An Efficient Technique for Preventing Mimicry and Impossible Paths Execution
Attacks

Danilo Bruschi

Lorenzo Cavallaro*

Andrea Lanzi

Universita degli Studi di Milano
Dipartimento di Informatica e Comunicazione
Via Comelico 39/41, 1-20135, Milano MI, Italy

{bruschi, sullivan, andrew}@security.dico.unimi.it

Abstract

In this paper we propose a new strategy for dealing
with the impossible path execution (IPE) and the mimicry
attack in the N-gram based HIDS model. Our strategy
is based on a kernel-level module which interacts with an
underlying HIDS and whose main scope is to “randomize”
sequences of system calls produced by an application to
make them unpredictable by any attacker. We implemented
a prototype of such a module on a Linux system in order
to experimentally verify the feasibility and efficacy of
our idea. The results obtained are quite encouraging,
furthermore it turned out that our module is quite efficient,
as it affected the performance of a testbed web server with
a slowdown factor of only 5.9%.

1 Introduction

An Intrusion Detection System (IDS) is a security tech-
nology attempting to identify (in quasi real time) and iso-
late computer systems intrusions. A very broad classifica-
tion generally adopted distinguishes between Host Intrusion
Detection Systems (HIDSs) and Network Intrusion Detec-
tion Systems (NIDSs). Host-based IDSs mainly monitor
operating system activities on specific hosts in order to de-
tect intrusion attempts, while Network-based IDSs exam-
ine network traffic. Any category of IDS can be further di-
vided into two sub categories on the basis of the mechanism
adopted for detecting malicious activities. More precisely,
we distinguish between signature-based IDS (also referred
to as misuse detection) and anomaly-based IDS. A misuse
detection IDS detects attacks as instances of attack signa-

*Currently visiting at the CS Dept. of SUNY at Stony Brook, USA.

tures, i.e., sets of rules or filters which characterize a mali-
cious event. Anomaly detection instead focuses on normal
system behaviors, rather than attack behaviors, i.e., a nor-
mal behavior profile is created for any activity performed
on the system, which has to be monitored, and any devia-
tion from such a profile is flagged as a potential attack. In
this paper we are interested in the models of anomaly-based
HIDSs based on the N-gram model, initially introduced by
Forrest et al. [4, 6].

The N-gram model is very simple and very efficient
but it is characterized by a relatively high degree of false
alarms, mainly because correlations among syscalls are
lost, since there is no provision for storing information
about the syscalls coordinates. In [10] it has been shown
that such a weakness can be exploited for defeating these
HIDSs; with two particular forms of attacks, namely the
mimicry [11] and IPE [10]. Consequently, various authors
started to propose variations to the N-gram model in or-
der to improve its “precision”, that is, its ability to cor-
rectly detect a computer intrusion, with a particular atten-
tion to both the IPE and mimicry attack. All these models
try to overcome the limitations of the original model adopt-
ing a better characterization of a program behavior. Such
a characterization is obtained by saving for any considered
syscall, additional information such as the value of the pro-
gram counter, the stack configuration, and information re-
garding the control flow graph (see [9, 10, 3, 5]). However,
even these models suffer of some limitations. For exam-
ple, in [10, 3] it has been shown that the models proposed
in [10] and in [9] are not able to deal with some forms of
IPE, while in [11, 7] it has been shown that all the models
above mentioned are susceptible, with various degrees of
resistance, to some forms of mimicry attack. In this paper
we propose a new strategy for preventing IPE and mimicry
attacks, which is based on the notion of syscall obfusca-
tion introduced in [2]. Such a strategy is based on the con-

struction of a kernel-level module, the obfuscator, which
interacts with an underlying HIDS. The main scope of such
a module is to “randomize” the sequences of system calls
produced by an application, in order to make them hardly
predictable.

In this case, any attacker who wants to execute a tradi-
tional mimicry against a process p has to know p’s traces,
but if they are hardly predictable, it will be very difficult for
him to perform such an attack. The same reasoning can be
applied, with some changes, to the case of IPE attacks. Pre-
liminary experimental results have shown that besides its
effectiveness, our strategy is also efficient.

