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Motivation
Breakdown of the NVD NIST Software Security Vulnerabilities (2006 – Q1-3 2007)

Memory errors are still a relevant issue

Most effective countermeasures are

Attack-specific
Mainly probabilistic
Vulnerable to alternative attacks

Our result:

Comprehensive solutions
Mainly deterministic protection
Resilient to most evasions
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Research Goal

Memory Error

A memory error occurs when an object accessed using a pointer
expression is different from the one intended (the referent)

Out-of-bounds access (e.g., buffer overflow)

Access using a corrupted pointers (e.g., buffer overflow,
format bug)

Uninitialized pointer access, dangling pointers, . . .

Memory error exploitation generally relies on

Data corruption

Gathering information on memory location addresses
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Memory Error I
Examples

Code pointer corruption

int foo(char ∗input) {
char lbuf[64];
int i;

for (i = 0; i < strlen(input); i++)
lbuf[i] = input[i];

return 0;

input

saved return address

saved frame pointer

lbuf[63]

lbuf[62]

lbuf[0]

High Addresses

Low Addresses

Stack Growth
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Memory Error II
Examples

Data pointer corruption

1 FILE ∗ getdatasock(char ∗arg1, ...) {
2 char buf[128];
3 ...
4 seteuid(0);
5 setsockopt(...);
6 sprintf(buf, arg1);
7 ...
8 seteuid(pw−>pw uid);
9 }

Data corruption
1void write user data(void) {
2FILE ∗ fp ;
3char user filename[256], user data[256];
4
5gets(user filename);
6
7if (privileged file(user filename)) {
8fprintf(stderr, ”Illegal filename. Exiting.\n”);
9exit(1);
10} else {
11gets(user data); // overflow into user filename
12fp = fopen(user filename, ”w”);
13if (fp) {
14fprintf(fp, ”%s”, user data);
15fclose(fp);
16}
17}
18}
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Program transformation techniques for memory error protection

Comprehensive

Mainly deterministic

Vulnerability and attack-independent

Resilient to different evasions
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Artificial Diversity

Biological Diversity

Plays a crucial role for the survivability of every biological species

Memory error exploits rely on using well-known memory
addresses

⇒ Make systems appear different!

Address Space Layout Randomization (ASLR) [15]

Fine-grained Address Space Randomization (ASR) [12, 11]

Instruction Set Randomization (ISR) [3]
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Artificial Diversity
Examples: ASLR [15] & Fine-grained ASR [12]
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Artificial Diversity
Limitations

Diversity applied on a process itself

Requires high entropy

Relies on keeping secrets

. . . Disclosed by information leakage attacks [13]

. . . Defeated by brute forcing attacks [6]

Hard to counteract

Partial memory overwriting attacks
Most arbitrary data corruption

Provides probabilistic protection
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Taint Analysis
Anomaly Detection

Taint Analysis

Determines whether the value of a variable x is influenced by the
value of another variable y

It tracks how a program untrusted data (input) flow into sinks
(output), security sensitive points

x := y (explicit data-dependent flow)
if x = k then y = k

′
(explicit control-dependent flow)

↑ It enforces taint-enhanced security policies on sinks to detect
improper usage of tainted data

Code pointer memory error corruption

↓ Hard or impossible to manually specify policy for some
(memory error) vulnerabilities (FPs/FNs)
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Anomaly Detection

Determines whether a process behavioral profile M′
is consistent

with the behavioral profile M learnt during a learning or training
phase

Deviation from M observed during a detection phase are
considered anomalous

Anomalous events are considered as attacks’ manifestations

↑ It automatically infers policies of legitimate process behaviors

It detects unknown attacks

↓ High false positives (FPs) rate

Training not exhaustive flags some unseen — but legitimate —
behaviors as anomalous
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Diversified Process Replicæ
Framework

Idea

To couple the concept of artificial diversity and process replication

T , the tracer, creates Pr , a replica of P
T makes P and Pr to behave identically on benign input
P and Pr are artificially diversified
⇒ Detect behavioral divergence caused by malicious input (i.e.,

memory error attacks)

Process
Process
Replica

Replicator
&

Monitoring
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Process Replication

Rendez-vouz

T synchronizes P and Pr at every system call invocation

T checks for system call consistency (e.g., system call
arguments, system call number)

T simulates certain system calls (e.g., read, send)

