchers (e.g., [16,31]) extended basic taint-tracking
techniques in order to generically address attacks which corrupt data and data pointers [6] as well.
Preliminary results seem to be promising, even some of them require architectural change [16] and it
is still unclear whether they can thwart a broad range of memory error attacks while exhibiting only a
limited rate of false positives.

The idea of using syscall obfuscation for preventing computer intrusions has been introduced by
[18], where an obfuscation scheme based on the randomization of the system call mappings has been
used for dealing with some type of buffer overflows. Following this idea, Forrest et al. [11,15] intro-
duced a learning-based anomaly detection strategy in order to characterize the behavior of an appli-
cation P . This system is built following the intuition that the “normal” behavior of a program P can
be characterized by the sequences of system calls it invokes during its executions in a sterile envi-
ronment. In the original model the characteristic patterns of such sequences, known as N -grams, are
placed in a database and they represent the language L characterizing the normal behavior of P . To
detect intrusions, sequences of system calls of a given length are collected during a process runtime,
and compared against the contents of the database.

The N -gram model is very simple and very efficient but it is characterized by a relatively high
degree of false alarms [13], mainly because correlations among syscalls are lost, since there is no
provision for storing information about the position where the syscalls are invoked. Furthermore, in
[35] it has been shown that such a host intrusion detection system (HIDS) is unable to detect two
particular forms of computer attacks, namely mimicry [36,35,17,33,32] and impossible path execution
(IPE) [9,35] attacks. Quite recently various authors started to propose variations to the N -gram model
in order to improve its “precision”, i.e. its ability to correctly detect a computer instrusion, with a par-
ticular attention to both the IPE and mimicry attacks. All these models try to overcome the limitations
of the original model adopting a better characterization of a program behavior. Such a characteriza-
tion is obtained by saving for any considered syscall, additional information such as the value of the
program counter, the stack configuration, and information regarding the control flow graph (see for
instance [29,35,9,14]). However, even these models suffer of some limitations. For example, in [35,9]
it has been shown that the callgraph model proposed in [35] as well as the model proposed in [29] are
not able to deal with some forms of IPE, while in [36,17] it has been shown that all the models above
mentioned are susceptible, with various degrees of resistance, to some forms of mimicry attacks.

In a recent paper, Kruegel et al. [17] observed that even if the introduction of such techniques
in anomaly-based HIDS [3,9,29] has significantly reduced the possibility to perform successful tra-
ditional mimicry attacks [33,32,36], they do not impose any kind of restriction on the execution of



arbitrary code which does not directly invoke system calls (i.e., system call-free code). For instance,
the execution of a piece of code that is able to modify writable memory segments represents a threat by
itself. This observation, brought Kruegel et al. to devise a variation of the traditional mimicry attack
which is able to hijack a program execution flow, execute malicious system call-free code, relinquish
the execution flow to the diverted program to regain it later on. This malicious code is usually exe-
cuted as a preamble of in-trace syscalls. Its main objective is either to change the value of the system
call parameters in order to eventually execute arbitrary code, or to modify the value of some control-
dependent data variable in order eventually influence the process execution flow. In [17] a proof of
concept tool is provided which is able to automatically identify, inside a program, the instructions
which can be used for such a scope. More precisely, the main goal of the automatic mimicry is to
elude HIDS checks by continuously diverting the process execution flow in order to execute arbitrary
code with the purpose of changing system calls parameters without directly invoking any system call.
However, most of the time these steps cannot be completed at once. Thus, any piece of malicious code
has to take care of continuously regaining the control of the execution flow. Such a task is usually
performed by modifying appropriate code pointers. It is worth noting that the taint analysis component
of anomalous taint detection approach already limit the execution of foreign code by disallowing to
de-reference tainted code pointers.

On the basis of the previous observation (i.e., execution of foreign code), other techniques have
been recently proposed for containing automatic mimicry [17]. For instance, [4] proposes a strategy
based on the use of static analysis techniques which is able to localize critical regions inside a program,
which are segments of code that could be used for exploiting an automatic mimicry attack. Once the
critical regions have been recognized, their code is instrumented in such a way that, during the execu-
tions of such regions, the integrity of the dangerous code pointers is monitored, and any unauthorized
modification will be restored at once with the legal values.

As pointed out in [17] and further reiterated by [6], for instance, it is clear that system call mon-
itoring by itself is no longer sufficient to correctly characterize an application behavior. To this end,
researchers proposed statistical models [21,20] which try to characterize system calls arguments to
improve the precision of the application’s behavioral profile. Likewise, data flow relationship between
system calls arguments [2] have been recently proposed to address broader classes of attacks (e.g.,
memory errors, race conditions).

7 Conclusion

In this paper, we presented an approach which combines taint analysis and learning-based anomaly
detection techniques. By exploiting the information provided by the taint-tracking component, our ap-
proach was able to detect several memory error attacks, including those which corrupt arbitrary data
and data pointers. False positives, one of the main drawbacks of learning-based approaches, are caused
due to the fact that training can never be exhaustive, and thus some unseen or not characterized (but le-
gitimate) behaviors will be classified as attacks. Our approach limits this drawback as it considers only
tainted traces, which usually are a small percentage of the whole traces executed by an application.
As taint analysis also provides information about the ability of the attacker to exercise a vulnerabil-
ity, true positives are improved as well. Moreover, our approach is independent from the underlying
learning-rules adopted. In fact, more powerful learning-based approaches can be transparently plugged
into our approach without affecting the benefit provided by the taint-tracking component. Moreover,
we believe that taint information can also be exploited in order to detect other data corruption attacks,
in particular those where control-dependencies are involved.
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