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Abstract

Diversity plays a crucial role for the survivability of ev-
ery biological species and, quite recently, the concept, has
also been applied to computer programs.

An interpretation of the notion of software diversity, is
based on the concept of diversified process replicæ. We de-
fine pr as the replica of a process p which behaves iden-
tically to p even if it presents some “structural” diversity
from it. This makes possible to devise mechanisms for de-
tecting memory corruption attacks in a deterministic way.
In our solution, a process p and its replica pr only differ in
their address space which is properly diversified, thus de-
feating absolute and partial overwriting memory error ex-
ploits.

We also give a complete characterization and we pro-
pose a solution of shared memory management, one of the
biggest practical issue introduced by diversified process
replicæ. Preliminary ideas on how to deal with synchronous
signals delivery between p and pr are faced as well.

A proof-of-concept prototype working in user space
has been implemented. Our experimental results show a
68.93% throughput slowdown on a testbed web server ap-
plication in the worst-case, while only a 1.20% throughput
slowdown has been obtained in the best-case.

1 Introduction

Diversity plays a crucial role for the survivability of ev-
ery biological species and, quite recently, the concept, has
also been applied to computer programs [16, 20, 8, 19, 11,
18, 23]. Researchers in the computer security field started
to apply different kinds of software transformations such as
address space layout randomization [23, 19], instruction set
randomization [8, 11] and several forms of more general
program transformation techniques [20] in order to defeat
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or at least strongly thwart memory error attacks, no matter
whether such diversities are made available by the OS ker-
nel or by automated user space transformation approaches.
By memory error exploits we mean all those techniques that
an attacker may use for exploiting a particular vulnerability
(see for example [9, 17, 21]) by overwriting and thus cor-
rupting suitable memory addresses. The final purpose is to
hijack a program p execution flow to either execute arbitrary
code or to bypass security mechanisms.

One of the main drawback of such approaches is their
probabilistic nature. In fact, software diversity applied on
a process p can just improve the likelihood of resisting to
some form of memory error exploits. Moreover, it has been
observed that the existing forms of process diversification
might be eluded by means of information leakage (see for
example [21]) or are not so effective in protecting a pro-
cess or, again, cannot protect from all the existing memory
corruption attacks [1, 13].

A different interpretation of the notion of software diver-
sity has been provided by Cox et. al in [2]. Such an inter-
pretation is based on the concept of process replica. Given
a process p, we define p’s replica as a process pr which be-
haves identically to p even if it presents some “structural”
diversity from it.

By adopting such a notion of diversity, it is possible to
devise mechanisms for detecting attacks in a deterministic
way. The idea is very simple. A process and its replica
fed by the same external non malicious input will behave in
the same manner. However, a malicious input will modify
some particular part of the internal p structure (as in the
case of any memory error exploits) so that either the p or
its replica pr will eventually start to behave in a different
detectable way, giving the opportunity to block the attack
with certainty.

In this paper we propose an improved version of the idea
and the prototype described in [2] which, beside being sim-
pler, is able to deal with a broader range of memory error
exploits. More precisely, in our solution, a process and its
replica only differ in their address space layout, while in [2]



the two processes were diversified by two factors, namely
the address space and the instruction set. Even if our model
is simpler, we are able to solve a series of problems which
a previous model has not been able to completely deal with.
In particular we make the following contributions:

1. we devised a model which defeats memory error ex-
ploits targeting absolute memory addresses as well as
those which partially overwrite a memory address.
The former refers to all those exploitation techniques
an attacker may use to overwrite a suitable memory ob-
ject with an absolute memory address value in order to
hijack a process execution control flow, while the latter
permits an attacker to overwrite a memory object with
a partial value, thus allowing a relative execution flow
hijacking. This latter class of attacks, generally known
as Impossible Path Execution (IPE) attacks, can permit
an attacker to bypass critical application-based secu-
rity checks. Even if at first glance it might argued that
IPE attacks are not so realistic, as pointed out in [10],
this class of attacks are becoming a serious real secu-
rity threat.

2. protection is obtained by using only one diversity,
namely non-overlapped processes address spaces, in
contrast with [2], no matter which malicious code ex-
ploitation technique is used. This has the advantage
of making the whole framework simpler while still de-
feating a broader range of memory corruption attacks.

3. we give a complete characterization and we propose a
solution of writable shared memory management, one
of the biggest practical issue introduced by diversified
process replicæ approach which has to be solved to
permit a real and practical deployment of the method.
Moreover, preliminary ideas on how to deal with syn-
chronous signals delivery between a process and its
replica are faced as well;

4. we developed a prototype user space proof-of-concept
using the ptrace system call, on a little endian 32-bit
Intel Architecture host running a 2.6.x Linux kernel.
Even if the performance results might not seem enthu-
siastic at first glance, conceptually speaking the idea
is correct and seems to be a viable way towards sys-
tems survivability. Moreover, the model can also form
a basis for other security-related applications, such as
malware collector and Host Intrusion Detection Sys-
tem (HIDS) training set learnt “in the wild”.

The paper is organized as follows. In § 2 we recall pre-
liminaries concepts about the “objects” targeted by memory
error exploits, the Executable and Linking Format (ELF)
specification [25] as well as reminding fewer observations

on the address space of a process. § 3 shows some re-
lated works while § 4 outlines the idea of diversified process
replicæ as well as the framework we devise and the diversi-
fication approach we adopt. § 5 focuses the attention on the
mechanisms our framework adopts for achieving protection
from memory error exploits. Effectiveness about the ap-
proach are given in § 6 whilst § 7 faces some practical issues
such an approach may arise, such as shared memory, signals
and non-determinism. Experimental results show in § 8 that
the process replication with diversification approach yields
a 68.93% throughput slowdown on a test-bed web server
application on a worst case, while exhibiting only a 1.20%
throughout slowdown on a best case. § 9 gives conclusion
and places fewer observations about future works.

2 Preliminaries

In this section we recall on fewer concepts about the
data targeted by an attacker for diverting a process execu-
tion flow, as well as reminding fewer concepts about the
Executable and Linking Format (ELF) [25] specification.
Moreover, some remarks on a process address space layout
are given at the end of the section as we think they might be
useful throughout the rest of the paper.

2.1 Control-Flow Diverting Targets

An attacker can count on several different techniques in
order to take advantage of a vulnerability. However, the
main goal is nearly always the same, that is, to execute some
malicious arbitrary code or to bypass some security checks
an application makes use of. We are concerned with those
vulnerabilities that require the attacker to “tamper” partic-
ular memory “items” in order to let him accomplish such a
goal. In [19, 20], Bhatkar et al. made a wide and precise
classification of the memory items that are usually suitable
targets for memory error exploits. For the sake of simplic-
ity, we summarize that classification in the following:

• code pointers; stack return addresses, stack, data or bss
function pointers, Global Offset Table entries, C++ vir-
tual pointers table, are examples of such pointers.

Overwriting one of those pointers with an attacker sup-
plied 32-bit value, usually lead to execution of arbi-
trary code. A partial overwriting, instead, can usually
permit to bypass security checks.

• data “items” recently better defined as non-control-
data [3], that may be ulteriorly subdivided in:

– pointers. In certain situations they might be
the target of an overflow and, if subsequently
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used, can permit an attacker to “write-anything-
anywhere” in the address space of the victim pro-
cess. The worst consequence, again, is arbitrary
code execution;

– non pointers. If used as arguments of security
critical functions (or system calls) can be targeted
by malicious code to change the semantic of (or
to bypass) the deployed security mechanism.

2.2 Executable and Linking Format

The ELF specification [25] describes the format of exe-
cutable, shared and relocatable objects. While we are not
concerned with the latter one, in the following, we briefly
recall on a fewer concepts about the others.

