
On the Limits of Information Flow Techniques for
Malware Analysis and Containment�

Lorenzo Cavallaro1, Prateek Saxena2, and R. Sekar3

1 Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano, Italy

2 Computer Science Department
University of California at Berkeley, USA

3 Computer Science Department
Stony Brook University, USA

Abstract. Taint-tracking is emerging as a general technique in software security
to complement virtualization and static analysis. It has been applied for accurate
detection of a wide range of attacks on benign software, as well as in malware
defense. Although it is quite robust for tackling the former problem, application
of taint analysis to untrusted (and potentially malicious) software is riddled with
several difficulties that lead to gaping holes in defense. These holes arise not only
due to the limitations of information flow analysis techniques, but also the nature
of today’s software architectures and distribution models. This paper highlights
these problems using an array of simple but powerful evasion techniques that
can easily defeat taint-tracking defenses. Given today’s binary-based software
distribution and deployment models, our results suggest that information flow
techniques will be of limited use against future malware that has been designed
with the intent of evading these defenses.

1 Introduction
Information flow analysis has long been recognized as an important technique for de-
fending against attacks on confidentiality as well as integrity [6,8]. Over the past quarter
century, information flow research has been concentrated on static analysis techniques,
since they can detect covert channels (e.g., so-called implicit information flows) missed
by runtime monitoring techniques.

Static analyses for information-flow have been developed in the context of high-level,
type-safe languages, so they cannot be directly applied to the vast majority of COTS
software that is available only in binary form. Worse, software obfuscation and encryp-
tion techniques commonly employed in malware (as well as some benign software for
intellectual property protection) render any kind of static analysis very difficult, if not
outright impossible. Even in the absence of obfuscation, binaries are notoriously hard
to analyze: even the basic step of accurate disassembly does not have solutions that
are robust enough to work on large x86 binaries. As a result, production-grade tools
that operate on binaries rely on dynamic (rather than static) analyis and instrumenta-
tion [3,7,17,24,26].

� This research is supported in part by an ONR grant N000140710928 and an NSF grant CNS-
0627687, and was carried out while the first two authors were at Stony Brook University.

D. Zamboni (Ed.): DIMVA 2008, LNCS 5137, pp. 143–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

144 L. Cavallaro, P. Saxena, and R. Sekar

Following this observations, several researchers have recently developed dynamic
information-flow techniques for COTS binaries [10,15,29,30,36]. These techniques,
along with source-to-source based transformation approaches, have enabled accurate
detection of a wide range of attacks on trusted software1 including those based on
memory corruption [15,36], format-string bugs, command or SQL injection [2,28,43],
cross-site scripting [40], and so on. More recently, researchers have reported significant
successes in applying dynamic information flow techniques on existing malware, both
from the perspective of understanding their behavior [1], and detecting runtime viola-
tion of policies [13,34]. Although dynamic taint analysis technique is quite robust for
protecting trusted software, its application to untrusted (and potentially malicious) soft-
ware is subject to a slew of evasion techniques that significantly limit its utility. We point
out that understanding the limitations of defensive techniques is not just an academic
exercise, but a problem with important practical consequences: emerging malware does
not just employ variants of its payloads by using metamorphic/polymorphic techniques,
but instead has begun to embed complex evasion techniques to detect monitoring en-
vironments as a means to protect its “intellectual property” from being discovered. For
instance, W32/MyDoom [19] and W32/Ratos [38] adopt self-checking and code execu-
tion timing techniques to determine whether they are under analysis or not. Likewise,
self-modifying techniques — among others — are used as well (W32/HIV [18]) to
make malware debugging sessions harder [37,39]. Thus, a necessary first step for de-
veloping resilient defenses is that of understanding the weaknesses and limitations of
existing defenses. This is the motivation of our work. We have organized our discussion
into three major sections as follows, depending on the context in which information
flow is being used.

Stand-alone malware. When applied to malware, a natural question is whether the
covert channels that were ignored by dynamic techniques could be exploited by adap-
tive malware to thwart information-flow based defenses. These covert channels were
ignored in the context of trusted software since their “capacity” was deemed too small
to pose a significant threat. More importantly, attackers do not have any control over the
code of trusted software, and hence cannot influence the presence or capacity of these
channels. In contrast, malware writers can deliberately embed covert channels since
they have complete control over malware code. In this paper, we first show that it is
indeed very easy for malware writers to insert such covert channels into their software.
These evasion techniques are simple enough that they can be incorporated manually,
or using simple, automated program transformation techniques. We show that it is very
difficult to defeat these evasion techniques, unless very conservative reasoning is em-
ployed, e.g., assuming that any information read by a program could leak to any of its
outputs. Unfortunately, such weak assumptions can greatly limit the purposes to which
dynamic information flow analysis can be used. For instance, Stinson et al. [34] use in-
formation flow analysis to detect “remote-control” behavior of bots, which is identified
when arguments to security-critical system calls are tainted. If a conservative notion of
tainting is used, then all programs that communicate over the network would have to be
flagged as “bots,” which would defeat the purpose of that analysis.

1 In this paper, the term “trusted software” is used to refer to software that is trusted to be benign.

On the Limits of Information Flow Techniques 145

Malware plug-ins. Next, we consider recent evolution in software deployment mod-
els that has favored the use of plug-in based architechtures. Browser helper objects
(BHOs), which constitute one of the most common forms of malware in existence to-
day, belong to this category. Other examples include document viewer plug-ins, media
codecs, and so on. We describe several novel attacks that are possible in the context of
plug-ins:

– Attacks on integrity of taint information. Malware can achieve its goal indirectly
by modifying the variables used by its host application, e.g., modifying a file name
variable in the host application so that it points to a file that it wants to overwrite. Al-
ternatively, it may be able to bypass instrumentation code inserted for taint-tracking
by corrupting program control-flow.

– Attacks based on violating application binary interface, whereby malware violates
assumptions such as those involving stack layout and register usage between callers
and callees.

– Race-condition attacks on taint metadata. Finally, we describe attacks where mal-
ware races with benign host application to write security-sensitive data. In a success-
ful attack, malware is able to control the value of this data, while the taint status of
the data reflects the write operation of benign code.

While conservative notions of tainting could potentially be used to thwart these at-
tacks [33], this would restrict the applicability of information-flow techniques even
more.

Analyzing future behavior of malware. Today’s malware is often packaged with
software that seems to provide legitimate functionality, with malicious behavior ex-
posed only under certain “trigger conditions”, e.g., when a command is received from a
remote site controlled by an attacker. Moreover, malware may incorporate anti-analysis
features so that malicious paths are avoided when executed within an analysis environ-
ment. To uncover such malicious behavior, it is necessary to develop techniques that can
reason about program paths that are not exercised during monitoring. While one may
attempt to force execution of all program paths, such an approach is likely to be very
expensive, and more likely to suffer from semantic inconsistencies that may arise due to
forcing execution down branches that are not taken during execution. A more selective
approach has been proposed by Moser et al. [1] that explores paths guarded by tainted
data, rather than all paths. This technique has been quite successful in the context of ex-
isting malware. The heart of this approach is a technique that uses a decision procedure
to discover memory locations that could become tainted as a result of program execu-
tion, and explores branches that are guarded by such data. In Section 4, we show that
these trigger discovery mechanisms (and more generally, the technique for discovering
which data items can become tainted) can be easily evaded by purposefully embedding
memory errors in malicious code.

