
Diversified Process Replicæ for Defeating Memory Error Exploits

Danilo Bruschi Lorenzo Cavallaro∗ Andrea Lanzi

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Via Comelico 39/41, I-20135, Milano MI, Italy
{bruschi, sullivan, andrew}@security.dico.unimi.it

Abstract

An interpretation of the notion of software diversity is
based on the concept of diversified process replicæ. We de-
fine pr as the replica of a process p which behaves identi-
cally to p but has some “structural” diversity from it. This
makes possible to detect memory corruption attacks in a
deterministic way. In our solution, p and pr differ in their
address space which is properly diversified, thus defeating
absolute and partial overwriting memory error exploits.

We also give a characterization and a preliminary so-
lution for shared memory management, one of the biggest
practical issue introduced by this approach. Speculation on
how to deal with synchronous signals delivery is faced as
well.

A user space proof-of-concept prototype has been im-
plemented. Experimental results show a 68.93% through-
put slowdown on a worst-case, while experiencing only a
1.20% slowdown on a best-case.

1. Introduction

Diversity plays a crucial role for the survivability of ev-
ery biological species and, quite recently, the concept has
also been applied to computer programs [14, 18, 7, 17, 10,
16, 21]. Researchers in the computer security field started
to apply different kinds of software transformations such as
address space layout randomization [21, 17], instruction set
randomization [7, 10], and several forms of more general
program transformation techniques [18] in order to defeat or
at least strongly thwart memory error exploits. By memory
error exploits we mean those techniques that can be used
to exploit a particular memory error vulnerability (see for
example [8, 15, 19]) by overwriting, and thus corrupting,
particular memory locations. The final attack purpose is

∗Currently visiting at the CS Dept. of SUNY at Stony Brook, USA.

usually to hijack a program p execution flow to either exe-
cute arbitrary code or to bypass security mechanisms.

One of the main drawback of such approaches is their
probabilistic nature. In fact, software diversity applied on
a process p can just improve the likelihood of resisting to
some form of memory error exploits. Moreover, it has been
observed that the existing forms of process diversification
might be eluded by means of information leakage (see for
example [19]) or are not so effective in protecting a pro-
cess or, again, cannot protect from all the existing memory
corruption attacks [1, 12].

A different interpretation of the notion of software diver-
sity has been provided by Cox et. al in [2]. Such an inter-
pretation is based on the concept of process replica. Given
a process p, its replica pr is a process which behaves identi-
cally to p even if it presents some “structural” diversity from
it. By adopting such a notion of diversity, it is possible to
devise mechanisms for detecting attacks in a deterministic
way. The idea is very simple. A process and its replica
fed by the same external non malicious input will behave
in the same manner. However, a malicious input will mod-
ify some particular part of the internal p structure (as in the
case of any memory error exploits) so that either the p or its
replica pr will eventually start to behave in a different de-
tectable way, giving the opportunity to block the attack with
certainty.

In this paper we propose an improved version of the idea
and the prototype described in [2] which, beside being sim-
pler, is able to deal with a broader range of memory error
exploits. More precisely, in our solution, a process and its
replica only differ in their address space layout, while in [2]
the two processes were diversified by two factors, namely
the address space and the instruction set. In particular, we
make the following contributions:

1. we devised a model which defeats memory error ex-
ploits targeting absolute memory addresses as well as
those which partially overwrite a memory address.

The former attacks class refers to all those exploita-
tion techniques an attacker may use to corrupt a partic-
ular memory object with an absolute memory address
value with the final intent to hijack the process exe-
cution control flow. The latter attacks class, instead,
permits an attacker to partially overwrite a memory
object (usually the least significant byte(s)), thus al-
lowing a relative execution flow hijacking. This latter
class of attacks, generally known as Impossible Path
Execution (IPE), can permit an attacker to bypass crit-
ical application-based security checks. Even if at first
glance it might be argued that IPE attacks are not so
realistic, as pointed out in [9], this class of attacks can
become a serious real security threat;

2. protection is obtained by using only one diversity,
namely non-overlapped processes address spaces, no
matter what memory error exploitation technique is
used. This has the advantage of making the whole
framework simple while still defeating a broader range
of memory corruption attacks;

3. we give a complete characterization and we propose
a preliminary solution about writable shared memory
management, one of the biggest practical issue intro-
duced by diversified process replicæ approach which
has to be solved to permit a real and practical deploy-
ment of the method. Moreover, we also speculate on
how to deal with synchronous signals delivery between
a process and its replica;

4. we developed a prototype proof-of-concept running
in user-space using the ptrace system call, on a
little endian 32-bit Intel Architecture host running a
2.6.x Linux kernel. Even if the performance results
might not seem enthusiastic at first glance, conceptu-
ally speaking the idea is correct and seems to be a vi-
able way towards systems survivability.

