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ABSTRACT

Modern worms can spread so quickly that any countermea-
sure based on human reaction might not be fast enough. Re-
cent research has focused on devising algorithms to automat-
ically produce signature for polymorphic worms, required by
Intrusion Detection Systems. However, polymorphic worms
are more complex than non-mutating ones as they also re-
quire the identification of mutated instances. To this end, we
propose LISABETH, our improved version of Hamsa, an au-
tomated content-based signature generation system for poly-
morphic worms that uses invariant bytes analysis of network
traffic content. We show an unknown attack to Hamsa’s sig-
nature generator that is contrasted by LISABETH. Moreover,
we show that our approach is able to generally improve the
resilience to poisoning attacks as supported by our experi-
ments with synthetic polymorphic worms.

Categories and Subject Descriptors

K.6.5 [Computing Milieux|: Security and Protection—
Invasive software

General Terms
Security

1. INTRODUCTION

A worm program is an independently replicating and au-
tonomous infection agent, capable of seeking out new hosts
and infecting them via the network [13]. Because of ev-
ermore pervasive Internet connections and software mono-
culture, worms with their typical scan/compromise/replicate
pattern can infect all the vulnerable hosts in a matter of few
hours or even minutes [21]. To contrast such a threat, the
research community has proposed different kind of Intrusion
Detection Systems [20] (IDSs). For example, a misuse-based
IDS, deployed at the gateway between its network and the
Internet, may filter incoming and outcoming network traf-
fic for known signatures that correspond to malicious flows
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samples [14, 24]. In the past, signatures used by IDS have
been generated manually with the supervision of security
experts which studied network traces and inferred worms
signatures. However, in the last years, the frequency and
virulence of worms outbreaks increased dramatically thanks
to their improved efficiency and evasion methods, and be-
came well-understood that signatures generation processes
that involve human labor were not feasible [5, 6] anymore.

To face the low pace of this approach in signatures gener-
ation and to speed up this task, automatic signature gener-
ation systems have been proposed in the past and recent
years. Systems like Honeycomb [4], Autograph [8], and
EarlyBird [22] monitor network traffic to identify new In-
ternet worms and produce signatures for them. All these
systems perform a so-called content-based analysis, i.e., they
produce signatures by extracting common recurrent and in-
variant byte patterns across different suspicious flows. The
main weakness of these generation systems is that they re-
quire that at least a single pattern of a significant length has
to belong to different network streams. Unfortunately, poly-
morphic Internet worms [18, 17], probably the next genera-
tion of worms, are able to change their binary representation
during the spreading process. By using polymorphism tech-
niques’, like self-encryption or semantic-preserving techniques
[3, 7, 15], these worms are able to modify their payload and
so the bytes sequence sent on the network, thus evading sys-
tems using single substring signatures.

To face polymorphism, recent models, like Polygraph [11]
and its improvement Hamsa [25], use novel techniques to
identify different variations of the same polymorphic worm.
Although these systems, in normal conditions, can identify
different instances of a polymorphic worm in an efficient
and effective ways, new studies demonstrate the presence of
some vulnerabilities exploitable by a set of old and new at-
tacks. These attacks allow instances of polymorphic worms
to evade detection and containment systems by misleading
the signature generation process by injecting crafted packets
into normal traffic [19, 1, 12]. To give a concrete example of
these weaknesses, we designed a new attack which could be
employed by an attacker to evade Hamsa [25], the state-of-
the-art model. In particular, this paper makes the following
contributions:

1. We devised a new suspicious poisoning pool attack
against Hamsa’s signature generation approach.

'In this paper we refer to both polymorphism and meta-
morphism techniques as polymorphism. Thus, we consider
worms where cryptography and obfuscation techniques may
be applied on.



2. We proposed and implemented LISABETH?, a new au-
tomated content-based signature generator model that
improves (i) resilience to innocuous and suspicious pool
poisoning attacks, and (ii) signature generation perfor-
mance by using a new signature generation algorithm;
our experiments show the our prototype is as effective
as the state-of-the-art models and LISABETH, under
the invariant presence assumption, is resilient to all
suspicious poisoning pool attacks.