An ELF executable object (ET_EXEC) is an object file
that holds a program code and data ready for the execu-
tion by the underlying operating system (OS). Two differ-
ent cases have to be considered, for this type of executable
object:

statically-linked binary. The object file contains all the
code and data needed for its execution, that is, any ex-
ternal reference to library code and data is properly re-
trieved, relocated and correctly linked into the object
file by the link editor, which eventually produces the
desired executable object.

dynamically-linked binary. It contains only the exe-
cutable program code and data while references to any
external libraries or, more generally, shared objects
(ET_DYN) referenced by the executable, will be re-
solved and managed at run-time by rtdl, the run-time
dynamic linker (see also § 2.3).

An ELF executable object usually hold absolute code
and data, no matter if the object is statically or dynami-
cally linked. That is, the virtual addresses the object is
mapped at are fixed. Moreover, any relocation informa-
tion of the considered binary is generally stripped and thus
it cannot be neither re-linked nor relocated anymore (obvi-
ously, dynamically-linked binaries have all the required in-
formation the dynamic linker will use for binding external
references to their definition at run-time).

An ELF shared object (ET_DYN), instead, holds code
and data that is usually dynamically linked into a process
address space. Since different processes may use a different
number of shared objects, such objects cannot contain abso-
lute code and data references. Thus, they might potentially
be mapped at different virtual addresses into the processes
address space that make use of them. For such a reason,
shared objects contain position independent code1 (PIC) in

1Indeed, even ET_EXEC ELF object can be made PIC in order to be
mapped at a different base address by only experiencing a little perfor-
mance slowdown.

order to permit the rtld to dynamically load the object into a
process address space at an “arbitrary” base address and to
correctly perform dynamic resolution of its symbols.

2.3 Process Address Space

The address space of a user-space process consists of
all the virtual memory addresses a process may access [6].
Usually, on a vanilla Linux kernel running on a 32-bit Intel
Architecture, a process, running in user-mode, is allowed to
access the first 3GB of its address space while the whole
4GB is generally addressable in kernel mode.

For convenience and to ease the management of virtual
memory a process address space is usually divided into re-
gions each of which hosts particular parts of the ELF ob-
ject being mapped. A typical division for a Linux process
tries to map ET_EXEC ELF object text segment starting
at the virtual address 0x08048000 ([25]) followed by its
whole data segment (both .data, .bss and the start of
dynamic heap). Everything must reside on a page bound-
ary and it is necessary to honor any existing displacement
present in the physical object file. If the executable object
is dynamically-linked the kernel maps the run-time linker,
usually ld-linux.so, which in turns eventually maps all
the shared objects used by the executable, usually starting
at the address 0x400000002. Finally, the kernel sets up
the mapping for the stack region that grows downward, to-
wards lower memory addresses starting from the address
0xbfffffff, the last virtual memory address addressable
in user space.

It is worth noting that such a mapping is applied to ev-
ery process. Every process has the same view of its virtual
address space which is a process’ private resource.

3 Related Works

Forrest et al. suggested preliminary ideas for building
diverse computer systems [18]. In their paper they observed
that computer systems were mainly monoculture with no
diversity at all. Due to this, a memory error exploit would be
successful on almost all the computer systems belonging to
the same “species”. Hence, they proposed the use of several
forms of randomization in order to introduce diversity into
computer systems.

Following such an idea, others researchers faced the
problem of providing diversity to computer systems.

In [23], a kernel level patch has been developed in or-
der to give the opportunity to load the memory segments
of a process (code, data, heap, stack) as well as the shared

2Even if using a 2.6.x Linux kernel, we are assuming the legacy address
space layout.
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objects the process makes use of, at different memory lo-
cations achieving what has been called address space lay-
out randomization (ASLR). Since no knowledge on the pro-
cess behavior or structure is required, the approach can only
guarantee the randomization of the segments base addresses
but it lacks a more fine-grained randomization. However,
since run-time relocation is generally not possible, infor-
mation leakage attacks or the not-so-strong effectiveness of
ASLR on 32-bit Intel Architecture [13] can still defeat or
thwart these protection mechanisms.

Other address obfuscation techniques have been pro-
posed in [20, 19] by Bhatkar et al. as a particular form
of program transformations to combat memory error ex-
ploits targeting both control and non-control data. Such ap-
proaches differ from the one proposed in [23] since they aim
at providing a more fine-grained address space obfuscation.
The objectives of obfuscation transformations are to ran-
domize the absolute locations of all code and data in order
to achieve protection from memory error exploits targeting
memory address holding control-data (both absolute and
partial overwrite), and to randomize the relative distance
between different data objects in order to defeat relative ad-
dressing attacks, which are a subclass of non-control data
ones [3]. To this end, various obfuscating transformations
have been proposed; they range from the randomization
of the base addresses of common memory regions (stack,
heap, mmap’d area, text and static data), the permutation of
the order of variables and routines, and the introduction of
random gaps between objects. A further improvement over
such an idea has been proposed in [20], where a source-to-
source transformation on C programs has been developed to
produce self-randomizing programs.

All the aforementioned techniques share a common con-
cept: they provide diversity on a process itself and thus,
they provide a probabilistic defensive mechanism that, in
general, cannot provide certainty in protecting from mem-
ory errors exploits.

Recently, Cox et al. faced in [2] the concept of process
replication with diversification herein improved. Their ap-
proach is based on the adoption of two different variations
techniques, namely address space partitioning and instruc-
tion set tagging on a process and its replica. The former
is used to provide protection against memory corrupting at-
tacks that involve direct references to absolute addresses,
while the latter is used to provide protection from code in-
jection attacks. In this paper, we show that the address space
partitioning variation is sufficient for guaranteeing protec-
tion against memory corrupting attacks that involve direct
reference to or overwriting of absolute addresses (either par-
tial or not) if properly enhanced (see § 4.2). Thus, it is our
believe that instruction set tagging variation becomes quite
useless. Moreover, the model proposed in [2], as ours one,
introduces some unwanted issues that can negatively influ-

ence a practical “real” deployment. For example, shared
memory and synchronous signals delivery have to be prop-
erly managed to guarantee data and process behavioral con-
sistency. To this end, we provide a solution that, to some ex-
tent, can represent a first step toward a more realistic model
usage.

4 Process Replication with Diversification

Process replication aims at creating a process replica
pr of a given process p. To this end, p and pr are ar-
tificially diversified so that each of them has a different
non-overlapping memory address space layout. Thanks to
the replication actions (§ 5) and diversification approaches
(§ 4.2) both p and pr will exhibit the same behavior as long
as they are in the same environment and they are fed by the
same benign input. However, malicious input that carries
memory error exploits attempts will let the process and its
replica to diverge in their behavior. The reason behind this
lies in the fact that a memory error exploit should use an
attack pattern usually comprising a given absolute memory
address a. Since p and pr are artificially diversified (non-
overlapping address space) and replicated, it is impossible
that a is suitable for both processes. Any attempt to use a
into p’s and pr’s context will make them behave differently
(generally one of them will eventually crash) giving the op-
portunity to spot the attack.

Partial address overwrite attacks can still be successful
if we only ensure non-overlapping address space. However,
such attacks class can be defeated if relative distances be-
tween p and pr address spaces are properly diversified, as
shown in § 4.2.

In the following we describe the model framework we
devised as well as how diversity and replication are obtained
and mapped by the framework.

4.1 Model Framework

The model framework is represented in Figure 1, and it is
composed by three main elements: the process p, its replica
pr and a replicator and monitoring process t which we will
call the tracer. Even if not further specified, it is clear that
even t must be somehow protected.

The main goal of t is to start, perform I/O replication
and system calls management actions, and monitor the exe-
cution of p and pr, while catching for any anomalous con-
ditions (see § 5).

Thus, t has to feed pr with the same input given to p and
it has also to correctly manage the system calls invoked by
both processes so that they will exhibit the same behavior.
To this end, p and pr must be maintained synchronized by t
and this is done on a syscall-based granularity by making p
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Figure 1. Model Framework

and pr reach what we called a rendez-vouz point. The pro-
cesses that are going to interact with p would not even notice
the presence of pr. Before going into the details of the di-
versification and replication approach, we can anticipate its
effectiveness in defeating absolute and partial address over-
writing attacks as show in Figure 5 (see § 6 for a description
of the approach).