Paper organization. Sections 2 through 4 describe our evasion techniques, organized
along the lines described above. Where possible, mitigation of these evasions and their
implications on information flow analyses are discussed as well. A summary of related
work is provided in Section 5, followed by concluding remarks in Section 6.

146 L. Cavallaro, P. Saxena, and R. Sekar

2 Stand-Alone Untrusted Applications
For the sake of concreteness, we discuss the impact of evasion attacks, as well as mit-
igation measures, in the context of the “remote control” behavior detection technique
presented by Stinson et al. [34], although the evasion techniques themselves are appli-
cable against other defenses as well, e.g., dynamic spyware detection [13].

Stinson et al. observed that bots receive commands from a central site (“bot-herder”)
and carry them out. This typically manifests a flow of information from an input op-
eration (e.g., a read system call) to an output operation (e.g., the file named in an
open system call). Their implementation relied on content-based tainting: i.e., taint
was assumed between x and y if their values matched (identical or had large com-
mon substrings) or if their storage locations overlapped. As noted by the paper authors,
content-based tainting is particularly vulnerable: it can easily be evaded using simple
encoding/decoding operations, e.g., by XOR’ing the data with a mask value before its
use. However, the authors suggest that a more traditional implementation of runtime
information flow tracking [15] would provide “thorough coverage” and hence render
attacks much harder. Below, we describe simple evasion measures that allow malware
to “drive a truck” through the gaps in most dynamic taint-tracking techniques, and pro-
ceed to discuss possible mitigation mechanisms and their implications.

2.1 Evasion Using Control Dependence and Implicit Flows

Dynamic information flow techniques that operate on trusted software tend to focus on
explicit flows that take place via assignments. It is well known that information can flow
from a variable y to another variable x without any explicit assignments. Indeed, a num-
ber of covert channels for information flow have been identified by previous research
in this area. We demonstrate the ease of constructing evasion attacks using these covert
channels. We focus on two forms of non-explicit flow, namely, control dependences and
implicit flows.

Control dependence arises when a variable is assigned within an if-then-else state-
ment whose condition involves a sensitive (tainted2) variable, e.g.,

if (y = 1) then x := 1; else x := 0; endif

Clearly, the value of x is dependent on y, even though there is no assignment of the
latter to the former. In particular, the above code snippet enables copying of a single bit
from y to x without using direct assignments between them. Using an n-way branch
(e.g., a switch statement with n cases) will allow copying of log n bits. A malware
writer can propagate an arbitrarily large amount of information without using explicit
flows by simply enclosing the above code snippet within a loop.

Implicit flows arise by virtue of semantic relationships that exist between the values
of variables in a program. As an example, consider the following code snippet that
allows copying of one bit of data from a sensitive variable y to w without using explicit
flows or control dependences:

2 Typically, the term “taint” is used in the context of integrity, while “sensitive” is used in the
context of confidentiality.

On the Limits of Information Flow Techniques 147

1. x := 0; z := 0;
2. if (y = 1) then x := 1; else z := 1; endif
3. if (x = 0) then w := 0; endif
4. if (z = 0) then w := 1; endif

At line 2, if y = 1 then x is marked sensitive because of control-dependent assign-
ment in the then-clause. Since there is no assignment to z in the then-clause of line 2,
it is not marked sensitive. Moreover, the condition at line 3 will not hold because x
was assigned a value of 1 at line 2. But the condition at line 4 holds, so w is assigned
the value of 1, but it is not marked sensitive since z is not sensitive at this point. Now,
consider the case when y = 0. Following a similar line of reasoning, it can be seen that
w will be assigned the value 0 at line 3, but it will not be marked sensitive. Thus, in
both cases, w gets the same value as y, but it is not marked as sensitive.

As with control dependences, a malware writer can copy an arbitrarily large number
of bits using nothing but implicit flow by simply using a slightly more sophisticated
example of the above code. It is thus trivial for a malware writer to evade taint-tracking
techniques that track only direct data dependencies and control dependencies.

2.2 Difficulty of Mitigating Evasion Attacks

To thwart control-dependence-basedevasion, a taint-tracking technique can be enhanced
to track control dependences. This is easy to do, even in binaries, by associating a taint
label with the program counter (PC) [13]3. Unfortunately, this will lead to an increase in
false positives, i.e., many benign programs will be flagged as exhibiting remote-control
behavior. To illustrate this, consider the following code snippet that might be included
in a program that periodically downloads data from the network, and saves it in different
files based on the format of the data. Such code may be used in programs such as weather
or stock ticker applets:

int n = read(network, y, 1);
if (∗y == ’t’)

fp = fopen(”data.txt”, ”w”);
else if (∗y = ’i’)

fp = fopen(”data.jpg”, ”w”);

Note that there is a control dependence between data read over the network and
the file name opened, so a technique that flags bots (or other malware) based on such
dependence would report a false alarm. More generally, input validation checks can
often raise false positives, as in the following example.

int n = read(network, y, sizeof(y));
if (sanity check(y)) {

fp = fopen(”data”, ”w”);
...

} else { ... // report error }

In the context of benign software, false positives due to control dependence tracking
can be managed using developer annotations (so-called endorsement or declassification

3 Specifically, the PC is tainted within the body of a conditional if the condition involves tainted
variables. Moreover, targets of assignments become tainted whenever the PC is tainted. Finally,
the taint label of the PC is restored at the merge point following a conditional branch.

148 L. Cavallaro, P. Saxena, and R. Sekar

annotations). We obviously cannot rely on developer annotations in untrusted software;
it is also impractical for code consumers, even if they are knowledgeable programmers
or system administrators, to understand and annotate untrusted code, especially when it
is distributed in the form of binaries.

Mitigating implicit-flow based evasion is even harder. It has been shown that purely
dynamic techniques cannot detect implicit flows [42]. This is because, as illustrated
by the implicit flow example above, it is necessary to reason about assignments that
take place on unexecuted program branches. On binaries, this amounts to identify the
memory locations that may be updated on program branches that are not taken. Several
features of untrusted COTS binaries combine to make this problem intractable:

– Address arithmetic involving values that are difficult to compute statically
– Indirect data references and indirect calls
– Lack of information about types of objects
– Absence of size information for stack-allocated and static objects (i.e., variables)
– Possibility that malicious code may violate low-level conventions and requirements

regarding the use of stack, registers, control-flow, etc.

As a result, it is unlikely that implicit flows can be accurately tracked for the vast ma-
jority of today’s untrusted software that gets distributed as x86 binaries.