We proceed in the remainder of the paper as follows. In §2,
we introduce the anatomy of polymorphic worms, provide
evidence of the existence of invariant payload bytes in sam-
ples used in real worms exploits and motivate the class of
signatures used in our model. We continue in §3 by set-
ting the context in which LISABETH will be used and stating
our design goals. Next, in §4, we describe the high level
architecture of our network monitor before analyzing our
signatures generation algorithm in §5. We discuss possible
attacks against our system in §6, experimental results in §7,
related literature work in §8, and concluding remarks in §9.

2. POLYMORPHIC WORMS

To support the validity of our model, we now consider the
anatomy of polymorphic worms and motivate the invariant
bytes presence assumption. After a brief characterization of
polymorphic worms structure, we show that different sam-
ples of the same worm often share some invariant content
due to the constraints that an attacker has to respect to ex-
ploit a given vulnerability, as shown in [25, 11] as well. Then,
after a short examination of existing signatures classes, we
motivate why in LISABETH we adopt Hamsa-like signatures.

2.1 Polymorphic Worm Structure

As stated in [19, 11, 1], in a sample of polymorphic worm
we can identify the following components:

Protocol framework. To infect new hosts and continue
their spread, worms have to exploit a given vulnera-
bility. This vulnerability, in many cases, is associated
with a particular application code and execution path
in this code. This execution path can be activated by
few, or more often one, types of particular protocol
request.

Exploit bytes. These bytes are used by the worm to ex-
ploit the vulnerability. They are necessary for the cor-
rect execution of the attack.

Worm body. These bytes contain instructions executed by
the worm instances on new infected victims. In poly-
morphic worms these bytes can assume different values
in each instance.

Polymorphic decryptor. The polymorphic decryptor de-
codes the worm body and starts its execution.

Others bytes. These bytes do not affect the successfully
execution of both the worm body and exploit bytes.

Content-based signature generation approaches rely upon
the presence of invariant bytes in some of the identified com-
ponents. Some of these components, for their nature, offer
high chance of finding these invariant sequences which are
useful for the signature generation purpose.
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2.2 Invariant Bytes

In a polymorphic worm sample we can classify three kind
of bytes: invariant, code and wildcard [11, 25, 19, 1].

Invariant bytes are those with a fixed value in every possi-
ble instance. If their value is changed, the exploit no longer
works. They can be part of the protocol framework and
exploit bytes but in some cases also of the worm body or
the polymorphic decryptor. Such bytes are very useful in
signatures generation because they are absolutely necessary
for the exploit to work and their content is replicated across
worm instances. Code bytes come from components like the
worm body or decryption routine in which there are instruc-
tions to be executed. Although code section of worm sam-
ples can be subjected to polymorphism and encryption tech-
niques, and thus they can assume different shapes in each
instance, polymorphic engines are not perfect and some of
these bytes can present invariant values. Lastly, wildcard
bytes are bytes that may take any value without affect worms
spreading capabilities.

Our analysis and others studies conducted in [11] and [25]
demonstrate that invariant bytes presence assumption is in-
deed a sensible one. The idea on which Hamsa [25], Poly-
graph [11] and our system are based, is to capitalize this
invariant bytes presence across different worms instances to
characterize the worms itself.

2.3 Signature Classes for Polymorphic Worms

Signatures for polymorphic worms can be classified into
two broad categories: content-based signatures that aim to
use similarity in different instances of byte sequences to char-
acterize a given worm, and behavior-based signatures that
alm to characterize worms understanding the semantics of
their byte sequences.

Our approach focuses on content-based signatures that
allow us to treat worms as strings of bytes. In this way,
we obtain a protocol independent system that does not re-
quire any final host information and that requires very short
time to perform the signature generation task. Moreover,
content-based systems can be easily incorporated in firewalls
or network-based IDS (NIDS) because their signatures can
be verified using fast signatures matching algorithms [23].

There are some different classes of content-based signa-
tures, each of one with a different level of expressiveness [11].
The signatures generated by LISABETH are called multi-set
signatures [25]. Multiset signatures are multi-sets of tokens,
where a token is a sequence of bytes that recur in some net-
work flows, and are characterized by a list of tokens each
with its number of occurrences.

