
It Wasn’t My Fault: Understanding OS Fault Propagation
Via Delta Execution

Cristiano Giuffrida∗

Department of Computer Science
Vrije Universiteit, Amsterdam

giuffrida@cs.vu.nl

Lorenzo Cavallaro
Department of Computer Science

Vrije Universiteit, Amsterdam
sullivan@cs.vu.nl

Andrew S. Tanenbaum
Department of Computer Science

Vrije Universiteit, Amsterdam
ast@cs.vu.nl

Recent approaches to operating system (OS) crash recov-
ery have attempted to design a high-coverage component-
agnostic recovery infrastructure [1, 3]. To successfully re-
cover from an otherwise-fatal crash, it is necessary to deter-
mine a safe execution point to resume operation consistently.

Common restart strategies attempt to bring back the OS
from a faulty execution state to a safe state and selectively re-
play execution. Unfortunately, a faulty execution leading to a
crash can result in many logical inconsistencies with complex
dependencies among execution contexts (e.g. kernel threads)
and OS subsystems that need to be tracked and rollbacked
if necessary. Both heavyweight [3] and lightweight mecha-
nisms [1] have been recently proposed for this purpose. Nev-
ertheless, conclusions cannot be easily drawn on the effec-
tiveness of these strategies, since very little is known about
the way faults logically propagate throughout different OS
subsystems and execution contexts in the general case.

To investigate the properties of faulty execution and ana-
lyze the effectiveness of recovery strategies in different fault
scenarios, we propose fault injection experiments in a con-
trolled environment. Prior fault injection work has mainly
focused on analyzing the distance and the time it takes for
a crash to occur once a fault is injected in a particular OS
subsystem [2]. This is insufficient to analyze the behavior of
the system during faulty execution in a fine-grained way and
determine the ability to recover in a given fault scenario. In
addition, in [2] individual subsystems were not properly iso-
lated and there is no way to easily distinguish crashes caused
by global memory corruption from crashes caused by logical
inconsistencies among different OS subsystems.

Our approach, in contrast, is tailored to monitoring the
faulty execution in realtime and analyze the logical propaga-
tion of different fault types throughout different subsystems
and execution contexts. To this end, we break down the oper-
ating system into separate user-space components with well-
defined boundaries and communication primitives (IPC calls
based on message passing). When a fault is to be artificially
injected in a component, we halt the execution of the com-
ponent, fork a new replica, and inject the desired fault in the
replica. From this moment on, the two replicas run in parallel
and both interact with the environment using only IPC mes-
sages. The execution of both replicas, however, is confined in
a controlled environment.

The first replica runs normally, but the incoming and out-
going IPC traffic is constantly monitored and synchronized

∗PhD student at Vrije Universiteit, Amsterdam

with the faulty replica when necessary. The faulty replica, in
contrast, runs in an emulated environment, in which all the
outgoing IPC traffic is intercepted and incoming IPC mes-
sages are artificially crafted and injected. An IPC interceptor
takes care of synchronizing the execution of the two replicas,
by replicating the interactions with the environment of the
first replica in the emulated environment of the faulty replica.
At the same time, the faulty replica is continuously monitored
to detect crashes and differences in the execution. To analyze
the delta execution of the faulty replica, we use IPC mes-
sages as synchronization points and record state differences
between the two replicas at each synchronization point. The
evolution of the differences can give insights on how hard it is
to recover from state inconsistencies or corruption at crash re-
covery time. At the same time, we monitor all the differences
in the IPC traffic to detect and analyze any cross-subsystem
fault propagation. We are also interested in classifying all
the IPC interactions occurred in the delta execution to deter-
mine the ability to successfully recover. For example, idem-
potent IPC interactions during delta execution will not prob-
ably cause serious global inconsistencies. In other cases, the
faulty execution may propagate throughout several subsys-
tems or even reprogram the hardware, hampering the ability
to recover transparently or even making recovery infeasible.

We expect our experimental analysis conducted on many
fault scenarios to give important insights on the ability to
recover from OS crashes and improve the dependability of
modern operating systems. We are planning to conduct our
analysis on a multiserver microkernel operating system to
simplify the implementation, but we will also investigate how
to replicate similar experiments on commodity operating sys-
tems. For example, recent work [3] has demonstrated the
possibility to instrument commodity operating systems and
transparently split the execution space into separate domains.
We believe cross-domain communication could also be in-
strumented and intercepted to design a fault injection testbed
similar to the one described here.

References
[1] GIUFFRIDA, C., CAVALLARO, L., AND TANENBAUM, A. S. We

Crashed, Now What? In Proceedings of the 6th Workshop on Hot Topics
in System Dependability (HotDep’10) (Oct 2010).

[2] GU, W., KALBARCZYK, Z., IYER, R. K., AND YANG, Z. Characteri-
zation of Linux Kernel Behavior under Errors. In DSN (Los Alamitos,
CA, USA, 2003), IEEE Computer Society.

[3] LENHARTH, A., ADVE, V. S., AND KING, S. T. Recovery Domains: an
Organizing Principle for Recoverable Operating Systems. In Proc. of the
14th Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (2009), ACM.