The paper is organized as follows. In § 2 we describe
some works about the HIDSs research area. In § 3 we intro-
duce some preliminary notions about mimicry and IPE at-
tacks as well as on syscall management in Linux. In § 4 we
describe our obfuscator model design as well as its integra-
tion with a N-gram anomaly HIDS (§ 5), while § 6 shows
how our obfuscator module is able to defeat both mimicry
and IPE attacks. In § 7 we give some experimental results
about our module. Paper ends with § 8, where some final
remarks are provided.

2 Related Works

The idea of using syscall obfuscation for preventing
computer intrusions has been introduced in [2], where an
obfuscation scheme based on the randomization of the sys-
tem call mappings has been used for dealing with some type
of buffer overflows.

The mimicry attack has been introduced in [10] and ex-
tensively described in [11], where it has been shown that it
can be applied to all HIDS models based on syscall trac-
ing. We briefly recall that this kind of HIDS work in two
subsequent phases. The first phase, called learning phase,
is aimed at collecting the sequences of syscall invoked by
a process, during its execution in a sterile environment.
Such information, considered the process normal behavior,
is subsequently used in the production environment for de-
tecting any deviation of a process from its normal behavior
and for raising alarms. In order to improve the resilience of
HIDS to mimicry attacks, many improvements have been
recently suggested. All these improvements are based on
the same strategy: to record, together with any syscall, addi-
tional information which enables the HIDS, in the detection
phase, to correctly distinguish between syscalls invoked by
a monitored process or injected by malicious code. The in-
formation used so far for accomplishing such a task is the
value of the program counter at any syscall invocation and
the call stack configuration at the time of syscall invoca-
tion ([9, 10, 3]). When such strategies are adopted, the only
thing which an attacker can do is to execute a single syscall
with his own malicious parameters, but due to the use of

call stack configuration, at the end of the syscall execution
the control will return to the original code.

However, it has been shown in [7] that even such a lim-
ited power is enough to a clever attacker for mounting a
mimicry attack. More precisely in [7] the authors describe
some techniques which enable an attacker to regain control
of the program execution flow after a syscall is completed.

IPE attack has been described in [10]. The most signif-
icant contribution on such an issue is probably contained
in [3]. In such a paper the authors propose an anomaly de-
tection method that utilizes the return addresses information
extracted from call stack for fighting, among others, the IPE
attacks. In Section 6 we will show a form of IPE attack
which evades such a model of HIDS. Instead, this attack is
captured by the model proposed in this paper.

3 Preliminaries

In this section we recall some basic notions on mimicry
and IPE attacks as well as on kernel mechanisms and few
definitions, which will be used throughout the paper.

3.1 Mimicry Attack

The mimicry attack was first described by Wagner et
al. [11, 10] as an attack that can be performed on syscall-
based HIDS. In its simplest form, to which we will refer to
as traditional mimicry, it basically consists of attacking an
application by mimicking one of the legal syscall sequences
stored by the HIDS. System calls contained in a legal se-
quence which are not worth for executing the attack will
be “nullified”, and all the remaining will be truly executed.
The mimicry attack bases its success on two assumptions:

1. the attacker knows the system calls traces yielded by
the process and stored by the HIDS.

2. the attacker has full control over the execution flow
either executing a malicious code [8] or using the code
inside dynamic library [12].

On the basis of such assumptions, an attacker can choose a
trace that is meaningful for his attack, and build an injection
vector that will permit him to execute the selected system
calls trace. Such a trace will contain “dummy” syscalls, that
is, those used only to simulate the legal sequence, which
will produce “null” effects, and others used by the attacker
for specifying the malicious behavior needed to gain control
of the system.