Formally speaking, a multi-set signature s takes the fol-
lowing form {(¢t1,n1), (t2,n2), ..., (tx,nx)} where ¢; is a to-
ken and n; its number of occurrences.

We say that a network flow G matches the given multi-set
signature s if it contains at least m; copies of the ¢; token
of s, Vj €[1,...,k]. If Ais a set of flows and s a multiset
signature, with A5 we denote the largest subset of flows in
A that match with s.

It is important to note that this class of signatures does
not consider any kind of token ordering. The invariant bytes
presence assumption imposes to the attacker to use all worm
invariant bytes, in all flow samples, but nothing is said about
the invariants order. By introducing token ordering in signa-
tures we make these vulnerable to coincidental-pattern at-
tacks [11], and so, easy to evade by inserting spurious in-



stances of the invariant tokens in the variant part of the
worm flows misleading signatures generator about true order
of the invariant tokens. Moreover, by specifying invariants
occurrence numbers, it is possible to build more specific sig-
natures than the so-called conjunction signatures proposed
in [11], thus reducing the overall false positives rate.

3. PROBLEM STATEMENT AND SYSTEM
REQUIREMENTS

As stated in the previous section, our approach is based on
the observation of all the network traffic in transit across a
monitoring point, such as between an edge network and the
broader Internet, trying to generate multiset signatures that
characterize the worms which flow samples are sent across
the monitored network. While we believe that a distributed
approach will be more effective, in this work we consider
only a single centralized strategy.

Like Hamsa [25], our system analyzes network traffic, de-
fragments network packets into contiguous flows of bytes,
classifies re-assembled flows in suspicious, presumably sent
by a worm instance, and innocuous, probably belonging to
a common application, and tries to extract signatures that
characterize flows classified as suspicious.

The main issue in which we are interested in is genera-
tion of signatures by examining the suspicious and innocu-
ous flows pools. Flows reassembly and traffic normalization
at a monitor level [24] and identification of anomalous or
suspicious traffic with more or less accurate techniques [8,
4, 10] are typical topics in IDS design and development and
we do not cope with them here.

We only assume that the flow classifier is imperfect and
may mis-classify innocuous flows as suspicious and viceversa.
Moreover, the classifier is also not able to discriminate flows
depending on the worm who generated them.

As said before, the approach leverages on the hypothesis
that every worm has its invariants set and that an attacker
must insert, in all worm samples, all the invariants bytes in
order for the attacker to be successful. This means that, to
allow a rapid spread of the worm, there will be a lot of flows
in which all the invariant bytes occur. However, some of the
same invariant bytes could appear also in innocuous flows
or it will be quite simple for an attacker to inject designed
noise (like bogus worms) in suspicious flows pool or fake
invariants in worm samples in order to mislead generation
of the signatures. These evasion techniques are known as
poisoning attacks.

As we will see in Section 6, this issue is very important
in design phase of new systems. Prior generation models,
like Hamsa [25] and Polygraph [11], even if equipped with
signatures generators effective also in presence of high noise
ratios, will be led astray in presence of some ad-hoc forged
traffic because of an incorrect approach to the issue.

In conclusion, given a suspicious traffic pool M and an
innocuous traffic pool AV, our goal is to find a set S of sig-
natures s; each of which covers many flows in M but not

. .. Ns-
so many in N. So, the false positives rate FP,, = lqu\" of

each s; must be low, while the coverage (true positive rate)

_ M
COVs, = T high.

4. HIGH LEVEL ARCHITECTURE

The high level architecture of LISABETH is very similar
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Figure 1: High level architecture of the new model.
(In white the differences with Hamsa)

to Hamsa’s, from which it is derived from. In the follow-
ing, we remind the key ideas. For an exhaustive description
of common phases and algorithms, the reader should refer
to [25]. Our new signature generation algorithm is, instead,
described in §5.