Details about the differences between pr and p as well as
the mechanisms adopted by t for “hiding” pr while keeping
p and pr behavior consistent are the topics of the following
sections.

4.2 Non Overlapping Processes Address Spaces

The diversity approach we adopted aims at providing a
non-overlapping address space between a process p and its
replica pr. By non-overlapping, we mean that no overlap-
ping address spaces can be found when comparing the vir-
tual addresses where the processes have been mapped at.
A possible example is depicted in Figure 2. As reminded in
§ 2, usually every process is mapped starting at the same vir-
tual memory address and the same applies for the stack re-
gion as well as memory mapping area created by the mmap
system call. The main objective of address space diversifi-
cation is to break such an assumption.

However, as noted at the beginning of § 4, partial address
overwrite attacks can still be successful even when adopting
non-overlapping address spaces between p and pr. The rea-
son behind this lies in the fact that partial address overwrite
can permit “relative jump” to bypass security checks be-
cause “relative” distances between p and pr address spaces
are kept the same by default. Thus, our idea is to break this
assumption here as well and to “shift” the address space of
p’s replica by k bytes. This way relative distances between
p and pr address spaces are properly diversified defeating
or at least strongly thwarting partial address overwriting at-
tacks.

In the following we describe the strategies adopted for

reaching such an objective in the case of statically-linked
binaries and dynamically-linked ones.

4.2.1 Statically-linked Binaries

In order to successfully diversify ET_EXEC ELF objects we
modified the default ld linker script3 to achieve the follow-
ing goals:

• load pr starting at a custom address different from the
one defined in the ELF ABI [25]; for our test purpose
we initially used 0x68048000 instead of the default
one (0x08048000). Obviously, a checking of the
sizes of p and pr (.text, .data, .bss segments as
well as dynamically checking for heap expansions) are
required to ensure non-overlapping processes address
spaces;

Indeed, to achieve full non-overlapping address space,
other regions have to be mapped at different addresses
too that is stack and memory mapped area (heap comes
after the .bss segment so, it can be transparently han-
dled by the modified linker script). In order to accom-
plish this task and to be as transparent as possible with
respect to the diversified executable object, a kernel
patch is in charge of changing the base addresses used
for stack and mmap’d area.

• modify the least significant byte (LSB) of the address
at which ET_EXEC ELF object will be mapped at.
This is achieved by inserting “junk” data right at the
beginning of the .text segment description in the
linker script, using the LONG(k) linker script key-
word, taking care of the required alignment constraint4

(e.g., 4-byte alignment). Thus all the code is moved k
bytes upward (towards higher addresses), thus shifting
the executable entry point, as well as its code and data
segments. This mechanism may be repeated as long
as it is possible to obtain different “LSB values” for p
and pr thus defeating any memory errors exploits that
target partial memory address overwrite (IPE attacks).

In our initial test, the 0x68048000 has been shifted
of 8 bytes and which gave us good results (see § 6).

4.2.2 Dynamically-linked Binaries

Dynamically-linked binaries are a bit more tricky to deal
with since the shared objects used by the executable have
to be diversified in order to take full advantage of the entire
diversification approach.

3Obviously, the same approach can also be applied to ET_REL ELF
objects, that is, relocatable code.

4Indeed, there are other keywords that may be used to achieve the same
result. Moreover, due to sections padding and sections-to-segment map-
ping it may be necessary to carefully insert these junk bytes.
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Figure 2. Diversified Process Replicæ

The “main” executable object (ET_EXEC) can be diver-
sified as previously described while ET_DYN ELF objects,
that is dynamic libraries or more generally shared objects,
have to be properly handled. On the other hand, the base
address of the considered shared object o can be transpar-
ently diversified by the same kernel patch that is in charge
of changing the stack and mmap’d areas since shared ob-
jects are mapped onto the latter one (§ 4.2.1). However, in
order to achieve protection from partial address overwriting
attacks, it is necessary to perform the same object “shifting”
performed on statically-linked binaries.

We chose to diversify shared objects when they are just
going to be loaded by ld-linux.so, the run-time dy-
namic linker (rtdl), right after the rtdl maps the shared ob-
ject o using the mmap system call but before they are used
even by the rtdl itself, penalty the corruption of the in-
memory shared objects data structures involved. The tracer
t can easily handle this situation since the rtdl operates on
behalf of the executing process and t monitors both p and
pr.

Roughly speaking, after the rtdl maps a particular shared
object segment m via mmap, t has to:

1. keep track in a table of the address returned by the
mapping request as well as its length and the amount
of desired shift (see next point);

2. shift the segment m just mapped by k bytes;

3. give back to rtdl the mmap’d address displaced by the
k-byte shift performed in order to permit the run-time
linker to correctly reference the ELF header of the ob-
ject o as well as all the others relevant ELF structures

of o and the whole mapped region5;

4. monitor any non-anonymous un-mapping request via
munmap, in order to adjust by k bytes the address
specified in the request and have the kernel to correctly
un-map the region, using the information stored in 1.

It is worth noting that it should not be necessary to up-
date the o’s ELF related structures to reflect the “new” rela-
tive position. In fact, shared objects have position indepen-
dent code (PIC) and thus they do not hold absolute memory
references. However, they need to honor relative addressing
between the loaded segments and, as long as the shift oper-
ation is performed on all the loadable segments (PT_LOAD)
of o, correct behavior is guaranteed.

Unfortunately, this approach has limitations and draw-
backs. Segments are usually padded during load time in
order to obtain in-memory segments on a page boundary
(e.g., 4KB-aligned) while respecting relative segments ad-
dressing. The shift operation exploits the padding intro-
duced in order to use some unused in-memory room to shift
the whole segment. Consequently, the aforementioned ap-
proach cannot be deployed on those segments whose size
is already equal to a memory page. However, preliminary
test we conducted on a Debian GNU/Linux testing system
reported that the percentage of shared libraries that would
hardly take benefit of such an approach due to low-padding
space is really low (about 0.4% on a 1947 sample). The
great majority of the rests would be smoothly diversified.

5This is true for the segment that contains .text, .rodata, .plt
sections and so on. Others loadable segments, such as the one holding
“writable data”, have to be subjected to the same shifting operation to
honor the relative addressing that PIC objects exhibit.
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Nonetheless, we are currently investigating other solutions
to undertake in order to achieve the same protection pro-
vided by the in-memory shifting operation for all the shared
objects involved.

Unfortunately, one big drawback of this approach is the
waste of (physical) memory that is required because of the
shift operation (transparently handled by the copy-on-write
(COW) kernel mechanism).

It is also worth noting that a kernel level patch has to be
developed for handling the run-time dynamic linker since
it also has to be modified by the same “run-time patching”
mechanism applied to the shared objects. Object shifting to
achieve LSB diversification has also to be applied to plugins
loaded by means of dlopen library function which even-
tually invokes the mmap system call6. Moreover, a “stack
shifting” has to be performed as well by the aforementioned
kernel patch.

Actually, our work in progress prototype still does not
support all of these features but we are currently working on
a toy application in order to see the viability of such ideas.