It replicates input and handles output on I/O system calls
It performs the system call once
It returns consistent results to P and Pr

T let P and Pr to execute other system calls (e.g., brk)

T carefully handles other system calls (e.g., mmap2)

Lorenzo Cavallaro Comprehensive Memory Error Protection February, 14 2008 18 / 50



Motivation
Memory Error

State of the Art
Proposed Approaches

Related Works
Future Directions

Conclusions

Diversified Process Replicæ
Taint-enhanced Anomaly Detection

Process Replication

Rendez-vouz

T synchronizes P and Pr at every system call invocation

T checks for system call consistency (e.g., system call
arguments, system call number)

T simulates certain system calls (e.g., read, send)

It replicates input and handles output on I/O system calls
It performs the system call once
It returns consistent results to P and Pr

T let P and Pr to execute other system calls (e.g., brk)

T carefully handles other system calls (e.g., mmap2)

Lorenzo Cavallaro Comprehensive Memory Error Protection February, 14 2008 18 / 50



Motivation
Memory Error

State of the Art
Proposed Approaches

Related Works
Future Directions

Conclusions

Diversified Process Replicæ
Taint-enhanced Anomaly Detection

Process Replication

Rendez-vouz

T synchronizes P and Pr at every system call invocation

T checks for system call consistency (e.g., system call
arguments, system call number)

T simulates certain system calls (e.g., read, send)

It replicates input and handles output on I/O system calls
It performs the system call once
It returns consistent results to P and Pr

T let P and Pr to execute other system calls (e.g., brk)

T carefully handles other system calls (e.g., mmap2)

Lorenzo Cavallaro Comprehensive Memory Error Protection February, 14 2008 18 / 50



Motivation
Memory Error

State of the Art
Proposed Approaches

Related Works
Future Directions

Conclusions

Diversified Process Replicæ
Taint-enhanced Anomaly Detection

Process Diversification

Non-overlapping address spaces for absolute overwriting

Address space shifting for partial overwriting

Result

Code and data pointer corruption are defeated

Statically: custom linker script for .text, .data, .bss, base
of heap

Dynamically: modified ld-linux.so for the executable stack
and shared objects mapping
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Process Replication
Address Space Partitioning

0x08048000

text

data

bss

heap

stack

0x0

0xbfffffff

unmapped

0x08048000

0x64023fff

text

data

bss

heap

stack

0x0

0xbfffffff

unmapped

0x68048000
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Effectiveness I

Code pointer corruption

int foo(char ∗input) {
char lbuf[64];
int i;

for (i = 0; i < strlen(input); i++)
lbuf[i] = input[i];

return 0;
}

input

saved return address

saved frame pointer

lbuf[63]

lbuf[62]

lbuf[0]

High Addresses

Low Addresses

Stack Growth

input

saved return address

saved frame pointer

lbuf[63]

lbuf[62]

lbuf[0]

Unmapped

Unmapped
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Effectiveness II
Limitations

It cannot thwart

Arbitrary (non-pointer) data corruption

Some information leakage

void write user data(void) {
FILE ∗fp;
char user filename[256];
char user data[256];

gets(user filename);

if (privileged file(user filename))
exit(1);

// overflow: corrupts user filename

gets(user data);
fp = fopen(user filename, ”w”);
if (fp) {

fprintf(fp, ”%s”, user data);
fclose(fp);

}
}

Lorenzo Cavallaro Comprehensive Memory Error Protection February, 14 2008 22 / 50
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Experimental Results I
The Prototype

User-space prototype developed on a Debian GNU/Linux
system, 2.6.17 kernel, 5, 700+ LoC

Modified run-time dynamic linker ld-linux.so

Replication via ptrace implementation

It supports

clone/fork/vfork support
Shared memory management
Signals management
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Experimental Results
Throughput Penalties

100 conns, 4 sess/conn, 13 reqs/conn, ∼ 7.5MB web site

# Throughput MB/s (no DPR) MB/s (DPR) slowdown

1 thttpd (mmap) 12386.9 12238.8 1.20%
2 thttpd (mmap-nocache) 12718.4 12496.5 1.75%
3 thttpd (read) 12599.5 12117.4 ∼ 3.8%
4 thttpd (read-nocache) 12603.7 7086.3 ∼ 43.8%
5 thttpd (read-nocache-single) 9134.5 2838.1 ∼ 69%
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Experimental Results
Latency Penalties