Hence, as depicted in Figure 1, only the meaningful
syscalls are executed successfully while the ones that have
to be mimicked are “nullified”, for instance by simply mak-
ing them to fail due to incorrect syscall arguments.

normal sequence: S1 So \ S3 S4 S5 Sg

where the normal sequence is the sequence pro-
vided by the process, learnt by the IDS, whereas |
represents the location of the vulnerability and S;
represents a generic syscall 4.

attack sequence: S5 Sj S S§

where the attack sequence, built by the attacker,
comprises the simulated “nullified” system call ¢
(S7) as well as the system call the attacker wishes to
execute (Ss).

Figure 1. Traditional Mimicry Attack

3.2 Impossible Path Execution Attack

If properly recognized, an impossible path can be ex-
ploited by an attacker in order to execute application code in
a way that would not be possible otherwise; security-critical
checks as well as “jumping” over unwanted (from a secu-
rity viewpoint perspective) code can be, more or less, easily
bypassed by Impossible Path Execution (IPE) attacks.

As shown in [13, 3], some HIDS models are able to de-
tect some kind of IPE attacks but fail in detecting all of
them.

Figure 2 depicts an example of code snippet originally
proposed by [3] and slightly modified in order to better
show how an IPE attack can be successfully perpetrated,
while remaining completely undetected by the most promi-
nent HIDS models such as those proposed in [9, 10, 6].
Let us suppose that the function is_regular (uid) (line
20) invokes the open system call twice in order to open,
respectively, /etc/passwd and /etc/group to check
whether the given uid represents a regular user or not (im-
plementation not shown). Afterwards, the true “if” branch
will be executed if the user represented by uid has no par-
ticular privileges, whilst the execution will fall into the false
one otherwise. Entering the true branch and “jumping” into
the false one represents an impossible path. In Figure 3,
an undetected IPE attack sequence performed against an N-
gram HIDS model is reported. In particular, a regular user
camouflaged as an attacker, by entering the true branch of
the if statement (lines 21-27) and by exploiting the stack-
based buffer overflow in read_next_cmd at line 8, is
able to divert the program p execution flow in order to enter
the false branch which eventually will give him full privi-
leges'.

IFor the sake of simplicity we assume the system library function

It may be argued that IPE attacks are difficult to be
performed since they depend on too many factors (pro-
gram structure, vulnerability “at the right position”, com-
mon syscall sequences spread all over the execution flow,
and so on) but, however, as pointed out by Feng ef al. [3],
they should not be left unconsidered since it may be quite
easy, for an attacker, to deliberately introduce the “right”
conditions in program source code that may lead to the ex-
ecution of an impossible path.

1: u_char *read_next_cmd(void) {
2:
3: u_char input_buf[64];
4: u_char *p;
5:
6: umask (2) ;
7: ..
8: strcpy (&input_buf[0], getenv ("USERCMD")) ;
9: /* memory leak? :-) */
10: p = (char *)strdup(input_buf);
11: return p;
12: }
13:
14: void login_user (int uid) {
15:
16: char *cmd;
17:
18:
19:
20: if (is_regular (uid)) {
21
22: /* unprivileged mode */
23: cmd = read_next_cmd();
24: setuid(uid);
25: /* yes, system is safe ;-) */
26: system(cmd) ;
27:
28: }
29: else {
30
31: /* superuser! */
32: cmd = read_next_cmd();
34: setuid(0);
35: system(cmd) ;
36:
37: }
38: return;
39: }

Figure 2. Code snippet that might be exploited
by performing a successful IPE attack.

3.3 Syscall Invocation and Kernel Information

In this section we briefly recall how the Operating Sys-
tem (Linux Kernel) reacts when a syscall is invoked.

When a syscall is invoked by a process p, the CPU
switches to kernel mode execution and some information
such as the program counter (PC) and few registers are
saved by the hardware itself onto the kernel mode stack. Af-
terwards, the kernel saves other information about the pro-
cess state onto its own stack as well, and after performing

invokes only the execve system call.