5 Replicator Module

The replicator and monitoring component t of the frame-
work depicted in Figure 1 is in charge of (i) letting p and
pr reach a common execution point which defines what
we have called rendez-vouz point to synchronize p and
pr behavior, (ii) performing I/O replication and system
calls management, and (iii) continuously monitor p and pr,
raising an alarm and terminating the both processes upon
anomalous conditions are detected (attaks). In particular, t
has to performs the following actions:

(i) executes a process p and its replica pr which has been
previously diversified (see § 4). It is worth noting that
t actually traces p and pr execution using the ptrace
system call. Such a system call permits t to “asks” the
OS kernel to stop the execution of the traced processes
every time they “enter” a system call s, that is before
actually executing it, and right before they are willing
to “exit” from s, that is after s has been actually ex-
ecuted by the OS kernel on behalf of p or pr. It may
also be observed that while performing this steps t acts
like a kind of a “high-level” scheduler whose purpose
is better explained in the following items (however,
the real “low-level” process scheduler remains the ker-
nel);

(ii) performs I/O replication on some I/O related system
call invoked by p and pr. Moreover, t has to cor-

6In order to correctly perform this step, the tracer t can keep track of
the object i-node whose file descriptors are used as argument to a non-
anonymous mmap. This way it would be possible to perform the shared
object shifting without incorrectly act on non-shared objects.

rectly manage all the system calls invoked by p and
pr. To this end, t ensures that both p and pr enter
a system call s, reaching what we define a “rendez-
vouz” point7. The main purpose of this synchroniza-
tion point is to permit p and pr to reach a common
state in their execution flow f before actually execute
s. This is necessary since, due to the peculiarity in-
troduced by diversification and replication, different
actions have to be taken depending on the considered
system call and whether it has been invoked by p or by
pr. It is worth noting that if p and pr receive the same
non-malicious input they behave identically since they
only differ in the memory locations they have been
mapped at. Moreover, since t starts the execution of p
and pr, monitors them and takes the appropriate deci-
sion on a system call-based granularity, both p and pr

will end up by invoking the same system call s (with
the same equivalent or comparable arguments). In par-
ticular, it is possible to classify the system calls de-
pending on the actions t must carry out. In particular:

simulated system call. t enables the execution of s
only to p. At the end of the system call, i.e.,
before enabling p to continue with its execu-
tion (that is at s exit), t replicates the effects
produced by s onto pr address space. For ex-
ample, if s is represented by the read sys-
tem call, t waits for p and pr to enter s and it
checks whether they both want to invoke it (also
comparing all those immediate values that can
be compared to, e.g., file descriptor, flags and
mode if present). Afterwards, p invokes s and,
once s is correctly executed, t replicates the data
just read, if any, from p’s address space to pr’s
address space, accordingly modifying s’ return
value in pr context as well. Non-erroneous and
non-malicious read actions would not alter any
control-data values stored in the process mem-
ory address space. p and pr semantic will be
identical and they will exhibit the same behav-
ior.

executed system call. Both p and pr execute s since
it creates or modifies in-kernel process struc-
tures; such an execution is necessary since the
actions performed and the values returned by
s may be subsequently used by other system
calls or a “simulation” would require too much
effort to be done without kernel intervention
(e.g., mmap or mmap2, excluding the “write”
mode that deserve special treatment as further
explained in § 7.1). A typical example is repre-

7This term as a well defined semantic but here it is used with its more
general meaning.
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sented by the open system call since it creates
in-kernel structures whose user level represen-
tation (i.e. file descriptor) might be used as an
argument to other system calls that will be pos-
sibly executed by the involved processes (e.g.,
close can decrease an object file usage refer-
ence count);

carefully treated system call. There are fewer sys-
tem calls, such as mmap, mmap2 and IPC re-
lated ones like shmat and shmget8, that have
to be treated carefully since otherwise they may
render inconsistent both p and pr address spaces
as well as the mapped objects. A step toward a
possible correct treatment of such system calls is
given in § 7.1.

Actually, due to the nature of our user-space approach,
some system calls present a mixture of the first two
points, that is they have to be somehow executed since
they cannot be made to fail by our user-space proto-
type, but they also have to be simulated in order to
provide consistency between p and pr address spaces.
A typical example of this situation is represented by
the getpid system call: in order to guarantee a con-
sistent behavior between the processes getpid in-
vocations made by p and pr have to yield the same
process id to both processes.

(iii) Finally, t continuously monitors p and pr in order
to check whether they receive signals so that proper
actions can be taken. For example, during a classi-
cal successful memory error exploit, one process, say
p, will keep going on while pr, which has a differ-
ent non-overlapping address space layout, will even-
tually crash letting t to correctly handle this situation
by either raising up an alarm or terminating p (see § 4.
Thus, if we assume that in order to make real and use-
ful damage on a system at least one system call has
to be executed [27], this way no meaningful, from the
attacker viewpoint, harm or damage can be success-
fully perpetrated against the protected system. In fact,
it should be observed that both p and pr have to syn-
chronize themselves by reaching a rendez-vouz point.
This means that both have to enter a system call s be-
fore it can actually be executed. So, if a process p is
tricked into invoking a system call s but pr is crashed,
no rendez-vouz point will be reached and thus no sys-
tem call will be invoked at all.

Recent research [3], however, showed that indeed
is not always necessary to execute a system call to

8Indeed, it depends on the considered kernel whether these represents
actually a system call or a library function call that eventually invokes the
same system call.

cause damage. Even if some non-control-data attacks
can currently be caught by our approach, others are
not. This is, unfortunately, a limitation of our current
method.

6 Effectiveness

In order to validate the goodness of the approach herein
proposed we test its effectiveness with respect to memory
errors exploits that aim at:

• overwriting memory addresses with absolute values
needed to divert the correct process execution flow;

• corrupting least significant bytes of a memory address
thus performing what has been so far called partial ad-
dress overwriting.

The former method can be used by an attacker to exploit
common memory corruption vulnerabilities, such as buffer
overflows, heap overflows, format string bug, jmp_buf
overwriting and so on, to usually execute arbitrary code.
The latter method, instead, may be used to successfully per-
form what in literature is know as an Impossible Paths Exe-
cution (IPE) attack [26, 10, 4].

Impossible paths can be defined as a sequence of in-
structions that can never be executed under normal circum-
stances due to a particular program structure. A typical ex-
ample of this situation is represented by an if () then ... else
... statement. If the CPU ends up by executing some in-
structions in the true branch, there is no way to jump into
the false one9. It is simply an impossible path to follow due
to the structure of the program and the if/then/else seman-
tic. If properly recognized, an impossible path can be ex-
ploited by an attacker in order to execute application code in
a way that would not otherwise be possible; security-critical
checks as well as “jumping” over unwanted (from a secu-
rity viewpoint perspective) code can be, more or less, eas-
ily bypassed by Impossible Path Execution (IPE) attacks.
Usually, to perform a successful IPE attack, it suffices to
overwrite the LSB of a suitable code pointer, such as stack
return address, for example.

Obviously a lot of sophisticated exploitation techniques
exist, but for exposition purpose we consider only the sim-
plest ones. Figures 3 and 4 depict code snippets showing re-
spectively a stack-based buffer overflow vulnerability and a
security check that can be bypassed by performing an IPE10.
In particular, Figure 4 depicts a situation where an attacker,
camouflaged as a regular user, enters the true branch (lines

9As suggested by “best programming practice”, we assume no
spaghetti code at all, and hence no local jump, i.e. goto, from one branch
to the other. Moreover, we are not considering any interpreted language.

10Example showed in Figure 4 was first proposed by [10] and slightly
modified in [4].
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1 void foo(char *arg) {
2 char littlebuf[128];
3 ...
4 strcpy(littlebuf, arg);
5 return;
6 }

Figure 3. A typical stack-based buffer over-
flow vulnerability

1 u_char *read_next_cmd(void) {
2

3 u_char input_buf[64], *p;
4 u_char *e = getenv("USERCMD"), *q = &input_buf[0];
5

6 umask(2);
7 ...
8 while (*q++ = *e++) ;
9 /* memory leak? :-) */

10 p = (char *)strdup(input_buf);
11 return p;
12 }
13

14 void login_user(int uid) {
15

16 char *cmd;
17

18 if (is_regular(uid)) {
19

20 /* unprivileged mode */
21 cmd = read_next_cmd();
22 setuid(uid);
23 /* yes, system is safe ;-) */
24 system(cmd);
25

26 }
27 else {
28

29 /* superuser! */
30 cmd = read_next_cmd();
31 setuid(0);
32 system(cmd);
33

34 }
35 return;
36 }

Figure 4. A typical security check that can be
bypassed with an IPE attack

19-25) and exploits the stack-based buffer overflow (line 8)
by overwriting the LSB of read_next_cmd return ad-
dress. Once the function ends, the execution flow will re-
turn into the false branch (lines 28-33) ending up by running
cmd as a privileged user, thus performing an IPE attack.