2.3 Implications

Evasion measures described above can be mitigated by treating (a) all data written by
untrusted code as tainted (i.e., not trustworthy), and (b) all data written by untrusted
code as sensitive if any of the data it has read is sensitive. For stand-alone applications,
these assumptions mean that all data output by an untrusted process is tainted, and
moreover, is sensitive if the process input any sensitive data. In other words, this choice
means that fine-grained taint-tracking (or information flow analysis) is not providing
any benefit over a coarse-grained, conservative technique that operates at the granularity
of processes, and does not track any of the internal actions of a process.

In the context of detecting remote-control behavior, we observe that in the absence
of evasion measures, the use of dynamic information flow techniques enables us to dis-
tinguish between malicious behavior, which involves the use of security-critical system
call arguments that directly depend on untrusted data, and benign behavior. The use
of evasion techniques can easily fool taint-tracking techniques that only reason about
explicit flows. If the technique is enhanced to reason about control dependences, eva-
sion resistance is improved, but as illustrated by the examples above, many more false
positives are bound to be reported, thus significantly diminishing the ability of the tech-
nique to distinguish between malicious and benign behaviors. If we further enhance
evasion resistance to address all implicit flows, we will have to treat all data used by an
untrusted application to be tainted, thereby completely losing the ability to distinguish
between benign and malicious behavior.

In summary, the emergence of practical dynamic taint-tracking techniques for bina-
ries enabled high-precision exploit detection on trusted code. This was possible because
the presence of explicit information flow from untrusted source to a security-critical sink
indicated the ability of an attacker to exert a high degree of control over operations that

On the Limits of Information Flow Techniques 149

have a high risk of compromising the target application — a level of control that was
unlikely to be intended by the application developer. It seemed that a similar logic could
be applied to untrusted code, i.e., a clear distinction could be made between acceptable
uses of tainted data that are likely to be found in benign applications from malicious uses
found in malware. The discussion so far shows that this selectivity is lost once malware
writers adapt to evade information flow techniques.

3 Analyzing Runtime Behavior of Shared-Memory Extensions

A significant fraction of today’s malware is packaged as an extension to large soft-
wares such as client-side web applications or the operating system. Applications such
as web browsers and email clients are attractive targets for malware authors, because
of the ubiquitous use of these applications in online financial transactions and private
information exchange.

Nearly all large web browsers have software extension mechanisms that that allow
adding various forms of additional functionality, such as better GUI services, auto-
matic form filling, and viewing various forms of multimedia content. We refer to such
browser extensions as browser helper objects (BHOs)4. Perhaps surprisingly, almost
all browsers today have extensibility mechanisms that allow extension packages to be
shipped with third-party libraries in binary form. Due to the growing user trends towards
installing off-the-shelf extensions and due to increasing drive-by-downloads, malware
spread in form of BHOs has been rampant.

Recent works [13] have proposed using information flow to track the flow of confi-
dential data such as cookies, passwords and credentials in form-data as it gets processed
by web browser. The idea is to monitor the actions of malware masquerading as benign
BHOs, which is loaded in the address space of the browser, and to detect if confidential
data is leaked by the BHOs. The crux of the problem is to selectively identify mal-
ware’s actions. Essentially, their technique uses an attribution mechanism to classify
actions that access system resources, to trusted and untrusted contexts. System calls
or operations made directly by the BHO or by a host browser function called on its
behalf, are attributed to the untrusted context, while those by the host browser itself
belong to the trusted context. In the untrusted context, any sensitive data processed is
flagged “suspicious.” The presence of this data at output operations that perform writes
to networks/files signals the leakage of confidential data effected by the BHO. Although
these methods are successful in analysis and detection of current malware, they are not
carefully designed to detect adaptive malware that employs evasion techniques against
the specific mechanisms proposed in these defenses. Below, we present several such
evasion attacks. We remind our readers that the techniques presented in the previous
section continue to be available to malware that operates within the address space of a
(benign) host application. In this section, our focus is on additional evasion techniques
that become possible due to this shared address space.

4 Browser extensions are named in different ways. Internet Explorer uses the terms “BHOs”,
“extensions” and “toolbars”, while Gecko-based browsers (e.g., FireFox) use the terms “plug-
ins” and “extensions”. We use the term BHO for all these terms interchangeably in the paper.

150 L. Cavallaro, P. Saxena, and R. Sekar

3.1 Attacks Using Arbitrary Memory Corruption

Corruption of untainted/insensitive data to effect leakage. By corrupting the mem-
ory used by the host application, a malicious BHO can induce the host application to
carry out its tasks outside the untrusted context. For instance, a privacy-breaching mal-
ware does not necessarily need to read the confidential data itself and pass/copy it to
external network interfaces. Instead, it could corrupt the data used by the browser (i.e.,
the host application) such that the browser unknowingly leaks this information. We
present the basic idea for an attack that avoids direct manipulation of any sensitive data
or sensitive pointers. Instead, it corrupts higher level untainted pointers that point to
the sensitive data. Consider a pointer variable p in the browser code that refers to data
items to be transmitted over the network. A malware can corrupt p to point to sensi-
tive data (say s) of its choice, stored within the browser memory. This way a malicious
BHO can arrange for s to be transmitted over the network, without being detected by
techniques described in [13]. Similarly, a BHO may corrupt a file descriptor as well, so
that any write operation using this file pointer will result in the transmission of sensitive
data over the network. Vulnerable pointers and data buffers needed for these attacks are
rife in large systems. Moreover, they are easily forgeable because of the high degree of
address space sharing between the host browser and extensions.

Optimistic assumptions about data originating from untrusted code. Another ba-
sic idea for attack involves using seemingly harmless data, such as constants, which are
treated as untainted by most techniques [13,45] for corruption of browser data struc-
tures. Treating constants in untrusted code or any data under the control of the malware
as untainted is anyway problematic, and specially so in binary code where constants
may be addresses. The attack involves overwriting an untainted pointer p, that may
initially point to a sensitive data s, with an untainted value such as constant memory
address m. When the browser uses m for a critical operation, such as determining the
destination for sending s, this threat becomes very significant as shown below.

A real attack. We now present an example that illustrates how a BHO can corrupt
a data pointer to violate a policy that prevents leakage or tampering of sensitive infor-
mation, like the user’s cookies, by the BHO. The example has been tested on Lynx, a
textual browser which does not have a proper plugin framework support5. However, it
uses libraries to enhance its functionalities and, as they are loaded into Lynx’s address
space, they can be considered as untrusted components. In fact, the attack’s result could
be applied to a different browser application (e.g., Internet Explorer, FireFox) with a
full-blown plug-in framework.

The attack consists of modifying the domain name in the cookie, and is illustrated in
the figure below. In Lynx, all cached cookies are stored in a linked-list cookie_list
(note that cookie_list is not sensitive as only the sequence of bytes containing
cookies value is). Subsequently, when the browser has to send a cookie, the domain is
compared using host_compare (not shown) which calls stringcasecmp. A plug-
in can traverse the linked list, and write its intended URL to the domain pointer field
in cookie record. On enticing the user to visit a malicious web site, such as evil.com,

5 Lynx has been chosen to simplify the example.

evil.com

On the Limits of Information Flow Techniques 151

these cookies would automatically be sent to the attacker web site, thereby subverting
the implementation of the Same Origin Policy. The point to note in this example is that
the domain pointer will be untainted; the object it points to will be tainted or sensitive.
These higher level pointers themselves are not sensitive, therefore they can be corrupted
without raising suspicion.

typedef struct cookie {
char ∗domain;
...