4.1 Global Overview of the System

Figure 1 depicts the architecture of LISABETH, where the
components that differ from Hamsa are depicted in white.
We first need to sniff network traffic, reassemble flows of
network packets and classify flows in terms of different pro-
tocols (TCP/UDP) and port numbers. For each (port,
protocol) pair, we filter out known worm samples and then,
using the worm flow classifier, we separate flows into suspi-
cious (M) and innocuous (N') pools.

The next step concerns the selection of suspicious and
innocuous flows to send to the signatures generator and from
which signatures will be created.

To avoid poisoning attacks from a single attacker, i.e.,
with network packets coming from a single network address
or at most from a limited network address set, we propose
to use a dispersion filter. The goal of this filter is to per-
form a dispersion analysis on suspicious flows in order to
send to the generator a well dispersed set of flows. By us-
ing this technique only fewer flows for each source address
are sent to the signature generator. Thus, to be successful,
worm instances that want to perform suspicious pool poison-
ing attacks against our system must synchronize themselves
with respect to the features to use in flows. This, as a con-
sequence, makes the attack harder to carry out.

On the innocuous flows pool, instead, the idea is to use
a good selection policy to decide which flows should be em-
ployed in the signature generation. Even if, as we will see
in §6, our system is less sensible to innocuous pool poisoning
attacks than Hamsa, we suggest the use of a dispersion-based
flow selection policy also on the innocuous pool.

The selected suspicious and innocuous flows are given as
input to the signatures generator which generates signatures
as described in the following section.

4.2 Signature Generator
Unlike Hamsa, the only assumption LISABETH is based on
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Figure 2: Signature generator architecture. (In
white differences with Hamsa)

is that a true worm flow must contain all true invariants
I; of the invariant set Z and that, in order to have a rapid
spread, the worm sends worm samples across the network.

As it is possible to see in Figure 2, the first operation
performed on the suspicious flows pool is token extraction.
In this phase we find all sequences of at least ¢ bytes that
occur in more than A fraction of the suspicious pool. The
constraint on sequences length is required to ignore too small
tokens, while )\ is used to take into account only those that
occur in several flows.

To speed up the algorithm’s execution time, all the ex-
tracted tokens are then identified in each innocuous flow,
and all flows, innocuous and suspicious, are converted in se-
quences of tokens discarding all bytes sequences not included
in the extracted tokens set.

Flows so obtained are then sent to the signature gen-
eration algorithm that, as we will see in §5, creates the
required signatures.

The last phase performs signatures reduction on re-
turned signatures to remove all tokens that, always appear-
ing as subtokens of others ones, are not required to enhance
signatures specificity.

S. SIGNATURE GENERATION ALGORITHM

Given suspicious (M) and innocuous (N) flows pools,
the aim of the signature generation algorithm is to find
a set S of signatures s; such that FPs;;, < FPpa and
COVy, > COVpin. To this end Hamsa adopts a purely
greedy approach. However, building the most specific signa-
ture including all possible invariants giving a good coverage
of M without having any knowledge of the nature, real or
fake, of the invariants or using a greedy algorithm with a
restricted view of global situation without having a global
overview of all possible signatures may weaken the strength
of the detection, as we discuss in Section 6. To avoid gen-
eration of redundant signatures, we enforce an additional
constraint in our algorithm:

Si€$<=>$8j€$|Mslngj

The idea is to create all the signatures that match a con-
siderable fraction of the suspicious pool, while avoiding the
addition of new tokens to a partial signature when it has al-
ready an acceptable false positive rate (i.e., a rate less than
FPmax)‘

In this way, we can have more signatures per worm but we
have surely at least one specific enough signature contain-
ing only a subset of Z. The value used for F' P,,q, may be
smaller than the value used in Hamsa for the shortest signa-
tures, i.e., composed by only one token, and so the maximum
false positives rate, accepted for a single signature, is lower.

The generation of all the possible subsets of the extracted
tokens and subsequent check of the given constraints would
require a non-negligible computational effort, so another aim
of the proposed algorithm is to avoid, whenever possible, to
generate redundant or useless long signatures.