The execution of the code snippet shown in Figure 2
yields the following syscalls sequences (normal se-
quence), accordingly to the syscall-based HIDS rules
presented in [6] (3-grams traces)

OOUSE true branch (S and E at
lines 24, 26)
OOUSE false branch (S and E at

lines 34, 35)

These sequences produce the following traces (it is
worth noting that S and E are invoked by different
memory locations but the N-gram model does not
take it into account, considering them as the same
syscalls).

00U

0uUS

USE

By exploiting the stack-based buffer overflow vul-
nerability at line 8 (Figure 2), the attacker diverts the
execution flow so that the syscalls S and E at lines
34-35 will be invoked while keeping the execution
flow in-trace, accordingly to the learnt syscalls traces
above reported.

Figure 3. IPE attack

some sanity checks, it retrieves the right syscall number and
executes the corresponding kernel code that actually imple-
ment that system call. Among the data saved onto the kernel
mode stack, we are particularly interested in the Process
Return Address (PRA) and the Function Return Addresses
(FRAs), where:

e PRA is the address of the next instruction in p to be
executed once the syscall has been served.

e FRAs are the function return addresses stored on the
program p stack that are retrieved whenever a syscall-
aware function, that is a function which invokes a
syscall s, is executed. Using these addresses it is easy
to determine the unique call site of s. FRAs can be ob-
tained by “walking the stack” using the frame pointer
in order to return back into the caller stack frame until
we hit the main return address.

Syscall execution process is usually performed in the fol-
lowing three phases:

1. save information: in this phase information about the
state of the running process is saved onto the kernel-
mode stack.

2. execute the syscall: in this phase the kernel invokes the
required system call service routine.

3. restore information: in this phase the kernel restores
the PRA and FRAs the saved values in order to enable
the process to carry on its execution.

4 The Obfuscator Module

In this section we will describe the architecture of our
model, depicted in Figure 4, that is composed by two main
components:

e obfuscator module.
e a HIDS based on /N-gram model.

While the latter has already been extensively described
in literature, we will concentrate our attention on the obfus-
cator module, the core concept of this work.

< OBFUSCATOR MODULE >

H
KERNEL-SPACE v !

USER-SPACE syscall
replay

syscall
request

syscalls
listening
onP

Monitored
Process P

Figure 4. System Architecture

The main objective of the obfuscator is to introduce “ran-
dom noise” in traces learnt by an HIDS, so that they cannot
be replicated or mimicked by an attacker. The obfuscator
works in a transparent way, without any modification of the
underlying syscall-based HIDS.

The obfuscator module o which we have devised works
as follows. When a monitored process p calls a syscall s, o
intercepts s and checks if s belongs to p (i.e. it does not be-
long to an attack vector); in the affirmative case the syscall
is executed with “null” effects k times, and it is “normally”
executed once’ (where k is a customizable obfuscator pa-
rameter, unknown to the attacker). Thus, the trace ¢ reg-
istered by the HIDS will contain k instances of either the

2Technically speaking, there are user/kernel context switches but, if
the syscall has just to be repeated, no kernel code implementing it will be
executed during “null” syscalls execution.

same syscall or a different type of syscall. Generally speak-
ing t € sX*, where X is the alphabet of all the system calls.

The Obfuscation Process

In order to introduce unpredictability in the syscall traces,
we have re-defined the kernel syscall invocation mecha-
nism, which will work as follows. When a syscall s is in-
voked by process a, the kernel will normally perform steps
1 and 2, but before the restore phase, it will modify the PRA
in order to point to s again. Thus, once s is terminated, a
kernel/user context switch will take place and the control
will return again to s which, this time, will be invoked by
skipping the execution phase (simulated syscall). Technical
details about such a technique are described in [1]. In this
way given a syscall s, the obfuscated trace will have form
ss*; however, the mechanism described above can be easily
extended in order to produce obfuscated traces of the form
3.