On the other hand, Figure 3 shows how the control-flow
can be diverted by overwriting foo return address, point-
ing back into the vulnerable buffer itself which contains the
malicious injected code.

0xbfff1234

higher 
addresses
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Process Stack

lower
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arguments

SFP (overwrit)
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Malicious

Code

0xbfff1234
0xbfff1234

  Process Replica Stack

arguments
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Malicious

Code
0x7fff1245
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Area
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Figure 5. Diversified process replica for de-
feating absolute memory errors exploits

Such attacks can be defeated by the process replication
with address space diversification mechanism, no matter if
they target absolute or partial address overwriting, as long
as the address space is properly diversified with the ap-
proaches proposed in § 4.2. For example, consider the code
snipped reported in Figure 3 and the stack layout of the pro-
cess p associated to such a code and its replica pr at the time
the stack-based buffer overflow vulnerability is exploited, as
reported in Figure 5. If the attacker were able to exploit the
stack-based buffer overflow vulnerability, p and pr would
exhibit a different behavior. In fact, pr will eventually ref-
erence an unmapped memory regions in its address space
and thus, it will be killed, along with p, by the replicator
and monitor component t (or viceversa, that is pr gets ex-
ploited and p is killed). The same holds for the IPE attacks
described above.

7 Practical Issues

Unfortunately, even if the idea of diversified process
replication is simple and quite effective in combating a
broad range of memory error exploits, there are some
practical issues, namely shared memory, signals and non-
determinism situations, that we have to cope with in order
to successfully and broadly deploy such a defensive mech-
anism.

7.1 Shared Memory

Shared memory management is probably one of the
biggest practical issue introduced by diversified processes
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replicæ.
In fact, as already pointed out in § 5, p and pr have to

synchronize themselves at each system call (rendez-vouz
point) to let t to correctly perform the replication task. How-
ever, no system calls are invoked when shared memory is
involved. It might not so clear at first glance where and
how to achieve such a rendez-vouz point for synchroniza-
tion. Moreover, it might also be unclear how to deal with a
shared resource r in order to guarantee consistency between
p and pr behavior and r. In fact, as we will briefly see in
§ 7.1.1, it is fairly easy to make examples on how things can
go wrong between p, pr (behavioral divergence) and the in-
volved resource r (data inconsistency).

For the sake of clarity and for explanation purpose,
we would briefly remind how shared memory to achieve
inter-process communication (IPC) is obtained and what re-
sources are actually involved in the process. Depending on
the needs, in fact, we may obtain shared memory either by
means of mmap system call or by means of classical shared
memory IPC form (shmget, shmat, ...)11.

The main difference between the two approaches is that
the former one provides shared memory by acting on a
file system (FS) object o which, once mapped onto a pro-
cess p address space (AS), will be shared to provide inter-
process communication. We can talk, in this case, of non-
anonymous (shared memory) mapping.

On the contrary, the classical shared memory approach
makes directly use of a memory area that will be shared
among the processes that will attach to it. We can talk,
here, of anonymous (shared memory) mapping. Without
loss of generality, we will use the general term shared mem-
ory to refer to both approaches by default, unless differently
stated, no matter if the resource being shared is a memory
area or a FS object o. The main point, in fact, is that when-
ever a FS object is shared with such an approach, it is trans-
parently accessed and modified, with the help of the under-
lying OS, without any I/O operation but only through mem-
ory accesses the process mapping o makes use of. More-
over, we will use the terms shared resource r, shared map-
ping, and shared memory interchangeably, unless differ-
ently stated.

It is worth noting that, however, not all the features pro-
vided by the aforementioned approaches are dangerous in
our framework as well as in the model proposed by [2]. As
we will briefly see, we also leverage on one particular harm-
less “type” of shared memory that permit us to put the basis
for solving the issue the process replication model intro-
duces.

In the following we summarize how it is possible to ob-
tain shared memory and whether the particular “type” of

11It is worth noting that it might happen that, on certain UNIX systems,
IPC shared memory is obtained using the mmap system call. As we will
see shortly, this does not interfere with our treatment.

shared memory is suitable for inter-process communication
(problematic case) or not.

mmap-based: can provide both anonymous (memory area)
and non-anonymous mapping (FS object mapped onto
a process address space).

1. non-anonymous can be further divided in:

(a) private mapping, that only provides what we
call intra-process communication. That is,
the resource r is shared only among par-
ent/children relationship which only modify
the memory associated with r in their AS;
there is no modification of r at all;

(b) shared mapping, that provide true inter-
process communication among the pro-
cesses mapping r; for this reason r can po-
tentially be modified. Moreover, every mod-
ification performed on r is automatically re-
flected into the AS of the processes involved
in the IPC and viceversa.

2. anonymous that provides intra-process commu-
nication; the mapping is private and belongs to
the process p’s AS and its children, if any.

classical shared memory: can only provide anonymous
(memory area) mapping. As above, it can be further
divided in:

(a) private mapping, that resembles the intra-
process communication mapping provided by the
mmap-based approach (point 2);

(b) shared mapping, that, as in the mmap-based ap-
proach (point 1b), shares the resource r providing
inter-process communication among the involved
processes.

As we will soon describe in § 7.1.1, it is easy to see that
the only problematic situations are (i) when a resource is
actually shared, like in the mmap-based approach (point 1b),
and (ii) in the classical shared memory (point b) approach.

We try to cope with the shared memory management
issue with a step-by-step approach. We start with a sim-
ple scenario where related-only processes are involved (best
case scenario easy to cope with). Next we move on a more
tricky realistic scenario when unrelated processes are in-
volved (worst case scenario), to put the basis for a generic
solution at the end of the Section.

By related-only processes, we mean a scenario where no
external processes, beside p, pr and their children (if any),
are present. Synchronization between p and its children for
accessing a shared resource r has to be properly done and it
is not a side-effect introduced by the process replicæ model.
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We can anticipate that the main issue is that both p and pr

would end up by acting on the same shared resource r and
this might cause inconsistency if not properly handled. The
example described in § 7.1.1 shows such a situation (mmap-
based (point 1b) approach) in a related-only processes sce-
nario with no children (only p and pr).

7.1.1 Data Inconsistency and Behavioral Divergence

The following example clarifies the main issue related to the
management of shared memory regions in the process repli-
cation model. Even if the example is focused on a best-case
scenario we show how it is easy to get data inconsistency
and behavioral divergence between p and pr.

Suppose that p creates a readable and writable12

(PROT_READ|PROT_WRITE) non-anonymous shared
memory segment (MAP_SHARED), that is a memory
segment that maps a FS object o, via the mmap system
call. Since both p and pr are fed by the same input, also
pr will end up by creating the shared memory segment as
well. In the following, we show a code snippet which p
and pr could execute following a different execution flow,
thus exhibiting a different divergent behavior. As a direct
consequence, o will be shared between p and pr as well.
This can be considered as the main cause of the issue,
that is, p and pr will start having an unwanted form of
inter-process communication.

The consequences are that every modification made by
p on the shared memory segment mapping o, will automat-
ically be reflected onto pr address space as well as into o
itself (see § 7.1). As previously noted, if not properly han-
dled this could lead to data inconsistency and processes be-
havioral divergence. Obviously, this is something to avoid
as could be seen as false positive of the model that would
bring the system in a stalled situation (termination) with a
even worst side-effect of data corruption.

1. let ptr points to the mmap’d shared memory segment
and suppose the first byte of o contains the value A.
Suppose both p and pr are ready to execute line 1 in
the following code snippet (so, they have already been
“scheduled” by r but they are waiting for being sched-
uled by the kernel).