As we can easily think, for any given token there may
be more occurrences of it in a single flow. To avoid wor-
rying about this problem, we assign to each pair (token,-
number of occurrence) an unique identifier. In this way
we consider these occurrences as different tokens. It is im-
portant to note that the same occurrence of the same to-
ken in different flows will have the same identifier. All
these matching information between identifiers and related
(token,number of occurrence) pairs are stored in an ap-
propriate data structure, called T'M, for subsequent use.

Once this identifier is assigned, for each of the aforemen-
tioned pair, we build a list of all suspicious flows in which
it occurs, create a partial signature with that pair and re-
lated flows list and insert this new partial signature into the
partial signatures set PS.

To avoid generation of redundant signatures caused by the
high number of tokens that appear always as subtokens of
other ones, we remove these subtokens from PS and take
them into account at the end of the signature generation
algorithm. We say that t; is a subtoken of o if t1 # to, t1
is substring of t2 and the occurrence number considered for
t1 is the same of that considered for t2. Then, if a token
t1 occurs as a subtoken of to we delete partial signature
containing t; and add ¢; in the subtokens list of ¢2 stored in
subtokens data structure ST

Once the partial signature set is build, our algorithm pro-
ceeds iteratively. First it evaluates the false positives rate
of all the available partial signatures. Those with a value
low enough are inserted into S and deleted from PS. The
remaining signatures are then merged into each others and
if each new partial signature has not a good coverage of M,
it is discarded along with those of the prior iteration. Cov-
erage evaluation is simple and fast: the number of covered
flows is given by the intersection between flows lists of the
two partial signatures merged together. The merging of two
partial signatures is performed only if the new one has just
one more token than the two from which it is obtained.

Finally, iterations are stopped when the partial signature
set is empty. Before returning it, to each generated signature
are added the ignored subtokens of each included superto-
ken.

Algorithm 1 describes in detail the generation algorithm
developed to address the above requirements. The algorithm
relies on the following methods’ definitions:

getTokenList() Returns the list of extracted tokens and,
for each of them, the multi-set of flows in which it
appears.

maxOcc(t) Returns the maximum number of occurrences
of the token ¢ in a single flow, considering all the sus-
picious flows in which the extracted token occurs.

genNewld() Generates a new unambiguous identifier.

checkIfSubT(t, i) Checks if the occurrence i of token ¢
occurs as a subtoken of some supertoken.

findSuperToken(t, i) Finds supertoken identifier for an
occurrence i of the token t.



Algorithm 1 Signature generation algorithm

Input: M, N, FP .. and COV pin
Output: Signatures set S for worms in M
TM =PS=8ST=8=0
tokenList = M.getTokenList()
tokenList.sort() {by descending length}
for all t € tokenList do
for i =1 to tokenList.mazOcc(t) do
id = genNewld()
if PS.checkl fSubT(t,i) then
ST.append(PS. findSuperT(t,1),id)
else
PS.append(genNewld(),id,-
tokenList.get FlowList(t,1))
end if
T M.append(id, t,1)
end for
end for
for all e € PS do
if PS.calcCov(e, M) < COV pin, then
PS.delete(e)
end if
end for
signLen =1
while PS.isNotEmpty() do
signLen = signLen + 1
for all e € PS do
if calcFP(e,N) < FP 4, then
S.append(newSign(e, TM, ST))
PS.delete(e)
end if
end for
for all e € PS do
for all f € PS A f.id > e.id do
tmp = merge(e, f)
if tmp.tokenNum() = signLen then
if calcCov(tmp, M) > COV 1in then
PS.append(genNewld(), tmp.id, tmp. flow)
end if
end if
end for
PS.delete(e)
end for
end while
return S

getFlowList(t, i) Returns the list of flows in which the
occurrence ¢ of token ¢ occurs.

calcCov(e, P), calcFP(e, P) Return, respectively, the cov-
erage and false positives of an element e on pool P.

merge(e, f) Returns a new element that contains the union
of the tokens e and f and the intersection of their cov-
ered flows.

tokenNum() Returns the number of elements included into
the token set on which is called.

newSign(e, TM, TS) Generates a signature containing to-
kens of e, all their subtokens, suggested by TS, and
substitutes identifier of each token with the associated
string, following TM hints.