} cookie;

typedef struct HList {
void ∗object;
HTList ∗next;

} HTList;
...
extern HTList ∗cookie list;
...
void change domain(void) {

HTList ∗p = cookie list;
char ∗new domain = strdup(”evil.com”);
for (; p; p = p−>next) {

cookie ∗tmp = (cookie ∗)p−>object;
tmp−>domain = new domain;

}
}

// pointer to the domain this cookie belongs to

// declared by the core of the browser

// untrusted plugin functions
// untainted ptr −− the list itself is not tainted
// untainted string
// iterating over an untainted list gives untainted ptrs
// tmp takes the address of a cookie object −− untainted
// changing an untainted pointer with an untainted address

// Function exit

Implications

The above example shows how confidential data can leak without being read. The ap-
proach proposed in [13] does not deal with this threat. Recall that sensitive data is
marked “suspicious”(to use the terminology defined in [13]), only when the untrusted
BHO uses the sensitive data itself or propogates it to the external interfaces. Conse-
quently, the malware can overwrite the domain pointer with an address value (which
is untainted) of choice, without causing the suspicious flag to be set.

To detect the aforementioned evasion attacks, an information flow technique needs
to incorporate at least the following two features. First, in order to detect the effect of
pointer corruption (of pointers such as those used to point to data buffers), the technique
must treat data dereferenced by (trusted) browser code using a tainted pointer as if it
is directly accessed by untrusted code. Second, it must recognize corruption of point-
ers with constant values. Otherwise, the above attack will succeed since it overwrites a
pointer variable with a constant value that corresponds to the memory location of sen-
sitive data6. Considering every write performed by the untrusted BHO to be tainted, as
suggested previously (therefore, considering everything written by the untrusted BHO
as “suspicious”), may be a too conservative a strategy. It may yield high false positives
in the cases where plugins access sensitive data but do not leak it. Though, applying
conservative tainting specifically to recognize control data as done in [44] seems rea-
sonable, this may raise significant false positives when applied for identifying all data
that is possibly controlled by the plugin.

6 Such pointers reside often enough on global variables whose locations can be predicted in
advance and hard-coded as constants in the malware.

152 L. Cavallaro, P. Saxena, and R. Sekar

3.2 Attacking Mechanisms Used to Determine Execution Context

In a shared memory setting, it is necessary to distinguish the execution of untrusted
extension code from that of trusted host application code. To make this distinction, the
detection approach needs to keep track of a code execution context. The logic used for
maintaining this context is an obvious target for evasion attacks: if this logic can be
confused, untrusted code could execute with the privileges of trusted code. A more sub-
tle attack involves data exchanged between the two contexts. Since execution in trusted
context affords more privileges, untrusted code could achieve its objectives indirectly
by corrupting data (e.g., contents of registers and the stack) that is communicated from
untrusted execution context to the trusted context.

Although the targets of evasion attack described above are generally independent of
implementation details, the specifics of evasion attacks will need to rely on these details.
Below, we describe how such evasion attacks can work in the specific context of [13].

Attacking context-switch logic. The approach proposed [13] for context tracking
uses the following algorithm. For each instruction, the system checks whether the in-
struction belongs to the BHO code region. If so, then it saves the value of the current
stack pointer as espsaved, and the instruction is executed in untrusted context. When-
ever the instruction pointer points outside the code region of the BHO, the system has to
determine whether the instruction is executed on behalf of the BHO (i.e., untrusted con-
text) or not. For this, the proposed technique utilizes the fact that on their platform the
stack grows downwards and checks if the current stack pointer,espcurrent, is below the
espsaved. The context identification logic implicitly assumes a benign call stack model
– it assumes that the activation records are pushed on the stack, the stack data belonging
to the caller is left unchanged by the callee, and that the callee function cleans up its
activation leaving the stack pointer restored after its invocation. We point out that these
assumptions are reasonable for calls across benign code modules only. Specifically, if
the espcurrent is not less than espsaved, the context switching logic assumes that the
last untrusted BHO code stack frame has been popped off the activation stack and the
execution context does not belong to the BHO anymore. This attribution mechanism
allows valid (benign) context switches (from untrusted to trusted context) at call/return
function boundaries, when the last BHO function f is about to return and there are no
other browser functions invoked by f .

Unfortunately, we show that this attribution mechanism is insecure. Malware may
employ simple low-level attacks that subvert the control flow integrity of the applica-
tion at the host-extension interface leading to devastating attacks. The taint analysis
approach and the attribution mechanism employed in [13] point out that the mechanism
can deal with two threats that may circumvent context attribution – execution of injected
code, and attempts to adjust the stack pointer above the threshold limit by changing the
ESP register in its code. However, it does not protect against other low-level integrity
violations, such as return-into-lib(c) style [31,35] attacks, which aim to eventually exe-
cute already present code.

To be concrete, consider the scenario where the malicious BHO corrupts control
pointers, such as return addresses pushed by the calling host function, to refer to target
locations in the browser or its trusted libraries. It could additionally create a compatible
stack layout required for a return-into-lib(c) attack to perform intended action and let

On the Limits of Information Flow Techniques 153

its last invoked function simply exit. Changing control pointers such as return address
above the recorded threshold stack pointer value, without making any modification to
ESP itself, is sufficient and touches no sensitive/tainted data. Such returns from un-
trusted code trigger control transfers to the attacker controlled target functions, and fur-
thermore, with arbitrarily controlled parameters on the crafted stack layout. As no other
BHO instructions are executed after such a return, subsequent code will be executed in
the browser context fulfilling the attacker’s objectives.

Implications
To counteract such a return-into-lib(c) style attack, a malware analysis has to strengthen
the attribution mechanism, to allow information flow to be correctly captured for the
different contexts.

Another work in this area, Panorama [45], proposes to label every write operation
performed by a BHO for the purpose of being able to track dynamically generated
code. But, it seems to rely on a similar attribution mechanism used in [13], and seems
vulnerable to the attack presented in the previous section as the attribution mechanism
can be circumvented. HookFinder [44], instead, is able to catch every hook implanted
into the system by an untrusted binary. To do so, they use an approach which is sim-
ilar to information flow-based techniques: they label every write operation performed
by untrusted binaries, as they want to be able to analyze any hooking attempts (regard-
less it they are made by benign or potentially malicious modules). This seems to be a
promising approach for the attribution problem. In fact, an extension to their strategy, as
the one proposed in [33], which marks context as untrusted whenever control transfers
involve tainted pointers resolves the issue of correctly attributing context.