The paper is organized as follows. § 2 shows some re-
lated works while § 3 outlines the idea of diversified pro-
cess replicæ, the framework we devised, the diversifica-
tion approach, and the replication mechanism we adopted.
Practical issues, such as shared memory, signals and non-
determinism, are faced in § 4. Experimental results show
(§ 5) that the process replication with diversification ap-
proach give out a 68.93% throughput slowdown on a test-
bed web server application on a worst case, while exhibiting
only a 1.20% throughout slowdown on a best case. Conclu-
sions and fewer considerations about future works are given
in § 6.

2. Related Works

Forrest et al. suggested preliminary ideas for building di-
verse computer systems [16]. In their paper, they observed
that computer systems were mainly monoculture with no
diversity at all. Due to this, a memory error exploit would
be successful on almost all the computer systems belonging
to the same “species”. Hence, as a direct consequence of
this observation, they proposed the use of several forms of
randomization in order to introduce diversity into computer
systems.

Following such an idea, others researchers faced the
problem of providing diversity to computer systems.

In [21], a kernel level patch has been developed in or-
der to give the opportunity to load the memory segments
of a process (code, data, heap, stack) as well as the shared
objects the process makes use of, at different memory lo-
cations, achieving what has been called address space lay-
out randomization (ASLR). Since no knowledge on the pro-
cess behavior or structure is required, the approach can only
guarantee the randomization of the segments base addresses
but it lacks of a more fine-grained randomization. However,
since run-time relocation is generally not possible, infor-
mation leakage attacks or the not-so-strong effectiveness of
ASLR on 32-bit Intel Architecture [12] can still defeat or
thwart these protection mechanisms.

Other improved address obfuscation techniques have
been proposed in [18, 17] by Bhatkar et al. as a particular
form of program transformations to combat memory error
exploits targeting both control and non-control data. Such
approaches differ from the one proposed in [21] since they
aim at providing a more fine-grained address space obfus-
cation. The objectives of obfuscation transformations are
to randomize the absolute locations of all code and data in
order to achieve protection from memory error exploits tar-
geting memory address holding control-data (both absolute
and partial overwrite), and to randomize the relative dis-
tance between different data objects in order to defeat rela-
tive addressing attacks, which might be seen as a subclass
of non-control data ones [3]. To this end, various obfuscat-
ing transformations have been proposed; they range from
the randomization of the base addresses of common mem-
ory regions (stack, heap, mmap’d area, text and static data),
the permutation of the order of variables and routines, and
the introduction of random gaps between objects. A further
improvement over such an idea has been proposed in [18],
where a source-to-source transformation on C programs has
been developed to produce self-randomizing programs.

All the aforementioned techniques share a common con-
cept: they provide diversity on a process itself and thus, they
provide a probabilistic defensive mechanism that, in gen-
eral, cannot provide certainty in protecting from memory
errors exploits (for instance, information leakage attacks

pose a serious threat to the ASLR approach).
Recently, Cox et al. faced in [2] the concept of process

replication with diversification. Their approach is based on
the adoption of two different variations techniques, namely
address space partitioning and instruction set tagging on a
process and its replica. The former is used to provide pro-
tection against memory corruption attacks that involve di-
rect references to absolute addresses, while the latter is used
to provide protection from code injection attacks. In this pa-
per, we show that the address space partitioning variation is
sufficient for guaranteeing protection against memory cor-
rupting attacks that involve direct reference to/overwriting
of absolute addresses (either partial or not) if properly en-
hanced (see § 3.2). Thus, it is our believe that instruc-
tion set tagging variation becomes quite useless. Moreover,
the model proposed in [2], as ours one, introduces some
unwanted issues that can negatively influence a practical
“real” deployment. For example, shared memory and syn-
chronous signals delivery have to be properly managed to
guarantee data and process behavioral consistency. To this
end, we provide a preliminary solution that can represent a
first step towards a more realistic model usage.