1 if (*ptr == ’A’)
2 *ptr = ’B’;
3 else
4 *ptr = ’C’;
5 ...
6 /*
7 * execute something based
8 * on the value held by *ptr
9 */

12Note that read-only shared memory is not an issue. We will not further
elaborate on this point here.

Suppose the kernel schedules-in p13. As can be ob-
served, since there are no system calls involved, there
are also no rendez-vouz points; moreover, suppose that
p executes the true branch, setting the byte pointed by
ptr to the value B, before its quantum expires;

2. afterwards, let p be scheduled-out by the kernel sched-
uler which eventually schedules in pr that starts its ex-
ecution at line 1; since *ptr has been changed by p
and ptr points to a non-anonymous writable shared
memory segment, pr will enter the false branch, set-
ting the byte pointed by ptr to the value C;

3. but since pr is just a p’s replica, it must exhibit the
same behavior exhibited by p as long as both processes
are fed by the same “good” input by r. This exam-
ple shows a subtle way to feed p and pr with differ-
ent inputs. In fact, p thinks *ptr holds A while pr

not and such a situation might modify their behavior
if further decisions are going to be taken based on the
value stored in *ptr. Moreover, o might end up in an
inconsistent status.

To achieve our goal in order to propose a possible solu-
tion to the shared memory issue we remark on the follow-
ing assumption that should hold among every real processes
(that is, not a process and its replica) that are making use of
using shared memory.

Assumption. “[...] What is normally required [when using
shared memory], however, is some form of synchronization
between the processes that are storing and fetching infor-
mation to and from the shared memory region” [22]

We believe that this is not a strict requirement because
without this assumption poorly written programs that make
use of shared resources are going to break soon, even with-
out any malicious intent by an adversary (it is a matter of
processes/threads scheduling most of the time, which is,
generally unpredictable or so).

7.1.2 Related-only Processes

In this scenario we consider only p and pr but no other ex-
ternal processes that might operate on the shared resource r.
As highlighted in § 7.1.1 both p and pr will act on the same
shared resource r. The main issue is that they were not even
suppose to share r between each other starting, in this way,
a form of inter-process communication between them as a
direct consequence.

13Indeed, as noted elsewhere (§ 5), t is able to somehow control the
scheduling of p and pr by interacting with the kernel using the ptrace
system call, but only from an high-level point. Actually, the kernel is in
charge of performing the real process scheduling task and all the processes,
even p, pr and r, are involved.
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Given this observation, the idea here is simple: to turn
pr inter-process sharing into an intra-process one so that
p would not interfere with pr behavior and viceversa, and
r’s data will be consistent with that they were supposed
to be. As pointed out in the previous section, in fact, an
intra-process communication (private mapping) is harmless.
Thus, it is sufficient to let pr perform a private mapping
and because of the considered scenario of related-only pro-
cesses this makes possible to ensure that the view of r is
always consistent. Moreover, this makes possible to let p
and pr exhibit a consistent identical behavior.

It is worth noting that whenever pr start writing on a pri-
vate mapping, the kernel disassociate the mapping with the
file object. This is not an issue because the simple assump-
tion we are claiming here is that no other external processes
are working on the mapped object o. For this reason, p, pr

and their children, starting from an identical version (con-
sistent) of o and executing the same operation (exhibiting
the same behavior) in a deterministic way, produce the same
output on o (consistency).

To make things easier we also operate without the As-
sumption given in § 7.1.1. In fact, the only involved pro-
cesses here are p and pr and it is necessary only to ensure
that there is not any form of IPC between them. Technical
details are given in § 7.1.5.

7.1.3 Unrelated Processes

This scenario is more tricky because here, beside p and pr,
there are even unrelated processes which we do not have the
control of and that want to interact with the shared resource
r.

By observing the example shown in § 7.1.1, it is possible
to note that the issue is due to the fact that p and pr start an
unwanted form of IPC. In that example, as already pointed
out, a straightforward solution is to force pr to create a pri-
vate mapping, thus disrupting any unwanted existing IPC
form between p and pr. This task can easily be performed
by t which intercepts any system call invoked by the moni-
tored processes (§ 5).

As in the previous scenario, even here we have to grant
only private mapping to pr (no inter-process communica-
tion through shared resource between p and pr but only
intra-process) to achieve a preliminary data and behavioral
consistency.

However, this is a necessary but not sufficient condition
because an external process e might modify the resource
r. This has the direct consequence that while p will see
the modification, pr will not and this might again lead to a
behavioral divergence between them. We can call this sit-
uation a false positive of the model, where processes are
“stalled” or terminated and clearly this is something we do
not want to happen.

We need to let pr always operate on an up-to-dated view
of the shared resource r and to achieve this, we leverage
on the Assumption given in § 7.1.1 (must hold) which as a
consequence provides the following:

• it makes possible to decide when to perform the refresh
operation. In other words, we are looking for a rendez-
vouz point where p and pr can synchronize themselves
like in the normal case where only system calls were
involved.

• with this new rendez-vouz point we wait untill p “ac-
quire a lock” for r. The given Assumption avoids data
inconsistency during the refresh operation in which it
is possible to make pr private mappings up-to-dated
with respect to the current status of the resource r.

We remark on the fact that the Assumption given in 7.1.1
is not a strict requirement. Without it, in fact, poorly written
processes that make use of shared resources are likely to
exhibit anomalous behavior.

The main point is how and when to update the memory
regions where r is referenced at. The answer to “when” can
be partially given by analyzing the synchronization mech-
anisms a process p can use for gaining “mutual” access to
r. Knowing such approaches can help in finding the answer
to “how”. We see two main different kinds of methods to
obtain synchronization between processes, that is, shared
memory-based and system call-based that we address in the
following.

shared memory-based synchronization

It is possible to achieve synchronization for having
granted mutual access to a shared resource r by atom-
ically accessing a shared variable, usually using library
functions like sem_wait, pthread_mutex_lock and
pthread_mutex_trylock. Unfortunately, usually
these functions do not execute any system call14 but we need
to find a way to decide when to perform the refresh opera-
tion at the right time without causing data inconsistency and
processes behavioral divergence.

Preliminary results we conducted on these synchroniza-
tion functions, showed that they end up by executing the
assembly instruction cmpxchg src, dst (or a similar
instruction) usually preceded by the lock15 prefix to basi-
cally turn the instruction into an atomic instruction. In its
general form, this assembly instruction atomically performs
the following actions, where accumulator is the IA-32

14Please, note that sem_wait is actually a C library function that make
use of the futex system call (Fast Userspace Locking system call) as well
as atomic assembly instruction like cmpxchg.

15Indeed, there are many other instructions which lock can be applied
to (see [14]).
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eax register (or one of its “subpart”) and ZF represents the
Zero Flag IA-32 register [14].

1 if accumulator = dst
2 then
3 ZF ← 1;
4 dst ← src;
5 else
6 ZF ← 0;
7 accumulator ← dst;
8 fi;

For instance, pthread_mutex_lock on a
GNU/Debian system, stable release, using glibc-2.3.5,
makes use of the following instructions to atomically
acquire a mutex, where %esi holds the address of the
mutex (AT&T assembly syntax).

1 mov 0x8(%ebp), %esi
2 ...
3 xor %eax, %eax
4 mov $0x1, %ecx
5 lock cmpxchg %ecx, (%esi)
6 jne <loop_till_get_lock>
7 <mutex_acquired>

Even if we might also find cmpxchg/je pairs it is our
believe that they might be handled in a similar way, accord-
ingly to their semantic.

It is also worth noting that there are several kind of syn-
chronization data types, such as mutex, semaphores, moni-
tor, and so on. A precise characterization of them have to be
done in order to understand how to cope with all the possi-
ble situations. It is our believe, however, that there are just
fewer “low-level” situations to face since other “high-level”
constructs make use of the low-level ones to achieve their
goals.