100 conns, 4 sess/conn, 13 reqs/conn, ∼ 7.5MB web site

# Latency ms (real system) ms (DPR) slowdown

1 thttpd (mmap) 3.5 4.6 31%
2 thttpd (mmap-nocache) 3.5 4.5 29%
3 thttpd (read) 3.5 5.3 51%
4 thttpd (read-nocache) 3.7 21.6 ∼ 6x
5 thttpd (read-nocache-single) 166 646 ∼ 4x
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Taint-enhanced Anomaly Detection

Idea

To couple taint information with learning-based anomaly detection

Fine-grained taint analysis provides information about the
ability of the attacker to exercise the vulnerability

↓ Hard to specify arbitrary security policies (FPs/FNs)

Anomaly detection automatically learns application behaviors

↓ Learning approaches are not exhaustive (FPs/FNs)

⇒ Consider tainted events only

↑ False positives are decreased
↑ True positives are increased
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Fine-grained Taint Analysis

Source-to-source program transformation technique

It marks incoming input as untrusted (i.e., tainted)

It tracks data propagation

It inserts callback functions for every sink (e.g., system call)

Learning phase
Detection phase
Null-behavior (taint-enhanced only)
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Learning-based Approaches

Σ = {sinks}, s(a1, · · · , an) ∈ Σ, ai sinks arguments, i ∈ {1, · · · , n}

Context-sensitive analysis

Taint information (e.g., ai taintedness), ∀s ∈ Σ

An event s ∈ Σ is tainted if it exists at least one tainted ai

For tainted events

Untainted bytes
Longest common prefix (LCP)
Minimum length

Tainted bytes
Structural inference
Maximum length
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Effectiveness I

Coarse-grained taint information

Maximum length

Structural inference

void write user data(void) {
FILE ∗fp;
char user filename[256];
char user data[256];

gets(user filename);
if (privileged file(user filename)) { exit(1); }
gets(user data);
fp = fopen(user filename, ”w”);
if (fp) { fprintf(fp, ”%s”, user data); fclose(fp); }

}

learning:
user_data taintedness
& length

detection:
user_data length is
violated during attack
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Effectiveness II

Fine-grained taint information

FILE ∗ getdatasock(char ∗arg1, ...) {
char buf[128];
...
seteuid(0);
setsockopt(...);

// fmt bug overwrites current user cred
sprintf(buf, arg1);
...
seteuid(pw−>pw uid);

}

learning:
untainted seteuid argument

detection:
taintedness violation for seteuid
argument pw->pw_uid during
attack
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Experimental Results
The Prototype

Fine-grained taint analysis

CIL & OCaml for the program transformation (∼ 5, 000 LoC)
C for the taint propagation strategy and callback insertion

Learning-based anomaly detection approach

C/C++ for learning, detection and original behavior phase
(15, 000+ LoC)
Python for automatic code generation

Lorenzo Cavallaro Comprehensive Memory Error Protection February, 14 2008 32 / 50



Motivation
Memory Error

State of the Art
Proposed Approaches

Related Works
Future Directions

Conclusions

Diversified Process Replicæ
Taint-enhanced Anomaly Detection

Experimental Results I

# App # Traces (Learning) # Traces (Detection) FP Overall FPs

1 proftpd 68, 851 983, 740 200 2.0× 10−4

2 apache 58, 868 688, 100 2000 2.9× 10−3

Table: Overall False Positives.

# App Taint LCP Min Struct Inf. T. Max Overall FPs

1 proftpd 3.0× 10−5 3.0× 10−5 0 1.4× 10−4 0 2.0× 10−4

2 apache 0 4.3× 10−4 0 2.4× 10−3 0 2.9× 10−3

Table: False Positives Breakdown.
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Diversified Process Replicæ
Taint-enhanced Anomaly Detection

Experimental Results II

# App Unkn. untaint. traces Taint. of sinks args FPs (taint inf.)

1 proftpd 2.1× 10−4 3.0× 10−5 2.4× 10−4

2 apache 4.3× 10−4 0 4.3× 10−4

Table: Unknown/Untainted Traces.

