
Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

On the Limits of Information Flow Techniques for
Malware Analysis and Containment

Lorenzo Cavallaro1 Prateek Saxena2 R. Sekar3

Department of Computer Science, UC Santa Barbara1

Department of Computer Science, UC Berkeley2

Department of Computer Science, Stony Brook University3

GI SIG SIDAR Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA)

10-11 July, 2008

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 1 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Static Information Flow Analysis

Determines whether the value of a variable x is influenced by
the value of another variable y

Typically based on non-interference: Changes to a sensitive
variable y should not result in changes to a public variable x

Information flow literature dominated by static analysis
Purely dynamic analysis techniques cannot capture
non-interference
Operate on type-safe high-level languages

Static analysis is difficult on binaries — especially on malware,
which often employs obfuscation techniques

Even disassembly is hard.

Result: techniques that operate on COTS software typically
use dynamic analysis

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 2 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Dynamic Information Flow Analysis
... or Taint Analysis in a Nutshell

Determines, at runtime, whether a variable x is influenced by
another variable y

Track how a program’s untrusted data (input) flows into
security-sensitive sinks

x := y (explicit data-dependent flow)
if y = k then x = k

′
(explicit control-dependent flow)

Implicit flows are not handled.
x = 0;
if y = 1 then x = 1
Note: x has no control dependence on y when y = 0

↑ Enforce security policies on sinks to detect improper usage of
tainted data

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 3 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Dynamic Information Flow Analysis
... or Taint Analysis in a Nutshell

Determines, at runtime, whether a variable x is influenced by
another variable y

Track how a program’s untrusted data (input) flows into
security-sensitive sinks

x := y (explicit data-dependent flow)
if y = k then x = k

′
(explicit control-dependent flow)

Implicit flows are not handled.
x = 0;
if y = 1 then x = 1
Note: x has no control dependence on y when y = 0

↑ Enforce security policies on sinks to detect improper usage of
tainted data

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 3 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

On the Limits of Information Flow Techniques
Motivation

Dynamic information-flow techniques have been used in the
context of

Benign applications

Memory errors
Command and SQL injection, Cross-Site Scripting, . . .

Untrusted (i.e., potentially malicious) applications. Examples:

To detect remote control bot-like behavior
To discover trigger-based (malicious) behaviors
To detect plug-ins run-time violation of policies

⇒ Subjected to a slew of evasion techniques, as we’ll show in this
talk

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 4 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

On the Limits of Information Flow Techniques
Motivation

Dynamic information-flow techniques have been used in the
context of

Benign applications

Memory errors
Command and SQL injection, Cross-Site Scripting, . . .

Untrusted (i.e., potentially malicious) applications. Examples:

To detect remote control bot-like behavior
To discover trigger-based (malicious) behaviors
To detect plug-ins run-time violation of policies

⇒ Subjected to a slew of evasion techniques, as we’ll show in this
talk

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 4 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Information Flow for Malware Analysis/Containment I
Detecting Remote Control Bot-like Behavior

Stinson et al. suggested a dynamic information flow technique for
detecting “remote control” behavior

Bots receive commands from a central site and carry them out

⇒ Manifestation of a flow of information from an input
operation to an output operation

Implementation relied on content-based tainting, which is
easily evaded (as noted by Stinson et al)

↓ What we show: malware can easily defeat any dynamic
taint-tracking implementation

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 5 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Information Flow for Malware Analysis/Containment II
Analyzing Run-time Behavior of Shared-Memory Extensions

Egele et al. suggested a dynamic information flow for tracking the
flow of confidential data as processed by web browser and Browser
Helper Objects (BHOs)

The actions of BHOs loaded in the address space (AS) of the
browser are monitored
Needs to distinguish the execution contexts, i.e., proper and
improper use of tainted or sensitive data

As used by the browser itself
As used by the BHOs on their own
As used by the browser on behalf of the BHOs

↓ What we show: new attacks that (a) involve BHO corruption
of browser data, (b) confuse attribution, or (c) evade
taint-tracking mechanisms
Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 6 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Information Flow for Malware Analysis/Containment III
Analyzing Future Behavior of Malware

Moser et al. suggested a dynamic information flow technique to
discover malware behaviors by exploring execution paths

Taints trigger-related inputs (e.g., calls to obtain time,
network reads)

Dynamic taint-tracking exploited to discover input-dependent
conditionals

Use a decision procedure to generate values for program
variables that can result in execution of untaken branch

↓ What we show: memory errors can be embedded in malware
to prevent discovery of input-dependent branches

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 7 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Outline

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 8 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions
Implications

Outline

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 9 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions
Implications

Evasion Using Control Dependence

1 char y[256], x[256];

2 ...

3 int n = read(network, y, sizeof(y));

4 for (int i=0; i < n; i++) {

5 switch (y[i]) {

6 case 0: x[i] = (char)13; break;

7 case 1: x[i] = (char)14; break;

8 ...