3.3 Attacking Meta-data Integrity

Corrupting meta-data maintained by a dynamic information flow technique is another
avenue for attack. Typically, meta-data consists of one or more bits of taint per word
of memory, with the entire metadata residing in a memory-resident data structure in
memory. An obvious approach for corrupting this data involves malware directly ac-
cessing the memory locations storing metadata. Most existing dynamic information
flow techniques include protection measures against such attacks. Techniques based on
emulation, such as [13] can store metadata in the emulator’s memory, which cannot
be accessed by the emulated program. Other techniques such as [43] ensure that direct
accesses to metadata store will cause a memory fault. In this section we focus our atten-
tion on indirect attacks, that is, those that manifest an inconsistency between metadata
and data values by exploiting race conditions.

Attacks based on data/meta-data races. Dynamic information flow techniques need
to perform two memory updates corresponding to each update in the original program:
one to update the original data, and the other to update the metadata (i.e., the taint
information). Apart from emulation based approaches where these two updates can be
performed “atomically” (from the perspective of emulated code), other techniques need
to rely on two distinct updates. As a result, in a multithreaded program where two
threads update the same data, it is possible for an inconsistency to arise between data

154 L. Cavallaro, P. Saxena, and R. Sekar

and metadata values. Assume, for instance, that metadata updates precede data updates,
and consider the following interleaved execution of two threads:

time Benign Thread Malicious Thread
t1 set tagx to tainted
t2 set tagx to untainted
t3 write untainted value to x
tk write tainted value to x

Note that at the end, memory location x contains a tainted value, but the correspond-
ing metadata indicates that it is untainted. Such an inconsistency can be avoided by
using mandatory locks to ensure that the data and metadata updates are performed to-
gether. But this would require acquisition and release of a lock for each memory update,
thereby imposing a major performance penalty. As a result, existing information flow
tracking techniques generally ignore race conditions, assuming that it is very hard to
exploit these race conditions. This can be true for untrusted stand-alone applications,
but it is problematic, and cannot be ignored in the context of malware that share their
address-space with a trusted application.

To confirm our hypothesis, we experimentally measured the probability of success
for a malicious thread causing a sensitive operation without raising an alarm, against
common fine-grained taint tracking implementations known today. The motivation of
this attack is to show that, by exploiting races between data and metadata updates op-
erations, it is possible to manipulate sensitive data without having them marked as sen-
sitive. To demonstrate the simplicity of the attack, in our experiment we used a simple
C program shown below (a) that executes as a benign thread. The sensitive operation
open (line 10 (a) column) depends on the pointer fname which is the primary target
for the attacker in this attack. We transform the benign code to track control-dependence
and verified its correctness, since the example is small.

1 char ∗fname = NULL, old fname = NULL;
2 void check preferences () {
3 ...
4 if (get pref name () == OK)
5 old fname = ”/.../.mozilla/.../pref.js”;
6 ...
7 while (...) {
8 fname = old fname;
9 if (fname) {

10 fp = open (fname, ‘‘w’’);
11 ...
12 }
13 }

(a)

1 void ∗malicious thread(void ∗q) {
2 int attempts = 0;
3 while (attempts++ < MAX ATTEMPTS)
4 fname = ”/.../.mozilla/.../cookies.txt”;
5

6

7

8

9

10

11

12

13 }

(b)

The attacker’s thread (b) runs in parallel with the benign thread and has access to the
global data memory pointer fname. The attacker code is transformed for taint tracking
to mark all memory it writes as “unsafe” (i.e., tainted).

We ran this synthetic example on a real machines using two different implementa-
tions of taint tracking. For conciseness, we only present the results for the taint tracking

On the Limits of Information Flow Techniques 155

that uses 2 bits of taint with each byte of data, similar to [43], with all taint track-
ing code inlined, as this minimizes the number of instructions for taint tracking and
hence the vulnerability window. Assuming that the get pref name call fails to re-
turn OK, on a quad-core Intel Xeon machine running Linux 2.6.9 SMP kernel, we found
that chances that the open system call executes with the corresponding pointer fname
marked “safe” (i.e., untainted) varies from 60%−80% across different runs. The reason
why this happens is because the transformed benign thread reads the taint for fname
on line 8 and sets the control context to tainted scope, before executing the original
code for performing conditional comparison on line 9. The malicious thread tries to in-
terleave its execution with the one of the benign thread, trying to achieve the following
ordering of operations on the shared variable fname:

Time Operation Thread (Line No.)
t1 read tagfname �→ untainted Benign (9)
t2 write tagfname := tainted Malicious (4)
t3 write fname := ”/home/user/.mozilla/.../cookies.txt” Malicious (4)
t4 read fname Benign (9)

If such an ordering occurs, the tagfname read by the benign thread is marked un-
tainted as the benign thread has cleared the taint previously, while the data happens
to contain an attacker controlled value about user browser cookies. Consequently, con-
trary to the intention of the instrumentation of tracking control-dependence, the attacker
manages to prevent control scope from switching to tainted scope at line 9 in the benign
code. In practical settings, the window of time between t1 and t4 varies largely based
on cache performance, demand paging, and scheduling behaviour of specific platform
implementations. Finally, it is worth noting that the attacker could improve the likeli-
hood of success by increasing the scheduling priority of the malicious thread and lower,
where possible, those of benign thread.

Implications
Attacks on direct corruption of metadata has been studied before [43] and thwarted
by implementations using virtual machines and emulators which explicitly manage
the context switches between threads or processors. However, much of the design of
such metadata tracking monitors has not been carefully studied in the context of multi-
threaded implementations (or multi-processor emulators), and techniques in this section
highlight the subtle importance of these.

4 Analyzing Future Behavior of Malware

Several strategies have been proposed to analyze untrusted software. Broadly speaking,
these strategies can be divided in two main categories, the ones based on static analy-
sis and the others which adopt a dynamic analysis approach. While static analysis has
the potential to reason about all possible behaviors of software, the underlying com-
putational problems are hard, especially when working with binary code. Moreover,
features such as code obfuscation, which are employed by malware as well as some

156 L. Cavallaro, P. Saxena, and R. Sekar

legitimate software, make it intractable in practice. As a result, most practical malware
analysis techniques have been focussed on dynamic analysis.

Unfortunately, dynamic analysis can only reason about those execution paths in a
program that are actually exercised during the analysis. Several types of malware do
not display their malicious behavior unless certain trigger conditions are present. For
instance, time bombs do not exhibit malicious behavior until a certain date or time. Bots
may not exhibit any malicious behavior until they receive a command from their master,
usually in the form of a network input.