6. ATTACK ANALYSIS

Although signature generation systems like Hamsa and
Polygraph are able to build good signatures even in the
presence of random noise, their behavior is not so accurate
if the analyzed flows are provided by a malicious user that
attempts to mislead worm signatures generator with forged
invariants. In particular, three main potential adversary ca-
pabilities [12] might lead an attacker to achieve the desired
outcome in systems based on an initial classifier:

Target feature manipulation. The adversary manipulates
some characterizing features, like the worm code or the
protocol framework bytes, in worm samples. There
are many techniques to minimize or obfuscate required
features or to include additional spurious features into
worm samples to mislead signatures generator.

Suspicious pool poisoning. The adversary places some
non-worm samples inside the suspicious pool. These
samples are specially constructed to mislead the sig-
natures generator.

Innocuous pool poisoning. Similarly, the adversary places
specially crafted worm samples inside the innocuous
pool to mislead signatures generation.

Systems like Hamsa and Polygraph suffer of some of these
attacks [12, 19, 1]. As Hamsa is an improvement over Poly-
graph, in the following, we focus our discussion only on
Hamsa.

The greedy approach used in Hamsa’s signatures gener-
ation algorithm, with its incremental generation of partial
signature, can be led to build useless signatures, thus mak-
ing these unable to match any more actual worm samples.
In fact, the greedy algorithm proceeds iteratively by select-
ing at every iteration the token that, added to previous ones,
gives the best signature. Doing so, Hamsa creates signatures
of incremental length, obtaining each of them by adding a
token to the signature generated in the previous iteration.

The first signature contains only the token that maximizes
COV rate within those offering a F'P rate less than a given
F P40 rate for a signature of that length. At each iteration,
Hamsa’s generation algorithm adds to the previous selected
signatures the token with the F'P rate lesser than a threshold
with the maximum COV rate. When the maximum length
for a signature is reached, Hamsa selects the best one by
evaluating a score for each signature. This score takes into



account F'P and COV rate and signature’s length. The
one with the higher score is then selected and returned as
signature for the given input. This approach presents some
weaknesses.

Let W denote a worm and Z = {la, Ip, I¢,...,I;} its in-
variant set. An attacker could try to introduce some fake
invariants F = {F, F», F3, ..., Fy}, i.e., tokens found in sus-
picious flows but not really required by the exploit. In order
to assure that Hamsa considers only fake invariants (and ne-
glecting real ones) is enough that elements of F are forged
according to the constraint

FP{F17F27F37~--7F1'} < u(z) Vi € [1y]

where (%) is the function Hamsa uses to determine if the
false positive rate of a given signature is low enough.

The above constraint can be trivially respected. Given Z
and F, an instance of W will generate two class of samples:
worm samples W{F WIF .. WIF that contain real and
fake invariants and non-worm samples Wi WE ..., WJF that
contain only fake invariants and so are not real working
worms.

To assure attack achievement, an attacker must send worm
and non-worm samples to the victim and drives the initial
classifier to classify these as suspicious. To do so, it is suffi-
cient to hold an anomalous behavior, where what anomalous
means depends on the initial classifier type.

Suppose that W sends n samples of WIF and j of W
with n 4+ 7 > A, where A is the minimum number of tokens
occurrences in suspicious flows pool required to be consid-
ered in signatures generation.

The token extraction procedure will extract all fake in-
variant tokens F; and, if n > A, all the real invariants I;.

In the signature generation algorithm, the first chosen to-
ken will be a fake invariant because there is at least one fake
invariant, i.e., Fy, with false positive rate less than u(1) that
occurs more than any other real invariant I;. Similarly, in
subsequent iterations, the algorithm includes in the tempo-
rary signature a fake invariant because there is always a F;
that, added to the previous ones, respects u () value and,
with the others, occurs more times than any other true in-
variant.

To guarantee that the order in which fake invariants are
chosen by the algorithm follows the predicted one, and to
avoid that after some iterations the best token, and so that
to include in the signature, will be a true invariant, is neces-
sary to include in the non-worm samples y additional flows
such that:

WFerd  contains only Fjy..4 fake invariants, i € [1..y]

In this way, if n is greater than the maximum length of
a signature considered by the algorithm (Hamsa proposes
a length of 15 tokens), it is possible to obtain a signature
made only by fake invariants.