The obfuscation process works on any syscall produced
by a monitored process and it turns out that, in case of
a mimicry attack, the obfuscation process will be applied
also to the injected syscalls nullifying any positive effect
performed by the obfuscator. In order to avoid such a
“weakness” the obfuscator has to be able to distinguish be-
tween “regular” syscall invoked by a process and “injected”
syscalls. Consequently, we associate with any syscall two
spatial coordinates represented by FRAs, PRA (see Sec-
tion 3). At this point if the attacker injects the code in data
area such as stack or heap and executes his own syscalls
from there, these syscalls will be recognized as not belong-
ing to the monitored program and, consequently, they will
not be obfuscated. Thus, the resulting sequence will be
out-of-trace and the HIDS will detect a trace different from
the registered ones. The only way for the attacker to sneak
the HIDS is either to predict the obfuscated sequence or to
use different attack techniques such as the one proposed by
Kruegel et al. [7] and few others described in [1].

5 Obfuscator & HIDS

In this section we will describe how our system can be
used together with a syscall based HIDS. More precisely,
we describe how the learning and the detection phases of
the HIDS will be performed when the obfuscator is active
for detecting intrusion attempts.

5.1 Learning Phase

The learning phase is performed in two main steps. In
the first one, the HIDS is disabled and the obfuscator deter-
mines the information it needs in order to properly obfus-
cate system calls (obfuscator learning phase). Afterwards,

the HIDS is enabled and the obfuscator starts to produce
the obfuscated traces, while the HIDS performs its canoni-
cal learning phase.

More precisely, the obfuscator learning phase can be fur-
ther divided in two sub-steps performed in the following or-
der:

1. On-line Learning
During this step, the obfuscator retrieves, for every
system call s, generated by the process, the following
information:

e Process Return Address (PRA);
e Function Return Address (FRAs),

e Syscall Number: this information represents the
type of syscall which is invoked by the process;
it can be retrieved by the obfuscator since it is
stored onto the kernel mode stack;

This information, which represents the syscall coordi-
nates (see § 3), is used to determine whether s is in-
voked from different call site or not and, only in the
affirmative case, will be stored in the obfuscator repos-

itory.

2. Off-line Fixing
During this step, the obfuscator scans its repository ob-
fuscating each syscall in an unique way (more details
on this strategy will be given in § 6.1), determining the
following parameters:

e Rep Syscall: represents the number of times that
a syscall must be obfuscated.

e Real Syscall: this syscall represents the syscall
that is really executed by the kernel and invoked
by the process.

o Simulated Syscall: a set of syscalls which con-
tains the syscalls used to perform the obfuscation
process. These syscalls and will never be exe-
cuted by the kernel but will be registered by the
HIDS inside the current trace.

In the naive model we can obfuscate all syscalls exe-
cuted by p but this approach implies big overhead during
the detection phase. In order to optimize such an aspect,
we decided to restrict the number of syscalls to obfuscate.
Xu et al. in [13], have recognized 22 “dangerous” syscalls
which can be used to take control of a GNU/Linux system.
These syscalls represent good obfuscation points to mitigate
the mimicry attack, so we decided to focus the obfuscation
process on them. However, if we protect only dangerous
syscalls, an attacker who knows ¢ trace, could mimic it until
the dangerous syscall is reached, thus performing a success-
ful attack. To avoid such a drawback , we have to protect all
syscalls that:

e are “close” enough to the dangerous syscalls, by be-
longing to a fixed customizable neighborhood and,

e belong to the paths of the control flow which contain
the dangerous syscalls.

Once the appropriate syscalls to obfuscate have been
successfully collected, we employ static analysis in the
learning phase of the obfuscation module. More precisely,
before the on-line obfuscator learning phase (see § 5.1,
item 1) takes place, we need to localize all the flow paths
belonging to the dangerous syscalls and all syscalls that be-
long to such paths. Such a task can be performed as follows:

e the Interprocedural Control Flow Graph (ICFG) asso-
ciated with the binary of the monitored program, is
built;

e basic blocks containing dangerous syscall-aware func-
tions are recognized and, through the ICFG, we also
localize adjacent basic blocks which contain syscall-
aware functions and whose flow passes through the
dangerous syscall-aware functions basic block. These
functions will represent the points on which to apply
the obfuscation process;

e finally, once we gather all the basic blocks we are in-
terested in, we collect for all the syscalls involved, the
syscalls information, such as syscall type as well as its
call site.