3. Process Replication with Diversification

Process replication aims at creating a process replica
pr of a given process p. To this end, p and pr are artifi-
cially diversified so that each of them has a different non-
overlapping memory address space layout. Thanks to the
diversification approaches (§ 3.2) and the replication actions
(§ 3.3) both p and pr will exhibit the same behavior as long
as we guarantee they are executing in the same environment
and they are fed by the same benign input. However, mali-
cious input that carries memory error exploits attempts will
let the process and its replica to diverge in their behavior.
The reason behind this lies in the fact that a memory er-
ror exploit usually use an attack pattern comprising a given
absolute memory address a. Since p and pr are artificially
diversified in their address space (AS) and properly repli-
cated, it is impossible that a is suitable for both processes.
Any attempt to use a into p’s and pr’s context will make
them behave differently (generally one of them will eventu-
ally crash) giving the opportunity to spot the attack.

Partial address overwrite attacks can still be successful
if only non-overlapping address spaces, which only modify
the base addresses of p and pr memory segments, were en-
sured. However, such attacks class can be defeated if rela-
tive distances between p and pr address spaces are properly
diversified, as shown in § 3.2.

In the following we describe the model framework we
devised as well as how diversity and replication are ob-
tained.

3.1. Model Framework

The model framework is represented in Figure 1, and it is
composed by three main elements: the process p, its replica
pr and the replicator and monitoring process t which we
will call the tracer. Even if not further specified, it is clear
that even t must be somehow protected.

Process
Process
Replica

Replicator
&

Monitoring

Figure 1. Model Framework

3.2. Non Overlapping Processes Address
Spaces

The diversity approach we adopted aims at providing
non-overlapping address spaces between a process p and
its replica pr. By non-overlapping, we mean that no over-
lapping address spaces can be found when comparing the
virtual addresses where the processes have been mapped at.
Usually every process is mapped starting at the same virtual
memory address and the same applies for the stack region as
well as memory mapping area created by the mmap system
call. The main objective of address space diversification is
to break such an assumption.

However, as noted at the beginning of § 3, partial address
overwrite attacks can still be successful even when adopting
non-overlapping address spaces. The reason behind this lies
in the fact that partial address overwrite can permit “relative
jump” to bypass security checks because relative distances
between p and pr address spaces are kept the same by de-
fault. Thus, our idea is to break this assumption here as
well and to “shift” pr’s memory segments by k bytes. This
way, relative distances between p and pr address spaces are
properly diversified defeating or at least strongly thwarting
partial address overwriting attacks.

In order to successfully diversify ET_EXEC ELF ob-
jects [23] we modified the default ld linker script for pr

(i) to load pr starting at a custom address different from the
one define in the ELF ABI and used for p, and (ii) to insert
“junk” data right at the beginning of the .text segment
description in the linker script, using the LONG(k) linker
script keyword. This permit to “shift” pr’s memory segment

by k bytes diversifying relative distances between p and pr

address spaces. The same approach has been used for the
.data segment as well.

Other process memory areas (e.g., stack, heap, mmap
area) as well as ELF ET_DYN shared objects are diversified
as well at run time to take full advantage of the diversifica-
tion approach. Due to space constraints, further details are
given in the extended version of this paper [6].

3.3. Replicator Module

The replicator and monitoring component t of the frame-
work depicted in Figure 1 is in charge of (i) letting p and
pr reach a common execution point, which defines what
we have called rendez-vouz point, to synchronize p and pr

behavior, (ii) performing I/O replication and system calls
management, and (iii) continuously monitor p and pr, rais-
ing an alarm and terminating both processes upon anoma-
lous events (attacks) detection.

Thus, t has to feed pr with the same input given to p and
it has also to correctly manage the system calls invoked by
both processes so that they will exhibit the same behavior
(basically, some system call have to be simulated by t on
behalf of pr).

An accurate and detailed approach description as well
as proof on the effectiveness of our model are given in the
extended version of this paper [6].

4. Practical Issues

Unfortunately, even if the idea of diversified process
replication is simple and effective in combating a broad
range of memory error exploits, there are some practical is-
sues, namely shared memory, signals and non-determinism
situations, that we have to cope with in order to successfully
and broadly deploy such a defensive mechanism.

4.1. Shared Memory

Shared memory management is probably one of the
biggest practical issue introduced by diversified processes
replicæ.