In order to expose such trigger-based behavior, Moser et al. [1] suggested an interest-
ing dynamic technique that combines the benefits of a static and dynamic information-
flow analyses. Specifically, they taint trigger-related inputs, such as calls to obtain time,
or network reads. Then, dynamic taint-tracking is used to discover conditionals in the
program that are dependent on these inputs. When one of the two branches of such a
conditional is about to be taken, their technique creates a checkpoint and a snapshot of
the analyzed process, and keeps exploring one of the branch. Subsequently, when the
exploration of the taken branch ends or after a timeout threshold is reached, their tech-
nique forces the execution of the unexplored branch. Such forcing requires changing the
value of a tainted variable v used in the conditional, so that the value of the condition
expression is now negated. By leveraging on a decision procedure to generate a suitable
value for v, the proposed approach also identifies any other variables in the program
whose values are dependent on v, and modifies them so that the program is in a consis-
tent state7. We observe that this analysis technique has applicability to certain kinds of
anti-virtualization or sandbox-detection techniques as well. For instance, suppose that
a piece of malware detects a sandbox (or a VM) based on the presence of a certain file,
process, or registry entry. The approach proposed can then taint the functions that query
for such presence, and proceed to uncover malicious code that is executed only when
the sandbox is absent.

Since the underlying problems the analysis proposed by Moser et al. has to face are
undecidable in general, their technique is incomplete, but seems to work well in prac-
tice against contemporary malware. However, this incompleteness can be exploited by
a malware writer to evade detection. For instance, as noted by the authors of [1], a con-
ditional can make use of one-way hash function. It is computationally hard to identify
values of inputs that will make such a condition true (or false). More generally, malware
authors can force the analysis to explore an unbounded number of branches, thereby
exhausting computational resources available for analysis. However, the approach pro-
posed in [1] will discover this effort, and report that the software under analysis is
suspicious. A human analyst can then take a closer look at such malware. Nonetheless,
today’s malware writer places high value on stealth, and hence would prefer alternative
anti-analysis mechanisms that do not raise suspicions, and we describe such primitives
next.

7 This is required, or else the program may crash or experience error conditions that would not
occur normally. For instance, consider the code y = x; if (x == 0) z = 0; else
z = 1/y; If we force the value of x to be nonzero, then y must also take the same value or
else the program will experience a dive-by-zero exception.

On the Limits of Information Flow Techniques 157

4.1 Evasion Using Memory Errors

Binary code is generally hard to analyze, as briefly pointed out in Section 2.2. For
instance, this is due to the absence of information about variables boundaries and types,
which makes many source-based analyses inapplicable to binaries. We observe that
given an arbitrary binary, it is hard to say whether it potentially contains a vulnerability
such as a memory error (e.g., buffer overflow), and to determine the precise inputs to
exploit it. Exhaustively running the binary on all possible inputs is often infeasible for
benign code, leave alone malware which is expected to exploit the exponential nature
of exhaustive searches to cause the worst-case hit each run.

Motivated by this observation, we present an attack against dynamic information
flow-based analyses used to analyze malware behavior, similar to the one presented
in [1]. This attack is able to hide malicious code from being discovered and further
strengthen it such that extensions to analysis employed in [1] are unable to detect it.
Our attack leverages on the introduction of memory errors, as shown in the following
example.

1 int trigger;
2 ...
3 void procInput(void) {
4 int ∗p = &buf[0];
5 char buf[4096];
6 ...
7 my gets(buf);
8 ...
9 ∗p = 1;

10 ...
11 if (trigger)
12 malcode();
13 }

The introduced memory error is a plain stack-based buffer overflow vulnerability8.
The attacker’s goal is to write past the end of buf (line 7) and corrupt the pointer p
to make it point to the variable trigger. Eventually, when the vulnerability will be
exploited, the malware will set trigger to 1 (line 9) which in turn has the effect to dis-
close the malicious code represented by malcode() at line 12, guarded by trigger.
It can be observed that the lack of proper bound checking in the code snipped shown
above is not to be considered as a suspicious pattern by itself. The mere use of an un-
safe function as my_gets9 does not imply that there is a memory error. In fact, bound
checking could have been performed elsewhere by the programmer (which justifies the
use of an unsafe function), or the programmer knows that at that point the input can
never be bigger than buf.

In order to disclose the malicious code during analysis, the variable trigger has
to eventually be marked as tainted, so that the code it guards can be further analyzed.
The variable trigger is never tainted unless p, which can potentially be corrupted

8 It is important to note that there are no constraints on the type of vulnerability introduced. A
generic buffer overflow, an integer overflow, or a (custom) format string vulnerability would
have done as well.

9 This function resembles the well-known libc gets. The malware author can either use its own
implementation or the one provided by the C library.

158 L. Cavallaro, P. Saxena, and R. Sekar

with tainted data by the malware, points to it. The problem of determining whether p
could point to trigger is undecidable statically, thus augmentations to [1] using some
form of static analysis do not help. On the other end, one might argue that the dynamic
approach proposed in [1] could potentially accomplish the detection of the overflow, at
least (while it is unlikely that the correct vulnerability exploitation can be achieved).
In fact, given the aforementioned example, it is fairly easy for the analysis technique
considered to generate a big-enough input which will eventually corrupt the pointer p.
Even if such a technique is employed, we show that we can extend this example to make
it even harder – if not unfeasible – to achieve this step.

To this end, it would be desirable to have a function f that is easy to compute,
but hard to reason about some properties of it. By doing so, it is possible to modify
the previous example in such a way to make it harder for the analyzer to even detect
whether a memory error vulnerability is present or not. Such a situation is depicted by
the following code snippet (the action performed by this code can be found in benign
program as well).

...
int trigger;
...
void procInput(void) {

int pad, n, l;
char buf[4096+256];
int ∗p = &pad;
char ∗dst;

...
n = read(s, buf, sizeof (buf));
l = computespace(buf, n);
// make sure we have enough room
dst = alloca(l + 128);
decode(buf, l, dst);
...
∗p = 1;
...
if (trigger)

malcode();
...

}

int computespace(char ∗src, int nread) {
int i, k = 0;
for (i = 0; i < nread; i++) {

switch(src[i]) {
case 0: k++; break;
...
case 255: k++; break;

}
}
return k;

}

void decode(char ∗src, int nread, char ∗dst) {
int i, j;
for (i = 0, j = 0; i < nread; i++, j++) {

switch(src[i]) {
case 0: dst[j] = src[i]; break;
...
case 113: dst[j++] = src[i];

dst[j] = src[i];
break;

case 114: dst[j] = src[i]; break;
...
case 255: dst[j] = src[i]; break;

}
}

}

It is worth noting that the function computespace is easy to compute, but is rela-
tively hard to reason about some properties of it. For instance, by looking at the source
code, it is easy to understand that at the end of the computation k holds the same value
as the length of the data read into the buffer buf. On the other end, the same reasoning
can be hard to do on binaries and in an automated way. Thus, it is hard to correlate n,
the number of read bytes, to l, the minimum number of space to allocate to be sure the
function decode does not cause overflow. The function decode presents a problem
by itself, by deliberately introducing the condition for an overflow to occur. In fact, it
can cause dst to overflow into p if the number of bytes given as input (buf) whose

On the Limits of Information Flow Techniques 159

ASCII value is 113 exceed a certain threshold. Only an exhaustive search over all the
possible input values and combination would deterministically trigger this memory er-
ror. Unfortunately, such an enumeration would be extremely onerous if not impossible
to perform. Similar to NP-complete problems which are hard to solve while verification
of correct answers is easy, it is rather simple for the attacker to provide the right input
which will cause dst to overflow so that p can be corrupted in such a way to eventually
disclose the malicious behavior. From the analysis point of view, instead, an exhaustive
search will probably start with a sequence of length 1, trying all the possible 256 ASCII
values. This does not cause overflow as there is a safe padding of 128 bytes for dst.
Following this reasoning, a sequence of length k and 256k combination have to be tried.
For instance, a k equal to 128 can reach the boundaries of dst. This, however, would
roughly require to test 256127 combinations to try out on average which is a fairly huge
number.

