Fine-grained OS Behavior Characterization

Lorenzo Cavallaro
Department of Computer Science
Vrije Universiteit, Amsterdam
sullivan@cs.vu.nl

Cristiano Giuffrida*
Department of Computer Science
Vrije Universiteit, Amsterdam
giuffrida@cs.vu.nl

Andrew S. Tanenbaum
Department of Computer Science
Vrije Universiteit, Amsterdam
ast@cs.vu.nl

Monolithic operating systems (OSes) are complex pieces
of software that usually offer very little reliability and security
guarantees. Faulty user-space applications can generally be
restarted without affecting the existing concurrent communi-
cations but those involving the faulty processes. On the other
hand, in a monolithic OS design, the kernel and all its compo-
nents share a common address space and any component can
potentially invoke any kernel function. In this scenario, it be-
comes extremely complicated—if not impossible—to isolate
and restart faulty kernel components as it is generally hard
to define their boundaries and interactions (e.g., what kernel
control paths are executed and how information is shared).

Unfortunately, run-time bugs are not the only security
threats an OS must deal with. For instance, malicious compo-
nents may undermine the security of the whole system from
its root. Kernel rootkits can be installed on the system to
replace or modify the legitimate behavior of arbitrary subsys-
tems of the OS. It is under this perspective that it becomes
clear we need techniques that enable us to characterize and
describe the behavior of the whole OS, i.e., the kernel and
its components. The research community has so far pro-
posed a number of approaches aimed at characterizing the
behaviors of user-space processes. Although each one dif-
ferent from the other, such techniques generally rely on the
same underlying intuition, i.e., the behavior of a process can
be expressed by the sequence of system calls the process in-
vokes [1]. Unfortunately, such an intuition easily drops when
monolithic OSes are considered, because well-defined and
easy-to-enforce communication interfaces among kernel sub-
systems are generally missing. While promising, recent at-
tempts to characterize the behavior of kernel OS can be in-
deed quite complicated and currently confined to malware an-
alysts rather than on-line behavior-based policy enforcement
for end-user systems. For instance, the completeness and
scalability of the analysis proposed in [3] depend on the par-
ticular selection of kernel execution paths and well-defined
knowledge on what can be considered sensitive.

It is our belief that a microkernel and multiserver OS de-
sign offers better opportunities to characterize and describe
the behavior of the whole operating system. Recent studies
have shown that program-centric analyses approaches may
not be well-suited to describe the behavior of generic user-
space processes, as they may not generalize well, especially
when the considered applications are exposed to a plethora
of previously-unseen and realistic input [2]. In such scenar-

*PhD student at Vrije Universiteit, Amsterdam

ios a system-centric model seems to be more appropriate and
recent results have backed-up such claims especially when it
comes to telling benign and malicious behaviors apart. How-
ever, a microkernel multiserver OS is made of different com-
ponents (e.g., core components and device drivers) that per-
form, by design, specific tasks. We believe these highly spe-
cific task-oriented behaviors can indeed be easier to charac-
terize than those of generic user-space processes. In fact, un-
der our design, OS subsystems boundaries are well-defined
and interactions among components follow specific rules sub-
jected to well-defined APIs (i.e., IPC calls) responsible for
carrying out the communication among all the components.

Our approach is to leverage such a multiserver
microkernel-based OS design augmented with an IPC
interceptor that constantly monitors the global IPC traffic.
We propose a warming-up phase to perform a per-component
stress testing to learn the behavior of each component in
terms of IPC interactions with other components. Once
a model of the component behavior is available, the IPC
interceptor can monitor the IPC traffic at runtime and raise
an alert when an anomalous behavior is detected with respect
to a number of predefined, but customizable, policies. We
believe this infrastructure for a fine-grained OS behavior
characterization is important for a broad number of ap-
pealing dependability applications. For instance, we are
planning to use our approach to detect buggy OS behaviors
in case of byzantine failures. Likewise, we are interested
in evaluating the effectiveness of our approach to detect a
malicious behavior as a consequence of a newly installed
component (e.g., malware) or security attacks exploiting OS
vulnerabilities. Another interesting aspect in characterizing
the behavior of OS components is to employ our approach
for online patch validation. In particular, this is useful
to estimate the functional changes in terms of behaviors
between two different versions of a component. For instance,
it should be possible to automatically detect a new version of
a component that violates a given update specification.

References

[1] FORREST, S., HOFMEYR, S. A., SOMAYAIJI, A., AND LONGSTAFF,
T. A. A Sense of Self for Unix Processes. In Proc. of the IEEE Sympo-
sium on Security & Privacy (1996).

[2] LANzI, A., BALZAROTTI, D., KRUEGEL, C., CHRISTODERESCU, M.,
AND KIRDA, E. AccessMiner: Using System-Centric Models for Mal-
ware Protection. In Proc. of 17th ACM CCS (Oct 2010).

[3] LANZI, A., SHARIF, M. I., AND LEE, W. K-Tracer: A System for
Extracting Kernel Malware Behavior. In Proc. of the 16th Annual NDSS
Symposium (Feb 2009).