In the Figure 5, we show two examples of ICFG where
inside the dark-grey basic blocks we found the dangerous
syscall, whereas inside the light-grey basic blocks we found
the syscalls belonging to its neighborhood that will be sub-
jected to the obfuscation process.

Things change a little bit if we want to optimize the “de-
tection” of IPE attacks. In fact, as pointed out in § 6.1, the
learning phase may simply consist in looking for equal N-
grams (that can be suitable target for an IPE attack in the
N-gram model) inside the whole program syscall trace and
obfuscate that sub-sequence in order to create a “unique”
program syscall trace. For each sub-sequence obfuscated
we store the addresses (FRAs and PRA) and the obfusca-
tion parameters of the real syscall presents in such a sub-
sequence.

5.2 Detection Phase

During the execution of a process p, every time a syscall
belonging to the dangerous region is invoked, the obfuscator
retrieves the current process obfuscation parameters from
the kernel mode stack. In particular, it also checks whether
the FRAs belong to the application code (process or library
code areas) in order to be sure that all the return addresses

Figure 5. Syscall Protection

have not been tampered with by the attacker. Afterwards,
the obfuscator compares these obfuscation parameters with
the ones saved during the learning phase. If a matching is
found, the obfuscator performs the obfuscation operation on
the syscall; otherwise , if no successful look up is obtained,
the obfuscator module will not obfuscate that syscall.

6 Effectiveness

In this section we will explain why the strategy we im-
plemented through the obfuscator module, is able to prevent
IPE and traditional mimicry attacks.

6.1 IPE

As just explained in § 3.2, in the IPE attack the attacker is
able to use some syscalls that follow the appropriate trace,
learnt by the HIDS, but which are positioned in different
code locations. If the syscall trace provided by the program
did not contain equal substrings (/V-gram), then the attacker
would not be able to jump to other piece of code and most
forms of the IPE attacks will not be feasible anymore. Con-
sequently our idea is to look for equal N-gram inside the
syscall trace program and obfuscate that sub-string in or-
der to create a “unique” syscall program trace, that is the
“unique” NN-gram inside the HIDS database. In the Fig-
ure 6 we show the obfuscation process applied to the vul-
nerable code reported in Figure 2; whilst the code reported
in Figure 2 presents equal N-gram USE in different code
locations (the first one at 6, 24, 26 and the second one at
6, 34, 35) allowing the attacker to perform the IPE attack;
after the obfuscation process takes place, the syscall called
at different call site are obfuscated in different ways, so the
jump to line 23 to 34 (IPE attack), yield the N-gram S§ S
S7 never learnt by the IDS defeating so the attack.

Our model has the same detection power of the
Vitpath [3] and in some cases is able to detect some kind
of IPE attacks that V'tpath can not. In fact the Vipath does
not manage the null virtual path which occurs when the
same syscall is invoked more times at the same program lo-
cation (loop statement); such information leakage may be

System call obfuscation: defeating IPE attacks

Giving the following normal sequence learnt by the
HIDS, if the obfuscator obfuscated every syscall with
another one of different type, the HIDS would see:

if E is true
if E is false

0S]0SLUSESS,ESE
0S]0SLUSESSLE S}

Giving an attack sequence such as U S E, where S
and E are those of, respectively, lines 34 and 35 of
Figure 2, thanks to the obfuscator work, the HIDS
would see the S5 S S7 trace which was not learnt
before, rising up an alarm.

Figure 6. Defeating IPE attacks

exploited by an attacker to perform a successful IPE attack.
As showed in Figure 7 the attacker exploits the vulnera-
bility at line 13 (format bug), setting malicious write pa-
rameters and bring the control flow back to write at line
10 (IPE Attack) making so a null virtual path and eluding
the Vtpath model. Even if in the code showed in Figure 7
there’s no any loop statement, the V¢path has to accept any
null virtual path yielded by the program, because is not able
to recognize if a particular syscall is invoked one or more
times. Instead our model is able to defeat such an attack.
As showed in Figure 6 every potential IPE program location
is obfuscated in different way and the invocation of syscalls
positioned in a particular location, one or more times, is de-
tected.