Hiding malicious payload using interpreters. As a final point, we note that the ma-
licious payload need not even to be included in the program. It can be sent by an attacker
as needed. We can use the techniques described above to prevent the malware analyzer
from identifying this possibility.

One common technique for hiding payload has been based on code encryption. Un-
fortunately, this technique involves a step that is relatively unusual: data written by a
program is subsequently executed. This step raises suspicion, and may prompt a careful
manual analysis by a specialist. Malware writers would prefer to avoid this additional
scrutiny, and hence would prefer to avoid this step. This can be done relatively easily
by embedding an interpreter as the body of the function malcode() in the attack de-
scribed above. As a result, the body of the interpreter can escape analysis. Moreover,
note that interpreters are common in many types of software: documents viewers such
as PDF or Postscript viewers, flash players, etc, so their presence, even if discovered,
may not be unusual at all. Finally, it is relatively simple to develop a bare-bones assem-
bly language and write an interpreter for it. All of these factors suggest that malware
writers can, with modest effort, obfuscate execution of downloaded code using this
technique, with the final goal to hide malicious behavior without raising any suspect.

4.2 Implications

The implications on whether dynamic information flow-based techniques can help to
disclose, analyze, and understand the behavior of the next-generation of malware is
similar to the ones pointed out in the rest of this paper. In fact, to detect the evasion
technique proposed in the previous section, an information flow-based approach should
ideally be able to trigger any memory error which may be present in the analyzed soft-
ware, and automatically exploit the vulnerability so that interesting (i.e., tainted) pre-
viously disabled conditions will be examined. In the previous section we have shown
how this could be hard – if not impossible – at all to achieve, if directly faced. Alter-
natively, information flow analyses could taint any memory location, considering all
the possible combinations, and see how information is propagated. While this would
eventually taint trigger and thus disclose the malicious behavior, it would drop the
benefits provided by taint-tracking mechanisms which focus the analysis on interesting
data, as every paths would be forced to be explored. For instance, the resulting analysis

160 L. Cavallaro, P. Saxena, and R. Sekar

would be similar to the one proposed in [9] where, even if the underlying technique is
different, the end result is that every path can potentially be explored, which of course
is a hard task by itself. For instance, one may attempt to force execution of all program
paths, but this is likely to be very expensive, and to suffer from semantic inconsisten-
cies that may arise due to forcing execution down branches that are not taken during
execution.

5 Related Work

Informationflowanalysishasbeenresearchedfora long time[6,12,14,20,23,32,41].Early
research was focused on multi-level security, where fine-grained analysis was not deemed
necessary [6]. More recent work has been focused on language-based approaches, capa-
ble of tracking information flow at variable level [27]. Most of these techniques have been
based on static analysis, and assume considerable cooperation from developers to provide
various annotations, e.g., sensitivity labels for function parameters, endorsement and de-
classification annotations to eliminate false positives. Moreover, they typically work with
simple, high-level languages, while much of security-critical contemporary software is
written in low-level languages like C that use pointers, pointer arithmetic, and so on. Fi-
nally, it can be noted that despite their benefits static analyses are generally vulnerable to
obfuscation scheme, as recently remarked by [22]. Therefore, it is reasonable to rely on
dynamic or hybrid approaches, instead. As a result, information flow tracking for such
software has been primarily based on run-time tracking of explicit flows that take place
via assignments.

Recently, several different information flow-based approaches have been proposed
in the literature [11,15,16,30,36,43]. They give good and promising results when em-
ployed to protect benign software from memory errors and other types of attacks, by
relying on some implicit assumptions (e.g., no tainted code pointers should be de-
referenced). The reason is because benign software is not designed to facilitate an at-
tacker task, while malware, as we have seen, can be carefully crafted to embed evasion
attacks, such as covert channels, and general memory corruption.

Probably, an ideal solution would require that untrusted binaries would carry proofs
that some properties are guaranteed. This is achieved by proof-carrying code [25]. To
be successful, this technique relies on some form of collaboration between the code
producer and consumer. For instance, Medel et al. [21] and Yu et al. [46] proposed in-
formation flow analyses for typed assembly languages. Likewise, Barthe et al. provided
non-interference properties for a JVM-like language [4] and dealt with timing attacks
by using ACID transactions [5], as well. Unfortunately, it is unlikely that malware writ-
ers (i.e., the code producer, in this context) are going to give this form of collaboration
which is necessary for the success of these approaches. Therefore, it is unlikely that
these strategies would soon be adopted as is in the context of malicious software anal-
ysis and containment.

Driven by the recent practical success of information flow-based techniques, sev-
eral researchers have started to propose solutions based on dynamic taint analysis to
deal with malicious or, more generally, untrusted code [1,13,29,34,40,44,45]. During
the last years, these techniques have been facing different tasks (e.g., classification,

On the Limits of Information Flow Techniques 161

detection, and analysis) related to untrusted code analysis. Unfortunately, even if pre-
liminary results show they are successful when dealing with untrusted code that has not
been designed to stand and bypass the employed technique, as we hope the discussion in
this paper highlighted, information flow is a fragile technique that has to be supported
by new analyses to be more resilient to evasions purposely adopted by ever-evolving
malware.

6 Conclusion

Information flow analysis has been applied with significant success to the problem of
detecting attacks on trusted programs. Of late, there has been significant interest in ex-
tending these techniques to analyze the behavior of untrusted software and/or to enforce
specific behaviors. Unfortunately, attackers can modify their software so as to exploit
the weaknesses in information flow analysis techniques. As we described using several
examples, it is relatively easy to devise these attacks, and to leak significant amounts of
information (or damage system integrity) without being detected.

Mitigating the threats posed by untrusted software may require more conservative
information flow techniques than those being used today for malware analysis. For in-
stance, one could mark every memory location written by untrusted software as tainted;
or, in the context of confidentiality, prevent any confidential information from being
read by an untrusted program, or by preventing it from writing anything to public chan-
nels (e.g., network). Such approaches will undoubtedly limit the classes of untrusted
applications to which information flow analysis can be applied. Alternatively, it may be
possible to develop new information flow techniques that can be safely applied to un-
trusted software. For instance, by reasoning about quantity of information leaked (mea-
sured in terms of number of bits), one may be able to support benign untrusted software
that leaks very small amounts of information. Finally, researchers need to develop ad-
ditional analysis techniques that can complement information flow based techniques,
e.g., combining strict memory access restrictions with information flows.