In fact, as already pointed out in § 3.3 and extensively de-
scribed in the extended version of this paper ([6]), one of t’s
task is to synchronize p and pr at each system call (rendez-
vouz point). Afterwards, t can perform some sanity checks
on the system call p and pr want to invoke (e.g., system call
number, its argument), and eventually perform the replica-
tion task, if any, depending on the examined system call.
However, no system calls are invoked when shared mem-
ory is involved1. It might not so clear at first glance where

1We refer here to the operation performed on a shared memory seg-

and how to achieve such a rendez-vouz point for synchro-
nization. Moreover, it might also be unclear how to deal
with a shared resource r in order to guarantee consistency
between p and pr behavior and r. In fact, as we will briefly
see in § 4.1.1, it is fairly easy to make examples on how
things can go wrong between p, pr (behavioral divergence)
and the involved resource r (data inconsistency).

For the sake of simplicity and due to space constraint,
we consider only writable non-anonymous shared memory
here and we try to give the main idea behind a prospective
solution. A complete characterization of the whole issue
and solution are given in [6].

4.1.1 Data Inconsistency and Behavioral Divergence

For this example, let suppose that p creates a readable and
writable non-anonymous shared memory segment (read-
only shared memory is not an issue), that is a memory seg-
ment that maps a file system (FS) object o, via the mmap
system call. Since both p and pr are fed by the same input,
also pr will end up by creating the shared memory segment
as well. As a direct consequence, o will be shared between
p and pr as well. This can be considered as the main cause
of the issue, that is, p and pr will start having an unwanted
form of inter-process communication (IPC).

The consequences are that every modification made by
p on the shared memory segment mapping o, will automat-
ically be reflected onto pr address space as well as into o
itself. If not properly handled this could lead to data incon-
sistency and processes behavioral divergence, as shown in
the following code snippet.

1. let ptr points to the mmap’d shared memory segment
and suppose the first byte of o contains the value A.
Suppose both p and pr are ready to execute line 1 in
the following code snippet.

1 if (*ptr == ’A’)
2 *ptr = ’B’;
3 else
4 *ptr = ’C’;
5 ...
6 // execute something based on *ptr

Suppose the kernel schedules-in p2 and suppose that p
executes the true branch, setting the byte pointed by
ptr to the value B, before its quantum expires;

2. afterwards, let p be scheduled-out by the kernel sched-
uler which eventually schedules in pr that starts its ex-
ecution at line 1; since *ptr has been changed by p,

ment. Obviously, shared memory segment creation requires the use of
system calls.

2Indeed, t is able to somehow control the scheduling of p and pr by
interacting with the kernel using the ptrace system call, but only from
an high-level point of view. Actually, the kernel is in charge of performing
the real process scheduling task and all the processes, even p, pr and t, are
involved.

pr will enter the false branch, setting the byte pointed
by ptr to the value C;

3. but since pr is just a p’s replica, it must exhibit the
same behavior exhibited by p but, as shown, it is not.
This example shows a subtle way to feed p and pr with
different inputs. In fact, p thinks *ptr holds A while
pr not and such a situation might modify their behavior
if further decisions are going to be taken based on the
value stored in *ptr. Moreover, o might end up in an
inconsistent status.

As shown in the following, in the presence of unrelated
processes e that interact with the shared resource r, things
can even be worst because we cannot control anyhow e be-
havior.

To propose a possible solution to this issue we remark
on the following assumption that should hold among every
real processes (that is, not a process and its replica) that are
making use of using shared memory.

Assumption. “[...] What is normally required [when using
shared memory], however, is some form of synchronization
between the processes that are storing and fetching infor-
mation to and from the shared memory region” [20]

We believe that this is not a strict requirement because
without this assumption poorly written programs that make
use of shared resources are going to break soon, even with-
out any malicious intent by an adversary.

4.1.2 A Possible Solution

The aforementioned example does not make use of any
synchronization because, without the replication approach,
there are no other processes involved. However, as soon as
p is replicated into pr a form of unwanted IPC is established
between them. In that example, a straightforward solution is
to force pr to create a private mapping, thus disrupting any
unwanted existing IPC form between p and pr. This task
can easily be performed by t which intercepts any system
call invoked by the monitored processes (§ 3.3).