: char buffer[256] ;

1
2: ...
3: setuid (0);

4: fd = open(/etc/shadow, w) ;

5: readsocket (luser, password, new_password) ;
6 f_password = read_shadow_file (luser) ;

7

8

: if (check_pwd (password, f_password))
9: {

10: write_shadow (fd, luser, new_password) ;
11: update_memory_cache (luser, new_password) ;
12:

13: snprintf (buffer, sizeof (buffer), newpassword) ;
14: buffer([sizeof (buffer-1)] = "\0’;

15: strcat (buf, " password changed") ;

16: syslog_entry (buf) ;

17: }

18: setuid (nobody) ;

19: close(fd) ;

20: ...,

Figure 7. Vitpath Nullify Attack

6.2 Traditional Mimicry

Suppose that an attacker is able to exploit a vulnerability
and that he recognizes, inside the original program after the
vulnerability, the trace t = t;,¢;41, ..., 1 to be mimicked
in order to perform a successful mimicry attack. Moreover,
suppose that ¢ = ¢;,¢iy1,...,Ck 1s the corresponding ar-
ray of obfuscation coordinates belonging to ¢. Thus, the
attacker has two choices for executing ¢, namely either in-
voking the proper syscall ¢; at coordinates c¢; or invoking
t; from another memory location different from c;, such as
data areas. In the latter case the obfuscator sees that the ¢;
is invoked from an unknown memory location with respect
to the learning it performed so, obfuscation process will not
take place and the sub-sequence will be out-of-trace giving
the HIDS, that runs on top of the obfuscator, the opportu-
nity to raise an alarm. In the former case, instead, thanks
to the ¢; syscall coordinate associated with the syscall ¢;,
the obfuscator will provide the appropriate trace. However,
the attacker will not be able to regain the control of the ex-
ecution flow because the PRA and the innermost FRA will
make the execution flow to return at the memory location
where the syscall-aware function was invoked.

7 Experimental Results

In this section will describe the set of experiments we ran
to collect the measurements about the overhead introduced
by our defensive mechanism and related results. For our
experiments we used an Intel Pentium IV processor with 3
GHz clock, running Debian GNU/Linux operating system
as a guest operating system on the VMWare 5.0 virtual ma-
chine, with the 2.4.30 Linux kernel and 92 MB of RAM.

In the first phase of our experiments we have measured
three main pieces of code of our obfuscation model, pro-
viding three measurements for each of them: the best time,
the average time and the standard deviation of execution; in
particular we have:

o Stack walk time: this time represents the time needed
to retrieve the FRAs sequence. To compute such a time
we have considered that, for each protected syscall, we
have to walk 6 stack frame on average. The obfuscator
overhead in this case is 122us & 507us (4.2% over-
head) on average (reporting 60us, i.e., 2%, on best).

e Replay syscall time: this measure represents the
amount of time used to perform the context switch
from kernel to user mode context and vice versa ex-
ecuted during the obfuscation process. The obfuscator
overhead in this case is 144us + 493us (8.5% over-
head) on average (reporting 63us, i.e., 5%, on best).

e Hash table access time: this measure represents the
amount of time needed to access the hash table in order
to retrieve the obfuscation parameters. This measure
depends on the number of the syscalls invoked by the
function called in the different program call site which
are used to define the hash table size. We have con-
sidered that the hash table contained 500 syscalls on
average. Thus, the obfuscator overhead in this case is
1148 £437us (6.5% overhead) on average (reporting
61us, i.e., 1.6%, on best).