The execution of the signature refinement procedure, that
includes in the selected signature all the tokens occurring in
all the covered suspicious flows only if not already present in
the signature, does not affect attack effectiveness: at most
all remaining fake invariants, and only these, will be included
in the selected signature.

This attack leads signature generation algorithm to build
a signature that does not include any real invariant. The
attacker is now able to send another burst of worm and
non-worm samples without being detected. Even if more

than one worm instance attacks the same host, this attack,
unlike the well-known red herring attack [12], can work any
way if the value of n is big enough with respect to the value
of j. In the red herring attacks the adversary incorporates
fake invariants into the worm samples to lead the generation
system to create signatures that include those spurious fea-
tures in addition to the necessary invariant tokens. Then the
adversary can evade the resulting signature by not including
some fake invariants in subsequently generated worm sam-
ples. So, if two or more not synchronized attackers send
worm samples using different fake invariants sets, the sig-
natures generation system will be able to create the correct
signature. This is possible because the number of real invari-
ants is greater in comparison to that of fake invariants and
so, by offering better COV rate, they will be selected before
the fake ones. The new signature probably contains only
real invariants and so matches with all current and future
flows.

6.1 Attack Effectiveness

We evaluated both Hamsa and our model for this new at-
tack, injecting 20 fixed different tokens to the variant part
of each worm and non-worm sample. Hamsa generated one
signature built only with injected fake invariants. Due to
the lack of real invariants presence in the signature, no new
polymorphic instances of the same worm could be detected
(100% false negative). In addition, all analyzed worm flows
are then discarded, and so the system is not able to build a
correct signature also in subsequent execution of the signa-
ture generation algorithm.

7. LISABETH EVALUATION

We evaluated the effectiveness and efficiency of LISABETH
under several scenarios. To evaluate the effectiveness of our
approach we first considered the case where the suspicious
flows pool contained only flows of one worm. Next, we con-
sidered the case where suspicious flows pool contained some
noise, and some innocuous flows as well. Finally, we con-
sidered the case where the suspicious pool contained flows
from multiple worms. To evaluate LISABETH efficiency we
ran our system with different amounts of data both for suspi-
cious and innocuous pools and compared these results with
those of our Hamsa implementation.

To accomplish our tests we used polymorphic versions
of three real-world exploits, i.e., the Apache-Knacker, the
ATPhttpd, and the Code-Red exploit, generating suspicious
flows using a companion tool included in Polygraph’s source
code [9]. As innocuous flows we used HT'TP traces collected
from our laboratory’s network gateway during normal us-
age. During the evaluation process we used several network
flows pools of different sizes as input both for the suspicious
and the innocuous pools.

7.1 Effectiveness

LISABETH is resilient to the attacks described in § 6 to
which Hamsa is exposed. Our signature generation algo-
rithm builds some more signatures than Hamsa but at least
one of them with only real invariants, and so at least one
is able to detect all subsequent worm flows. In order to
evaluate how good was our performance under this kind of
attack, we had to disable the dispersion filter, since if it was
activated only few of all the flows sent by the worm would
have been sent to the signature generator, because each flow



would have been related to the same network source address.
LISABETH is in fact resilient to all attacks of the suspicious
pool poisoning family until the assumption of invariant pres-
ence holds. The dispersion filter by itself is able to neutralize
all the suspicious pool poisoning attacks in which is required
that, in a not synchronized environment, only one worm in-
stance sends packets to a designated victim as in the dropped
red herring attack.

Moreover, the innocuous flows selection policy also as-
sures more resilience against innocuous pool poisoning at-
tacks than Hamsa. Even if in some cases this countermea-
sure may be circumvented by a smart attacker, e.g., by using
address spoofing on UDP traffic, the lack of constraints on
the maximum false positives rate of partial signatures makes
our model more resilient against innocuous pool poisoning
attacks that aim to inject fewer real invariants in the in-
nocuous traffic, as described in [12].