However, this condition is necessary but not sufficient in
presence of an unrelated process e, because e might modify
the shared resource r. As a direct consequence, while p will
see the modification, pr will never and this might again lead
to a behavioral divergence between the involved processes.

We need to let pr always operate on an up-to-dated view
of the shared resource r and to achieve this, we leverage
on the Assumption given in § 4.1.1 (must hold) which, as a
consequence, (i) permits to define a new rendez-vouz point
that makes possible to decide when to perform the refresh
operation (updates r), and (ii) permits to wait until p “ac-
quire a lock” for r. This avoids data and processes behav-
ioral inconsistency while it permits pr to have an up-to-date
mapping with respect to the current status of r.

Knowing the synchronization mechanisms a process p
can use for gaining “mutual” access to the shared resource
r can help in finding a solution. We see two main different
kinds of methods to obtain synchronization between pro-
cesses accessing shared memory, that is, shared memory-
based and system call-based. The latter method is handled
by t because it resembles an “old-style” rendez-vouz point
(§ 3.3) and will be faced in § 4.1.3. Moreover, it makes use
of the same solution we propose for shared memory-based
synchronization method as well to update r (for further de-
tails see the extended paper version [6]).

Memory-based Sync and Fault Interpretation

It is possible to achieve synchronization for having
granted mutual access to a shared resource r by atom-
ically accessing a shared variable, usually using library
functions like sem_wait, pthread_mutex_lock and
pthread_mutex_trylock. Unfortunately, usually
these functions do not execute any system call3 but we need
to find a way to decide when to perform the refresh opera-
tion at the right time without causing data inconsistency and
processes behavioral divergence.

Preliminary results we conducted on these synchroniza-
tion functions, showed that they end up by executing some
assembly instruction (usually cmpxchg) preceded by the
lock prefix to basically turn the instruction into an atomic
one. The instruction used for acquiring a lock for r can give
us information on whether the lock is successfully acquired
or not ([6]). If it is, then it is possible to update pr’s mem-
ory area which refers to r (private mapping). To reach such
a goal, we propose an approach similar to fault interpreta-
tion [5].

The idea is simple: we exploit the CPU page fault (PF)
exception to know whenever p is writing into a given mem-
ory page m4 of its own which refers to the shared resource
r. To achieve this goal, we mark m of both p and pr as read-
only. This task is performed by t, which intercepts p and pr

system calls whenever the mapping is created (see [6] for
further technical details).

In particular, whenever p or pr wants to write to their
shared mapping m, they acquire a lock in m (actually, this
is a simplification which we try to get rid of in 4.1.3). Since
m is read-only, the CPU will raise a PF exception which
causes a segmentation violation signal to be delivered to the
faulty process (caught by t which can distinguish between at

3Note that sem_wait is actually a C library function that make use
of the futex system call as well as atomic assembly instruction like
cmpxchg on the systems of the authors. Moreover, other synchroniza-
tion primitives like System V semaphores are implemented as system call.
System call-based synchronization already gives out rendez-vouz point.
However, it is still necessary to correctly update the shared resource r
(see 4.1.3).

4Whenever needed, we will use mp and mpr to refer to p’s and pr’s
shared mapping respectively.

attack attempt or a memory protection violation). Roughly
speaking, t waits until p and pr reach this new rendez-vouz
point triggered by the PF. The first time the PF is raised is
because p and pr want to acquire a lock. At this point:

1. t releases mp protection (i.e., it gives read/write per-
mission), let p execute the lock-type faulty instruc-
tion (ptrace single-step), and re-protect mp.

2. t interprets the outcome of the lock-type instruction,
and either:

(a) it refreshes pr’s shared memory mapping of r
only if the lock was successfully acquired and
the shared region was marked as unlocked in a
data structure used by t to describe the mappings.
Moreover, t marks a lock meta-data information
associated to these mappings (mp and mpr) to true
(actually, we should defer the refresh operation if
the shared memory area used to acquire the lock
differs from the one which r is being mapped at or
if a system call-based synchronization approach is
being used. We speculate on this in § 4.1.3). Or,
alternatively

(b) it let pr skip the lock-type instruction without
performing any update operation of r, if the lock
was not acquired, or

(c) it marks mp and mpr as unlocked. Actually, this
step is pretty useless in this scenario (Assumption
given in § 4.1.1, no system call-based synchroniza-
tion and the shared memory area used for acquir-
ing the lock holds r as well) while it will become
necessary for finding a generic solution (§ 4.1.3).