Coming back to our initial issue, we need to guarantee
that pr mapping is up-to-dated with respect to the current
content of r. The instruction used for acquiring a lock for
r gives us information on whether the lock is successfully
acquired or not. If it is, then it is possible to update pr’s
memory area which refers to r (private mapping). Actually,
as we will see in the following, the refresh operation has to
be deferred until p and pr reach a safe point.

To achieve our goal, we propose an approach similar to
fault interpretation [7].

Fault Interpretation

The idea is simple: we exploit the CPU page fault (PF) ex-
ception to know whenever p is writing into given memory
page(s) m16 of its own which refers to the shared resource
r. To achieve this goal, we mark m of both p and pr as
read-only. This task is performed by t which intercept p and

16Whenever needed, we will use mp and mpr to refer to p’s and pr’s
shared mapping respectively.

pr system calls (see § 5) whenever the mapping is created.
Further technical details are given in § 7.1.5.

In particular, whenever p or pr want to write to their
shared mapping m, they acquire a lock (Assumption given
in § 7.1.1) in m. Since m is read-only, the CPU will raise
a PF exception which cause a segmentation violation signal
(SIGSEGV) to be delivered to the faulty process (caught by
t). Roughly speaking, t waits until p and pr reach this new
rendez-vouz point triggered by the PF. The first time the PF
is raised is because p and pr want to acquire a lock. At this
point:

1. t releases mp protection (i.e., it gives read/write per-
mission), let p execute the lock-type faulty instruc-
tion (ptrace single-step), and re-protect mp.

2. t interprets the outcome of the lock-type instruction,
and either:

(a) it refreshes pr’s shared memory mapping of r
only if the lock was successfully acquired and the
shared region was marked as unlocked. More-
over, t marks a lock meta-data information we use
bound to mp and mpr

to true.

Actually, it might be noted that we need to defer
the refresh operation if the shared memory area
used to acquire the lock differs from the one which
r is being mapped at or if a system call-based syn-
chronization approach is being used. We specu-
late on this in § 7.1.4 where we sketch the steps
towards a generic solution. Or

(b) it let pr skip the lock-type instruction without
performing any update operation of r, if the lock
was not acquired, or

(c) it marks mp and mpr
as unlocked. Actually, this

step is pretty useless in this scenario (Assumption
given in § 7.1.1, no system call-based synchroniza-
tion and the shared memory area used for acquir-
ing the lock holds r as well) while it will become
necessary for finding a generic solution (§ 7.1.4).

In any case, t arranges to let p and pr continue with
their execution;

3. t executes every non lock-type instruction issued by
p and pr that tries to write into a shared region mapped
by them performing the same steps as carried out in 1.

It is worth noting that we want pr to execute the code in
its critical section because this way we permit it to execute
instructions that might also modify its private state.
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system call-based synchronization

System call-based synchronization approach to acquire
“mutual access” to a shared resource r is less tricky to deal
with. In fact, system calls invoked by p and pr can be treated
and managed like all the other system calls, as explained in
§ 5.

If it were possible to know which system call s is used
for granting synchronization to a given resource r, then it
would be possible to perform the refresh operation when-
ever the tracer t handles s. Unfortunately, if multiple shared
resources are present it would be rather hard to infer which
system call is responsible for such a synchronization (and,
however, t might not infer in a good way).

However, we achieve the refresh operation by exploit-
ing the fault interpretation approach above introduced. We
further speculate on this scenario in the next Section.

7.1.4 Toward a Generic Solution

So far it should be clear how to deal with certain shared
memory scenarios, but it is still not so clear how to discrim-
inate and know if p makes use of a syscall-based synchro-
nization approach or a shared-memory one.

At first glance, it seems that it should be necessary to
know which kind of synchronization p (and so pr) makes
us of. In fact:

• syscall-based synchronization. It poses almost no par-
ticular problem. Every memory access in the shared
mapping causes a fault which indicates it is safe to re-
fresh the shared memory (we are operating under the
Assumption given in § 7.1.1). Should we perform a re-
fresh operation for every writable shared memory ac-
cess? Which shared memory segments this “locking
primitive” refers to? These are plausible questions for
which we try to give acceptable answers in the follow-
ing;

• shared memory-based synchronization. Again it
should pose no particular issue in the way it has been
addressed. However, as above noted, the approach
seems to not work if the shared memory area used
by the locking instruction differs from the one which
refers to r.

It might be argued that, since we are under the Assump-
tion given in § 7.1.1, the aforementioned steps carried out
in by the Fault Interpretation approach could be simplified.
In fact, a naive solution might be to make a refresh at ev-
ery memory access to r that is not a lock-type instruction.
However, the major drawbacks of this naive approach are
that could generate too much overhead and it does not work
with a system call-based synchronization approach and if

the shared memory area used for acquiring a lock differs
from the one which refers to r.

A more generic solution makes use of the following ob-
servations, derived from the Assumption given in § 7.1.1: in
its simplest form, an operation on a shared resource r can
be seen as a regular expression pattern lw+u where l and u
identify respectively the lock and unlock operation (either
syscall-based or shared memory-based) and w+ is a regular
expression pattern that identifies one or more write access
to the shared resource r (we are not considering read-only
accesses because are not of interest).

Whenever t encounter a l pattern it stores information
about the type of synchronization l represent. Moreover,
t associates every shared memory area obtained by p with
some meta-data, such as a boolean lock variable and a set
representing active l patterns (that is, l pattern that are not
“balanced” by a corresponding u pattern).

Whenever a w pattern is encountered, t checks which
shared resource mapping r this w refers to. Afterwards, it
checks whether the corresponding lock variable is true. If
it is not, t binds all the active l patterns encountered so far
to r’s meta-data, performs a refresh of pr’s shared area and
set the corresponding lock variable to true (t interprets, to
some extent, the outcomes of a synchronization attempt).
Otherwise, it means that this w pattern does not represent
the first memory access in the shared memory area and thus
it is operating on an already up-to-date view of the shared
resource r.

Whenever a u pattern is encountered, t looks up the cor-
responding meta-data set of active l. If at least a match is
found, the lock variable of r is set to false.

Even if this approach seems to be viable, we are still
unaware whether all the active l patterns are necessary or
redundant to get a correct synchronized access to r. As we
the naive approach, we are still conducting experiments to
assess how this method impacts on the performances.

We are currently investigating on the possibility to spot
race conditions if the Assumption would not hold using the
our approach.

7.1.5 Shared Resource: Technical Details

No matter on the resource being involved, i.e., anonymous
or non-anonymous mapping, the tracer t has to perform sev-
eral actions in order to avoid IPC between p and pr as well
as guaranteeing an up-to-date version of the shared resource
on which pr will work on.

We remark that intra-process communication (private
mapping) has to be established even in the related-only pro-
cesses best-case scenario to guarantee data consistency. On
the other hand, the unrelated processes worst-case scenario
also requires to refresh the private mapping to guarantee
processes behavior consistency.
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Intra-Process Communication (Private Mapping)

Here, the task of t is fairly easy. The action to be performed
depends on the type of shared mapping the process is re-
questing:

• non-anonymous mapping. A private mapping which
avoids IPC form between p and pr is obtained by
changing the MAP_SHARED flag of every mmap sys-
tem call invoked by pr, which is already intercepted
by t (§ 5), with MAP_PRIVATE;

• anonymous mapping. As above but the involved sys-
tem call is shmget and the flag is IPC_PRIVATE
(which actually is a special key and not properly a sys-
tem call flag).

Updating the Shared Resource

Here, the task of t is more tricky. For this purpose, in fact,
in order to update the memory mapping of pr, t injects code
into pr’s address space. Moreover, t retrieves all the infor-
mation (data) needed to correctly perform such operations.
The action to be performed depends on the type of shared
mapping the process is requesting:

• non-anonymous mapping. Using the ptrace system
call, t injects the code to let pr invoke the the right sys-
tem calls to correctly update the involved existing map-
ping, with respect to the current status of the shared
resource r.