Finally, by not taking into account invariants order in sig-
natures, unlike Polygraph, our model is also resilient against
coincidental-pattern attacks [11].

The evaluation performed demonstrates the ability of our
model to generate good signatures. Using a value of 1.875 x
1072 for FPoux (as used in Hamsa as a threshold for sig-
natures of 4 tokens), our model generated, in each test, at
least one signature for each worm containing only a subset
of its the invariant set.

In each test performed on suspicious pools containing only
worm samples, and so without noise, the number of built
signatures was very small: in the worst case LISABETH gen-
erated two signatures for a single worm but all generated sig-
natures contained only real invariants. Multiple per worm
signatures generation is due to the very low F'P rate of these
partial signature and so to their satisfying specificity. In
tests with noise, LISABETH created correct signatures for
each worm, so including only real worm’s invariants, and a
limited number of unwanted signatures containing only in-
variants coming from noise. Its important to note that these
unwanted signatures present low false positive rate and so
they do not heavily jeopardize the use of our system. More-
over, tokens included in these signature belong to a small
set of strings and so this issue may be resolved by the use
of a white-list of signatures.

Generating more than one, less specific signatures per
worm than Hamsa, one problem of our model may be higher
false positive rate. Our experiments however, prove the abil-
ity of the system to create specific enough signatures, giving
an average false positives rate of 9.5 x 10™% and so compara-
ble with Hamsa’s accuracy. This accuracy is due to the low
false positive rate required for each single signature even if
shorter than those produced by Hamsa.

We also assessed the efficiency of LISABETH by considering
the execution time of the generation algorithm for our model
compared with the execution time of our implementation
of Hamsa’s algorithm. In Figure 3, we show the runtime
required by our model and by Hamsa to perform signatures
generation for different innocuous flows pool sizes.

While spending the same amount of time, this improved
efficiency allows us to use a bigger innocuous flows pool than
Hamsa and so to have more accurate false positive rate eval-
uations on partial signatures during signatures generation
algorithm execution.

8. RELATED WORKS
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Figure 3: Requested time for generation algorithm
execution in Hamsa and in Lisabeth for growing
sizes of innocuous flows pool

Even if early automated signatures generation systems [4,
8, 22] use different techniques to build worm signatures, all
of them assume the presence of a single, specific enough,
long invariant substring. Recently, there has been active re-
search on polymorphic worm signatures generation, and new
approaches have been proposed. New content-based systems
like Polygraph and Hamsa have been deployed. As shown
in this paper, our system is very similar to these systems,
but it is a significant improvement over Polygraph [11] and
Hamsa [25] in terms of speed and attack resilience.

Behavior-based systems, that use protocol and binary code
information to characterize worm and subsequently build
signatures, have been researched as well. In [2], Kruegel
et al. propose an approach based on structural similar-
ity of Control Flow Graph (CFG) to generate signatures
for detecting different polymorphic worms. This approach,
however, is computationally expensive and cannot detect
worms with very small CFG or that apply special obfus-
cation techniques such as insertion of never exercised con-
ditional branches. Of course, due to a more polymorphism
resilience, it is also possible that this system detects worm
that our approach misses. TaintCheck [10], working at host
level, dynamically traces and correlates the network input to
control flow changes to find the malicious input and derive
worm properties. TaintCheck can understand worms and
exploited vulnerability and it is able to automatically gener-
ate signatures. In [16], Christodorescu et al. model malware
behavior and detect the code similar to an abstract model.
Like the CFG-based approach, however, their approach is
computationally expensive.

9. CONCLUSION

In this paper, we have presented LISABETH, an automated
content-based signature generation approach for zero-day
polymorphic worms. According to our experiments LISA-
BETH achieves significant improvements with respect to per-
formance and attack resilience over Hamsa [25], the state-
of-the-art of the network-based signature generation model
for zero-day polymorphic worms. Currently, our prototype
is able to perform signature generation for a given pool of
suspicious flows but does not implement some of the mi-



nor proposed modules like those for signatures reduction or
flow selection policies. Future works will analyze potential
advantages deriving from an extension of our system in a
distributed environment in which many monitors will coop-
erate in traffic monitoring and signature generation.
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