In any case, t arranges to let p and pr continue with
their execution;

3. t executes every non lock-type instruction issued by
p and pr that tries to write into a shared region mapped
by them performing the same steps as carried out in 1.

It is worth noting that we want pr to execute the code in
its critical section because this way we permit it to execute
instructions that might also modify its private state.

4.1.3 Towards a Generic Solution

It might be argued that, since we are under the Assumption
given in § 4.1.1, the aforementioned steps could be simpli-
fied. In fact, a naive solution might be to make a refresh
at every memory access to r that is not a lock-type in-
struction. However, the major drawbacks of this naive ap-
proach are that could generate too much overhead and it
does not work with a system call-based synchronization ap-
proach and if the shared memory area used for acquiring a
lock differs from the one which refers to r.

A more generic solution makes use of the following ob-
servations, derived from the Assumption given in § 4.1.1: in
its simplest form, an operation on a shared resource r can
be seen as a regular expression pattern lw+u where l and u
identify respectively the lock and unlock operation (either
syscall-based or shared memory-based) and w+ is a regular
expression pattern that identifies one or more write access
to the shared resource r (we are not considering read-only
accesses because are not of interest).

Whenever t encounter an l pattern it stores information
about the type of synchronization l represent. Moreover, t
associates every shared memory area obtained by p with a
shared memory meta-data, such as a boolean lock variable
and a set representing active l patterns (that is, l pattern that
are not balanced by/paired with a corresponding u pattern).

Whenever a w pattern is encountered, t checks which
shared resource mapping r this w refers to. Afterwards, it
checks whether the corresponding lock variable is true. If
it is not, t binds all the active l patterns encountered so far
to r’s meta-data, performs a refresh of pr’s shared area and
set the corresponding lock variable to true (t interprets, to
some extent, the outcomes of a synchronization attempt).
Otherwise, it means that this w pattern does not represent
the first memory access in the shared memory area and thus
it is operating on an already up-to-date view of the shared
resource r.

Whenever a u pattern is encountered, t looks up the cor-
responding meta-data set of active l. If at least a match is
found, the lock variable of r is set to false.

Currently, we are investigating on the viability of the ap-
proach that, however, requires a more precise characteriza-
tion of the synchronization primitives.

4.2. Signals and Non-Determinism

Unfortunately, shared memory does not represent the
only critical issue that may arise due to the replication ap-
proach. Indeed, also signals handling and non-determinism
should be analyzed, in order to guarantee a correct behavior
of the process replication approach.

Actually, since t catches every signal sent to p and pr, it
could delay the signal delivery for a while and it can arrange
to fire up the received signal at each rendez-vouz point, thus
achieving perfect synchronization with respect to signal de-
livering. The main problem with this approach is that, how-
ever, intensive CPU bound processes that make few system
calls could probably not benefit from this delayed action,
but even in this case, the signal can be delivered at a given
time chosen by t anyway.

Alternatively, when necessary, as shown in previous
works ([11, 22]), we can leverage on CPU specific coun-
ters (branch_retired) and on the adopted diversifica-
tion approach (§ 3.2) to turn an asynchronous event, like

a signal delivery, to a synchronous one even in absence of
rendez-vouz points.

We are currently studying the feasibility of the idea and
its impact on the performances.

We also believe that, non-determinism situation should
not pose a problem at all. In fact, since pr is fed by the
same input of p, it must behave identically to p, unless, as
observed throughout the paper, the input received is a ma-
licious one. Randomness should not be problematic since
we believe that such data have to be collected generally via
some sort of system calls. Thus, as long as p input is cor-
rectly replicated into pr address space, both processes will
exhibit the same behavior unless relative-address data are
involved ([6]).

5. Experimental Results

We conducted some experimental tests in order to eval-
uate the impact of the process replication with diversifica-
tion approach herein described. To this end, we developed
a user-space ptrace proof of concept. The prototype has
been executed on a 1.3Ghz Intel Centrino with 512MB of
RAM, running a Debian GNU/Linux with a 2.6 vanilla ker-
nel. The PoC is in charge of correctly replicating and moni-
toring thttpd [13], a small and fast web server. Moreover,
httperf [4], an HTTP benchmark utility, has been used
on three client hosts to assess the throughput slowdown on
a 100Mbps LAN using 100 connections, 4 sessions per con-
nection, 13 requests per connection, on a 7.5MB site. The
last test case (#5), instead, was conducted using 10 connec-
tions on a 98MB site.