# App slowdown (taint) slowdown (taint-learn) slowdown (taint-detect)

1 proftpd 3.1% 5.9% 9.3%
2 apache 5.7% 10.3% 18.5%

Table: Throughput Slowdown.
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Related Works

Artificial diversity [11, 12, 15]

Taint analysis [2, 7, 10, 16]

Learning-based anomaly detection techniques

system call sequences [5]
FSA [14]
call stack information [4]
statistical multi-model (e.g., bytes frequency, token presence,
structural inference) [8, 9]
data-flow relationship [1]
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Taint-enhanced Anomaly Detection

Diversified Process Replicæ

Optimizations Do not simulate FS-related system calls that
operate on a FS-objects O unless O is shared
SMP

Dynamic Binary Translation (QEMU) ↑ Does not require
program recompilation
Faster then a ptrace implementation
Partial overwrite protection is lost

↑ ↓Program Transformation Insert non-overlapping gaps between
buffer-like variables of P and Pr to thwart some
data corruption (probabilistic protection)
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Diversified Process Replicæ
Taint-enhanced Anomaly Detection

Taint-enhanced Anomaly Detection

Apply the same technique to a broader class of vulnerabilities
(e.g., web application vulnerabilities)

Preliminary results

Context-sensitive analysis on a taint-enhanced PHP interpreter
Learning policy for SQL injection attacks deals with

2nd order SQL injection on tainted query
Dynamic construction of SQL query (e.g., fuzzy advanced
search)

Leverage on the learning-based approach to learn safe attack
pattern usage
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Conclusions

Memory error attacks are still a big threat to software security
State of the art approaches have drawbacks

Mostly probabilistic protection
Hard to deal with data and data pointer corruption
Vulnerable to evasions (e.g., brute forcing, mimicry)

Diversified process replicæ
↑ Comprehensive & deterministic code/data pointer protection
↓ No arbitrary data corruption protection

Taint-enhanced anomaly detection
↑ Comprehensive memory error protection
↑ Deterministic code pointer protection
↑ Probabilistic data and data pointer protection
↑ Low false positives rate
↓ It requires a learning-phase
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Q&A

Thank You!
Q&A?
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Backup Material

Backup Material
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Practical Issues

shared memory management

signals

threads
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Shared Memory
mmap-based and “classical” shared memory

mmap-based

1 non-anonymous

(a) private mapping (intra-process communication)
(b) shared mapping (inter-process communication)

2 anonymous (intra-process communication)

classical shared memory

(a) private mapping (intra-process communication)

(b) shared mapping (inter-process communication)
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Shared Memory
Data inconsistency and Behavioral Divergence

P and Pr create a readable and writable non-anonymous
shared memory segment M
ptr[0] points to the beginning of M

1 if (ptr[0] == ’A’)

2 ptr[0] = ’B’;

3 else

4 ptr[0] = ’C’;

5 ...

6 /*

7 * process invokes system calls based on the

8 * value held by ptr[0]

9 */
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Shared Memory
Related-only Processes

let suppose that only P and Pr are sharing a resource R

as seen before, P and Pr start an unwanted form of
inter-process communication between them

the direct consequence is that P and Pr might exhibit a
different behavior and R might be inconsistent

the solution is simple: let Pr create a private mapping, i.e., no
IPC between P and Pr

sync at mmap or msync time
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Shared Memory
Unrelated Processes (1)

Assumption

“[...] What is normally required [when using shared memory],
however, is some form of synchronization between the processes
that are storing and fetching information to and from the shared
memory region”

the scenario with unrelated processes is more tricky

creating a private mapping is necessary but it is not sufficient

an external process E might modify the resource

either P or Pr has to modify the resource R

they must operate on an up-to-dated view of the shared
resource R
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Fault Interpretation

T marks P and Pr shared mapping as read-only

T exploits the CPU page fault exception to know whenever P
is writing into a shared memory area

T let P to execute a single instruction that accesses the
shared area

if P has mutual access to R, this is reflected to R and P AS

T replicates the effect made by P into Pr AS
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Signals and Non-Determinism

signals are asynchronous events; they might cause P and Pr

to behave differently if delivered asynchronously to them

signals can be delivered synchronously by postponing them at
the next rendez-vouz point (in general)

threads share the same issues raised by shared memory
management, but their treatment could be more tricky

open issue if shared control-dependencies data might modify a
thread’s behavior
scheduling P and Pr threads in the same way might not be
enough
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