In the second phase of our test we have considered the
server web Apache version 2.0.55-4, and a small dynamic
web site with the following features: total size 500 KB, 12
static HTML pages, 6 CGI scripts, and 6 PHP scripts with
an average page size of 4 KB. We have set our obfuscator
module in order to replay four times the dangerous syscalls
and their neighbors and we set the deep protection (the num-
ber of neighbor syscalls to obfuscate) to 2. In the first step
we have collected data during the surfing of the site without
the obfuscator module; afterwards we have measured the
same surfing with the obfuscator on.

In the Figure 8, we have reported the Total Syscall Ex-
ecution Time during the surfing with the obfuscator on,
we show in light gray color the normal execution time of
syscalls made by the Apache and in black one the over-
head execution time inserted by our obfuscator module, the
higher impulses in the middle of the graphic are associated
to the I/O syscalls such as new_select and poll.

1e+87

overhead obfuscation execution
nornal syscall execution

1e+86

0 v

18008

1088 | ‘ ‘

execution tine {nicrosec,}

18

a 588 1888 1588 2088 2568 3888 3568

¥ of syscalls

Figure 8. Total Syscall Execution Time

Our measurements show that for the whole surfing of the
web site the Total Syscall Execution Time is 252.28ms; we
have added only 15.13ms delay for the obfuscation pro-
cess, that is the 5.9% total overhead. Consequently, we can
consider our system low-overhead. More details about the

measurements are described in [1].

8 Conclusion & Future Works

This paper presented a novel defensive technique, repre-
sented by the obfuscator module, which works in transpar-
ent way and low overhead (5.9%) with the higher accuracy
than of the state of the art of HIDS [3]. We are working
to use the obfuscator module in order to improve the false
positive rate and to detect other kind of the IPE attacks.

References

[1] D. Bruschi, L. Cavallaro, and A. Lanzi. Syscalls Obfusca-
tion to Prevent Automatic Mimicry. Technical report, Dipar-
timento di Informatica e Comunicazione, Universita degli
Studi di Milano, 2006.

[2] M. Chew and D. Song. Mitigating Buffer Overflows by Op-
erating System Randomization. Technical report, CMU de-

partment of computer science, 2002.

[3] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly Detection using Call Stack Information. [EEE
Symposium on Security and Privacy, Oakland, California,
2003.

[4] S.Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A Sense of Self for Unix Processes. In SP ’96: Proceedings
of the 1996 IEEE Symposium on Security and Privacy, page
120, Washington, DC, USA, 1996. IEEE Computer Society.

[5] J. T. Giffin, S. Jha, and B. P. Miller. Detecting Manipulated
Remote Call Streams. [1th USENIX Security Symposium,
2002.

[6] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion De-
tection Using Sequences of System Calls. Journal of Com-
puter Security, 6(3):151-180, 1998.

[7] C.Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating Mimicry Attacks Using Static Binary Analysis.
In Proceedings of the USENIX Security Symposium, Balti-

more, MD, August 2005.

[8] E. A. O. Levy. Smashing the Stack for Fun and Profit.
Phrack Magazine, Volume 0x07, Issue #49, Phile 14 of 16,
1998.

[9] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A Fast
Automaton-Based Method for Detecting Anomalous Pro-
gram Behaviors. IEEE Symposium on Security and Privacy,

Oakland, California, 2001.
[10] D. Wagner and D. Dean. Intrusion Detection via Static Anal-

ysis. In IEEE Symposium on Security and Privacy, Oakland,

California, 2001.
[11] D. Wagner and P. Soto. Mimicry Attacks on Host Based In-

trusion Detection Systems. In Proc. Ninth ACM Conference
on Computer and Communications Security., 2002.

[12] R. N. Wojtczuk. The Advanced return-into-lib(c) Exploits:
PaX Case Study. Phrack Magazine, Volume 0x0b, Issue
0x3a, Phile #0204 of 0z0e, December 2001.

[13] H. Xu, W. Du, and S. J. Chapin. Context Sensitive Anomaly
Monitoring of Process Control Flow to Detect Mimicry At-
tacks and Impossible Paths. RAID LNCS 3224 Springer-
Verlag, pages 21-38, 2004.