References

1. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware Analysis.
In: IEEE Symposium on Security and Privacy (2007)

2. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically Harden-
ing Web Applications Using Precise Tainting. In: 20th IFIP International Information Secu-
rity Conference (2005)

3. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimization system.
SIGPLAN Not. 35(5) (2000)

4. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java bytecode
verifier. Programming Languages and Systems (2007)

5. Barthe, G., Rezk, T., Warnier, M.: Preventing timing leaks through transactional branching
instructions. In: Proceedings of 3rd Workshop on Quantitative Aspects of Programming Lan-
guages (QAPL 2005) (2005)

6. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations. Technical
Report MTR-2547, vol. 1, MITRE Corp. (1973)

162 L. Cavallaro, P. Saxena, and R. Sekar

7. Bellard, F.: Qemu, a fast and portable dynamic translator. In: ATEC 2005: Proceedings of
the USENIX Annual Technical Conference 2005 on USENIX Annual Technical Conference
(2005)

8. Biba, K.J.: Integrity considerations for secure computer systems. Technical Report ESD-
TR-76-372, USAF Electronic Systems Division, Hanscom Air Force Base, Bedford, Mas-
sachusetts (1977)

9. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automatically gener-
ating inputs of death. In: CCS 2006: Proceedings of the 13th ACM conference on Computer
and communications security (2006)

10. Chen, S., Xu, J., Nakka, N., Kalbarczyk, Z., Iyer, R.K.: Defeating memory corruption attacks
via pointer taintedness detection. In: IEEE International Conference on Dependable Systems
and Networks (DSN) (2005)

11. Chen, S., Xu, J., Nakka, N., Kalbarczyk, Z., Iyer, R.K.: Defeating Memory Corruption At-
tacks via Pointer Taintedness Detection. In: DSN 2005: Proceedings of the 2005 International
Conference on Dependable Systems and Networks (DSN 2005) (2005)

12. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Com-
munications of the ACM 20(7) (1977)

13. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic spyware analysis. In: Usenix
Tech Conference (2007)

14. Fenton, J.S.: Memoryless subsystems. Computing Journal 17(2) (1974)
15. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and

Signature Generation of Exploits on Commodity Software. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS 2005) (2005)

16. Kong, J., Zou, C.C., Zhou, H.: Improving Software Security via Runtime Instruction-level
Taint Checking. In: ASID 2006: Proceedings of the 1st workshop on Architectural and sys
tem support for improving software dependability (2006)

17. Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Janapa Reddi,
V., Hazelwood, K.: Pin: building customized program analysis tools with dynamic instru-
mentation. SIGPLAN Not. 40(6) (2005)

18. McAfee. W32/hiv. virus information library (2000)
19. McAfee. W32/mydoom@mm. virus information library (2004)
20. McLean, J.: A general theory of composition for trace sets closed under selective interleaving

functions. In: IEEE Symposium on Security and Privacy (1994)
21. Medel, R.: Typed Assembly Languages for Software Security. PhD thesis, Department of

Computer Science, Stevens Institute of Technology (2006)
22. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Choi,

L., Paek, Y., Cho, S. (eds.) ACSAC 2007. LNCS, vol. 4697. Springer, Heidelberg (2007)
23. Myers, A.C.: JFlow: Practical mostly-static information flow control. In: ACM POPL, pp.

228–241 (1999)
24. Nanda, S., Li, W., Lam, L., Chiueh, T.: BIRD: Binary interpretation using runtime disassem-

bly. In: IEEE/ACM Conference on Code Generation and Optimization (CGO) (2006)
25. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Langauges (POPL 1997) (1997)
26. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary instru-

mentation. In: ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI 2007) (2007)

27. Perl. Perl taint mode, http://www.perl.org
28. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-sensitive

string evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 124–
145. Springer, Heidelberg (2006)

http://www.perl.org

On the Limits of Information Flow Techniques 163

29. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-day at-
tacks for advertised honeypots with automatic signature generation. SIGOPS Oper. Syst.
Rev. 40(4) (2006)

30. Qin, F., Wang, C., Li, Z., Kim, H., Zhou, Y., Wu, Y.: LIFT: A low-overhead practical informa-
tion flow tracking system for detecting general security attacks. In: IEEE/ACM International
Symposium on Microarchitecture (2006)

31. Wojtczuk, R.N.: The Advanced return-into-lib(c) Exploits: PaX Case Study. Phrack Maga-
zine 0x0b(0x3a). Phile #0x04 of 0x0e (2001)

32. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected Ar-
eas in Communications 21(1) (2003)

33. Saxena, P., Sekar, R., Puranik, V.: A practical technique for integrity protection from un-
trusted plug-ins. Technical Report SECLAB08-01, Stony Brook University (2008)

34. Stinson, E., Mitchell, J.C.: Characterizing bots’ remote control behavior. In: Hämmerli, B.M.,
Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108. Springer, Heidelberg (2007)

35. Clad “RORIV” Strife and Xdream ROJIV Blue. Ret onto Ret into Vsyscalls
36. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure Program Execution via Dynamic Infor-

mation Flow Tracking. In: ASPLOS-XI: Proceedings of the 11th international conference on
Architectural support for programming languages and operating systems (2004)

37. Szor, P.: The Art of Computer Virus Research and Defense. Symantec Press (2005)
38. TrendMicro. Bkdr.surila.g (w32/ratos). virus encyclopedia (2004)
39. Vasudevan, A.: WiLDCAT: An Integrated Stealth Environment for Dynamic Malware Anal-

ysis. PhD thesis, The University of Texas at Arlington, USA (2007)
40. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-Site Scripting

Prevention with Dynamic Data Tainting and Static Analysis. In: Proceeding of the Network
and Distributed System Security Symposium (NDSS) (2007)

41. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. Journal of
Computer Security (JCS) 4(3) (1996)

42. Volpano, D.M.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694. Springer, Heidelberg (1999)

43. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical approach to
defeat a wide range of attacks. In: USENIX Security Symposium (2006)

44. Yin, H., Liang, Z., Song, D.: Hookfinder: Identifying and understanding malware hooking
behaviors. In: NDSS (2008)

45. Yin, H., Song, D., Manuel, E., Kruegel, C., Kirda, E.: Panorama: Capturing system-wide
information flow for malware detection and analysis. In: Proceedings of the 14th ACM Con-
ferences on Computer and Communication Security (CCS 2007) (2007)

46. Yu, D., Islam, N.: A typed assembly language for confidentiality. In: Sestoft, P. (ed.) ESOP
2006 and ETAPS 2006. LNCS, vol. 3924, pp. 162–179. Springer, Heidelberg (2006)

	Introduction
	Stand-Alone Untrusted Applications
	Evasion Using Control Dependence and Implicit Flows
	Difficulty of Mitigating Evasion Attacks
	Implications

	Analyzing Runtime Behavior of Shared-Memory Extensions
	Attacks Using Arbitrary Memory Corruption
	Attacking Mechanisms Used to Determine Execution Context
	Attacking Meta-data Integrity

	Analyzing Future Behavior of Malware
	Evasion Using Memory Errors
	Implications

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