In particular, the mapping is updated by invoking the
following system calls:

1. munmap, to destroy the existing mapping;

2. open, to open the FS object o which the shared
mapping referred to. t takes care of storing the
object name and the flags originally used by pr to
perform the same task (it suffice to correlate the
file descriptor obtained by the open system call,
subsequently used by the mmap system call);

3. mmap, to establish a new fresh up-to-date pri-
vate mapping (MAP_PRIVATE) with permis-
sions suitable for the techniques explained in
§ 7.1.3. It is worth noting that the mapping has
to be obtained at the same original virtual mem-
ory (VM) address using MAP_FIXED mmap flag,
otherwise all pr references into m will be dan-
gling and invalid;

4. close, to get rid of the file descriptor obtained
by the previous open used by the mmap system
call. This has the effect of keeping the o reference
count coherent with the value it has to be;

• anonymous mapping. The situation is similar to the
non-anonymous mapping with the difference that the
involved system call is shmdt (instead of munmap),
shmget (instead of open) using IPC_PRIVATE to
request a private mapping, and shmat (instead of
mmap) with a non-null VM shmaddr as system call
argument (similar to MAP_FIXED of mmap).

Moreover, in both cases, t has to act as a proxy between
the shared resource r and pr mapping. For this reason, t
attaches itself to the anonymous mapping as well in order
to be able to replicate the data into pr address space. As
a direct consequence of this and as a current limitation, if
address-derived data are involved in the shared resource r,
then the refresh operation will make things break on pr. We
are currently working on solution to deal with this subtle
issue.

7.2 Signals and Non-Determinism

Unfortunately, shared memory does not represent the
only critical issue that may arise due to the replication ap-
proach. Indeed, also signals handling and non-determinism
should be analyzed, in order to guarantee a correct behavior
of the process replication approach.

However, we believe that even if it is quite impossible
for t to deliver to both p and pr the same signal, which is
asynchronous by nature, at the same time and at the same
“point” (location and context), such a “delay” should not
create significant differences in the behavior of p and pr.
This because both p and pr have to reach their rendez-vouz
point before the execution of every invoked syscall and, as
already observed, this is guaranteed and carried out by t (see
§ 5).

Actually, since t catches every signals sent to p and pr, it
could delay the signal delivery a little bit and it can arrange
the thing to fire up the received signal at each rendez-vouz
point, thus achieving perfect synchronization with respect
to signal delivering. The main problem with this approach
is that, however, intensive CPU bound processes that make
few system call could probably not benefit from this delayed
action, but even in this case, the signal should be delivered
at a given time chosen by t anyway.

Alternatively, when necessary, as shown in previous
works ([12, 24]), we can leverage on CPU specific coun-
ters (branch_retired) and on the adopted diversifica-
tion approach (§ 4.2) to turn an asynchronous event like a
signal delivery to a synchronous one, even if absence of
rendez-vouz points.

We are currently studying on the feasibility of the idea
and on its impact on the performances.

We also believe that, non-determinism situation should
not pose a problem at all. In fact, since pr is fed by the
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same input of p, it must behave identically to p, unless, as
observed throughout the paper, the input received is a ma-
licious one. Randomness should not be problematic since
we believe that such data have to be collected generally via
some sort of system calls. Thus, as long as p input is cor-
rectly replicated into pr address space, both processes will
exhibit the same behavior unless relative-address data are
involved, like noted in § 7.1.

8 Experimental Results

We conducted some experimental tests in order to evalu-
ate the impact of the process replication with diversification
approach herein described. To this end, user-space ptrace
proof of concept (PoC) which we developed, has been ex-
ecuted on a 1.3Ghz Intel Centrino with 512MB of RAM,
running a Debian GNU/Linux with a 2.6 vanilla kernel.
The PoC is in charge of correctly replicating and monitor-
ing thttpd [15], a small and fast web server. Moreover,
httperf [5], an HTTP benchmark utility, has been used
on three client hosts to assess the throughput slowdown on
a 100Mbps LAN using 100 connections, 4 sessions per con-
nection, 13 requests per connection, on a 7.5MB site. The
last test case (#5), instead, was conducted using 10 connec-
tions on a 98MB site.

Table 1 summarizes the experimental results we
achieved. In particular, we were quite surprised by the
1.20% throughput slowdown since, it is our believe that,
due to the nature of the idea and of the PoC implementa-
tion, we were expecting a more heavy performance impact
and network slowdown mainly caused by the need to simu-
late some system calls, such as the read. It is worth noting,
in fact, that one of the more heavy system call the proof-of-
concept must simulate is the read system call (as other
similar input-related system calls, such as readv, recv,
recvfrom, . . . ) since, as pointed out in § 5, it has to repli-
cate data from one process to its replica, without actually let
the replica execute the system call. However, further inves-
tigation on the testbed web server showed that, by default,
thttpd uses the mmap system call, where available, in or-
der to map VFS objects into the process address space, by
avoiding any use of the “slow” read system call as much
as possible and demanding to the kernel the loading of the
VFS object “parts” onto the process address space. More-
over, the web server make use of a cache system to avoid
duplicate mapping or reading of VFS objects which yield
good performance in our test cases.

In order to be as much complete as possible and to better
assess the throughput slowdown caused by the replication
approach, we modified thttpd in order to force it to either
use any combination of mmap and (simulated) read syscall
with caching facility or not. Table 1 reports the combination
we obtained and, as we expected, we report a throughput

slowdown of 43.78% till 68.93% for non caching read op-
erations on a 7.5MB and 98MB web site, respectively.

It is worth noting that the slowdown inducted by the
read syscall simulation may be decreased if we were able
to distinguish whether a read operation is performed on a
regular VFS object file or from a socket or standard input,
for example. In the former case, in fact, there is no reason
to simulate the syscall at all, while in the latter case such
a simulation is a must in order to guarantee for the correct
processes behavior. Such an optimization would give bet-
ter throughput on “download” operations (from a client per-
spective) while, unfortunately, would be practically useless
on “upload” ones.

9 Conclusions & Future Works

The notion of process replication with diversification
herein faced, gives the opportunity for detecting a broad
range of memory error exploits targeting absolute addresses
overwriting as well as partial overwriting ones. In fact, by
carefully ensuring (i) non-overlapping address spaces be-
tween p and pr, and (ii) different relative distances between
p and pr address spaces, it is possible to obtain complete
protection from these memory errors with certainty, in a
deterministic way.

A characterization and a practical solution for the man-
agement of writable shared memory mappings, one of the
main practical issue the process replication approach may
suffer, is described. Preliminary ideas on how to deal with
synchronous signals delivery between p and pr are faced as
well.

Moreover, in order to validate the goodness and ef-
fectiveness of the approach herein proposed, a proof-of-
concept prototype working in user space has been devel-
oped. Experimental results report a 68.93% throughput
slowdown on a testbed web server application in the worst-
case, while only a 1.20% throughput slowdown has been
obtained in the best-case.

Our future works are currently focused on providing a
full implementation of our proof-of-concept prototype as
well as to valuate the theoretical and practical feasibility
of the others solutions and scenarios. In fact, as noted at
the beginning of the paper, even if the performance results
might not seem enthusiastic at first glance, and there are
some technical issues to be completely solved as well, con-
ceptually speaking the idea is correct and seems to be a
viable way towards systems survivability. Moreover, the
model can also be exploited as a basis for others security-
related applications, such as malware collector and to build
a Host Intrusion Detection System (HIDS) training set “in
the wild”.
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# Throughput MB/s (real system) MB/s (diversified process replica) % slowdown
1 thttpd (mmap) 12386.9 12238.8 1.20%
2 thttpd (mmap-nocache) 12718.4 12496.5 1.75%
3 thttpd (read) 12599.5 12117.4 3.83%
4 thttpd (read-nocache) 12603.7 7086.3 43.78%
5 thttpd (read-nocache-single) 9134.5 2838.1 68.93%

Table 1. Experimental results
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