Table 1 summarizes the experimental results we
achieved. In particular, we were quite surprised by the
1.20% throughput slowdown since, due to the nature of the
idea and of the PoC implementation, a more heavy perfor-
mance impact and network slowdown mainly caused by the
need to simulate some system calls (e.g., read) was ex-
pected. It is worth noting, in fact, that one of the more
heavy system call the proof-of-concept must simulate is
the read system call (as other similar input-related sys-
tem calls, such as readv, recv, recvfrom, . . .) since,
as pointed out in § 3.3, it has to replicate data from one
process to its replica, without actually let the replica exe-
cute the system call. However, further investigation on the
testbed web server showed that, by default, thttpd uses
the mmap system call, where available, in order to map FS
objects into the process address space, by avoiding any use
of the “slow” read system call as much as possible and de-
manding to the kernel the loading of the FS object “parts”
onto the process address space. Moreover, the web server
makes use of a cache system to avoid duplicate mapping or
reading of FS objects which gave out good performance in
our test cases.

In order to be as much complete as possible and to better
assess the throughput slowdown caused by the replication
approach, we modified thttpd in order to force it to ei-
ther use any combination of mmap and (simulated) read
syscall with caching facility on or off. Table 1 reports the
combination we obtained and, as we expected, a throughput
slowdown of 43.78% till 68.93% for non caching read op-
erations on a 7.5MB and 98MB web site, respectively, was
obtained.

It is worth noting that the slowdown inducted by the
read syscall simulation may be decreased if we were able
to distinguish whether a read operation is performed on a
regular VFS object file or from a socket or standard input,
for example. In the former case, in fact, there is no reason
to simulate the syscall at all, while in the latter case such
a simulation is a must in order to guarantee for the correct
processes behavior. Such an optimization would give bet-
ter throughput on “download” operations (from a client per-
spective) while, unfortunately, would be practically useless
on “upload” ones.

6. Conclusions and Future Works

The notion of process replication with diversification
herein faced, gives the opportunity for detecting a broad
range of memory error exploits targeting absolute addresses
overwriting as well as partial overwriting ones. In fact, by
carefully ensuring (i) non-overlapping address spaces be-
tween p and pr, and (ii) different relative distances between
p and pr address spaces, it is possible to obtain complete
protection from these memory errors with certainty, in a
deterministic way.

A solution for the management of writable shared mem-
ory mappings, one of the main practical issue the process
replication approach may suffer, is described. Preliminary
ideas on how to deal with synchronous signals delivery be-
tween p and pr are faced as well.

Moreover, in order to validate the goodness and ef-
fectiveness of the approach herein proposed, a proof-of-
concept prototype working in user space has been devel-
oped. Experimental results report a 68.93% throughput
slowdown on a testbed web server application in the worst-
case, while only a 1.20% throughput slowdown has been
obtained in the best-case.

Our future works are currently focused on providing a
full implementation of our proof-of-concept prototype as
well as to valuate the theoretical and practical feasibility
of the others solutions and scenarios. In fact, as noted at
the beginning of the paper, even if the performance results
might not seem enthusiastic at first glance, and there are
some technical issues to be completely solved as well, con-
ceptually speaking the idea is correct and seems to be a
viable way towards systems survivability. Moreover, the

Throughput MB/s (real system) MB/s (diversified process replica) % slowdown
1 thttpd (mmap) 12386.9 12238.8 1.20%
2 thttpd (mmap-nocache) 12718.4 12496.5 1.75%
3 thttpd (read) 12599.5 12117.4 3.83%
4 thttpd (read-nocache) 12603.7 7086.3 43.78%
5 thttpd (read-nocache-single) 9134.5 2838.1 68.93%

Table 1. Experimental results

model can also form a basis for other security-related ap-
plications, such as malware collector and memory error-
free training sets learnt in production environment (“in the
wild”) for anomaly-based Host Intrusion Detection System
(HIDS).

References

[1] Ana Nora Sovarel and David Evans and Nathanael Paul.
Where’s the FEEB? The Effectiveness of Instruction Set
Randomization. In 14th USENIX Security Symposium, Au-
gust 2005.