9 case 255: x[i] = (char)12; break;

10 default: break;

11 }

12 }

y gets copied into x even though there is no explicit direct
assignment between them

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 10 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions
Implications

Evasion Using Covert Channels
Implicit Flows: Copying an Arbitrary Quantity of Data

1 void memcpy(u_char *dst, const u_char *src, size_t n) {

2 u_char tmp;

3

4 for (int i = 0; i < n; i++) {

5 for (u_char j = 0; j < 256; j++) {

6 tmp = 1;

7 if (src[i] != j) {

8 tmp = 0;

9 }

10 if (tmp == 1) {

11 dst[i] = j;

12 }

13 }

14 }

15 }

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 11 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions
Implications

Implications

Increase of false positives if control-dependences are tracked

⇒ Diminish the ability to distinguish between benign and
malicious behavior

Enhancement to resist against implicit-flows evasion

Treat all data written by an untrusted application to be tainted
⇒ Fine-grained taint-tracking does not provide a benefit over a

coarse-grained, conservative technique

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 12 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Outline

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 13 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Evasions

Attacks by corrupting the shared address space
Without touching “sensitive” data

Corrupt a file descriptor rather than data that is written
Corrupt domain name (rather than cookies) within a data
structure that keeps track of associations between them

Attacking attribution mechanisms

Modify browser data so that it executes code paths chosen by
BHO
Violate stack conventions, e.g., return-to-libc attack
Violate ABI conventions

Attacking meta-data integrity

A BHO M races with a benign BHO or core browser to
operate on sensitive data having them marked as untainted

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 14 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Outline

Stand-Alone Untrusted Application
Evasions
Implications

Analyzing Run-time Behavior of Shared-Memory Extensions
Evasions

Analyzing Future Behavior of Malware
Evasions

Conclusions

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 15 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Evasion
Known Evasions

The underlying problems faced by the analysis are undecidable
in general (as noted by the authors)

A condition C based on one-way hash functions
Exploration of unbounded number of branches

However, attacks that exploit these problems may trigger
suspicion and prompt a more detailed analysis by an expert.

Our goal: develop attacks that are unlikely to raise suspicion

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 16 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Evasion
Known Evasions

The underlying problems faced by the analysis are undecidable
in general (as noted by the authors)

A condition C based on one-way hash functions
Exploration of unbounded number of branches

However, attacks that exploit these problems may trigger
suspicion and prompt a more detailed analysis by an expert.

Our goal: develop attacks that are unlikely to raise suspicion

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 16 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Evasion
Using Memory Errors for Evasion

1 int trigger;

2 void procInput(void) {

3 int *p = &buf[0];

4 char buf[4096];

5 ...

6 gets(buf);

... 7
*p = 1; 8
... 9
if (trigger) 10

malcode(); 11
} 12

trigger has to be marked tainted, to disclose malcode
trigger is never tainted unless p points to it

Deciding whether p could point to trigger is undecidable
. . . but the analysis proposed by Moser et al. could
potentially detect the overflow of buf is possible
⇒ not stealthy-enough ...

Idea: make it difficult to discover the possibility of memory error,
and to generate an input that exploits it.

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 17 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Evasion
A Stealthier Technique

...

int trigger=0;

...

void procInput(void) {

int pad, n, l;

char buf[4096+256];

int *p = &pad; char *dst;

...

n = read(s, buf, sizeof (buf));

l = computespace(buf, n);

dst = alloca(l + 128);

decode(buf, l, dst);

...

*p = 1;

...

if (trigger)

malcode();

}

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 18 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Evasion
Making Harder to Infer Functions’ Properties

int computespace(char *src, int nread) {

int i, k = 0;

for (i = 0; i < nread; i++) {

switch(src[i]) {

case 0: k++; break;

...

case 255: k++; break;

}

}

return k;

}

computespace is easy to compute

. . . but it’s hard to automatically understand that, at the end
of the computation, k is equal to the length of buf

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 19 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Evasions

Evasion
Introducing the Vulnerable Condition

void decode(char *src, int nread, char *dst) {

int i, j;

for (i = 0, j = 0; i < nread; i++, j++) {

switch(src[i]) {

case 0: dst[j] = src[i]; break;

...

case 113: dst[j++] = src[i];

dst[j] = src[i];

break;

case 114: dst[j] = src[i]; break;

...

case 255: dst[j] = src[i]; break;

}

}

}

decode introduces the condition for an overflow to occur
⇒ dst overflows into p under certain conditions

The overflow detection requires 256127 tests on the average
Detection alone, however, does not disclose the malicious code

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 20 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Related Works

In the context of benign software
Certification of Programs for Secure Information Flow
Language-based Information-flow Security
Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software
Taint-enhanced Policy Enforcement: a Practical Approach to
Defeat a Wide Range of Attacks
. . .

In the context of untrusted software
Characterizing Bots’ Remote Control Behavior
Dymamic Spyware Analysis
Exploring Multiple Execution Paths for Malware Analysis
Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis
. . .

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 21 / 22

Stand-Alone Untrusted Application
Analyzing Run-time Behavior of Shared-Memory Extensions

Analyzing Future Behavior of Malware
Related Works

Conclusions

Conclusions

Information flow techniques have been studied for decades

Dynamic tainting techniques are quite robust in the context of
software from trusted sources

Promising results have been achieved by using these
techniques for malware containment and analysis

However, malware writers can easily adapt their code to evade
dynamic taint analysis

Utility of taint analysis is rather limited in the context of today’s
binary-based software deployment models

Need to develop additional analysis techniques that
complement information flow

Lorenzo Cavallaro, Prateek Saxena, R. Sekar On the Limits of Information Flow Techniques 22 / 22

	Stand-Alone Untrusted Application
	Evasions
	Implications

	Analyzing Run-time Behavior of Shared-Memory Extensions
	Evasions

	Analyzing Future Behavior of Malware
	Evasions

	Related Works
	Conclusions