[2] Benjamin Cox, David Evans, Adrian Filipi, Jonathan
Rowanhill, Wei Hu, Jack Davidson, John Knight, Anh
Nguyen-Tuong, and Jason Hiser. N-Variant Systems: A Se-
cretless Framework for Security through Diversity. In 15th
USENIX Security Symposium, 2006.

[3] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer.
Non-Control-Data Attacks Are Realistic Threats. In 14th
USENIX Security Symposium, August 2005.

[4] D. Mosberger (main author), S. Eranian, and D. Carter.
httperf - HTTP performance measurement tool.
http://www.hpl.hp.com/research/linux/httperf/ – Hewlett-
Packard Research Laboratories.

[5] Daniel R. Edelson. Fault Interpretation: Fine-Grain Moni-
toring of Page Accesses. In USENIX Winter, pages 395–404,
1993.

[6] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Di-
versified Process Replicæ for Defeating Memory Error Ex-
ploits. Technical Report RT 14-06, Università degli Studi di
Milano, 2006.

[7] Elena Gabriela Barrantes and David H. Ackley and
Stephanie Forrest and Darko Stefanovic. Randomized in-
struction set emulation. ACM Trans. Inf. Syst. Secur., 8(1):3–
40, 2005.

[8] Elias “Aleph One” Levy. Smashing the Stack for Fun and
Profit. Phrack Magazine, Volume 0x07, Issue #49, Phile
14 of 16, December 1998.

[9] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly Detection using Call Stack Information. IEEE
Symposium on Security and Privacy, Oakland, California,
2003.

[10] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Preve-
lakis. Countering Code-Injection Attacks With Instruction-
Set Randomization. In ACM Conference on Computer and
Communications Security (CCS), 2003.

[11] George W. Dunlap Samuel T. King Sukru Cinar Murtaza
Basrai Peter M. Chen. ReVirt: Enabling Intrusion Anal-
ysis through Virtual-Machine Logging and Replay. In
Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2002. http://www.eecs.umich.edu/
˜kingst/revirt.pdf.

[12] Hovav Shacham and Matthew Page and Ben Pfaff and Eu-
Jin Goh and Nagendra Modadugu and Dan Boneh. On the
Effectiveness of Address-Space Randomization. In CCS
’04: Proceedings of the 11th ACM Conference on Computer
and Communications Security, pages 298–307, New York,
NY, USA, 2004. ACM Press.

[13] J. Poskanzer. thttpd - tiny/turbo/throttling HTTP server.
http://www.acme.com/software/thttpd/ – version 2.23beta1-
3sarge1.

[14] M. Chew and D. Song. Mitigating Buffer Overflows by Op-
erating System Randomization. Technical Report CMU-CS-
02-197, Carnegie Mellon University, December 2002.

[15] Rafal “Nergal” Wojtczuk. The Advanced return-into-lib(c)
Exploits: PaX Case Study. Phrack Magazine, Volume 0x0b,
Issue 0x3a, Phile #0x04 of 0x0e, December 2001.

[16] S. Forrest and A. Somayaji and D. Ackley. Building Diverse
Computer Systems. In HOTOS ’97: Proceedings of the 6th
Workshop on Hot Topics in Operating Systems (HotOS-VI),
page 67, Washington, DC, USA, 1997. IEEE Computer So-
ciety.

[17] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Ad-
dress Obfuscation: An Efficient Approach to Combat a
Broad Range of Memory Error Exploits. In 12th USENIX
Security Symposium, 2003.

[18] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Effi-
cient Techniques for Comprehensive Protection from Mem-
ory Error Exploits. In 14th USENIX Security Symposium,
2005.

[19] scut / team teso. Exploiting Format String Vulnerabilities,
September 2001. version 1.2.

[20] W. R. Stevens. UNIX Network Programming: Inter Process
Communi cations, volume 2, chapter 12, page 303. Prentice-
Hall, 1999.

[21] The PaX Team. PaX: Address Space Layout Randomization
(ASLR). http://pax.grsecurity.net.

[22] Thomas C. Bressoud Fred B. Schneider. Hypervisor-based
fault tolerance. In ACM Transactions on Computer Systems,
pages 14(1):80–107, February 1996.

[23] TIS Committee. Tool Interface Standard (TIS), Executable
and Linking Format (ELF) Specification, May 1995. Version
1.2.

