
Taint-Enhanced Anomaly Detection�

Lorenzo Cavallaro1 and R. Sekar2

1 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
2 Department of Computer Science, Stony Brook University, USA

Abstract. Anomaly detection has been popular for a long time due to its abil-
ity to detect novel attacks. However, its practical deployment has been limited
due to false positives. Taint-based techniques, on the other hand, can avoid false
positives for many common exploits (e.g., code or script injection), but their ap-
plicability to a broader range of attacks (non-control data attacks, path traversals,
race condition attacks, and other unknown attacks) is limited by the need for accu-
rate policies on the use of tainted data. In this paper, we develop a new approach
that combines the strengths of these approaches. Our combination is very effec-
tive, detecting attack types that have been problematic for taint-based techniques,
while significantly cutting down the false positives experienced by anomaly de-
tection. The intuitive justification for this result is that a successful attack involves
unusual program behaviors that are exercised by an attacker. Anomaly detection
identifies unusual behaviors, while fine-grained taint can filter out behaviors that
do not seem controlled by attacker-provided data.

1 Introduction

System-call based anomaly detection has been popular among researchers due to its
effectiveness in detecting novel application-layer attacks [1,4,7,8,10,13,26,29,30,32].
These techniques typically learn a model of an application’s behavior during a training
phase, which is then compared with behaviors observed during a detection phase. Devi-
ations are flagged as potential intrusions. A key benefit of these techniques is that they
require no policy specification. They are thus ideal for detecting unknown attacks.

The key assumption behind anomaly detection techniques is that attacks manifest
unusual program behaviors. While experience to date supports this assumption, the con-
verse does not hold: not all unusual behaviors are attacks. As a result, anomaly detection
suffers from a high rate of false positives that impacts its practical deployment.

Recently, taint-tracking approaches [28,19,22,20,33] have become popular for de-
fending against common software exploits. Their strength stems from their ability to
accurately reason about the use of untrusted data (i.e., data that may be coming from
an attacker) in security-critical operations. By using policies to distinguish between
safe and unsafe uses of “tainted” data, these techniques can detect many common soft-
ware vulnerability exploits, including those based on memory corruption [28,19,33],
and SQL, command or script injection [20,22,27,33,25].

The main advantage of taint-tracking approaches is that accurate, application-inde-
pendent policies can be developed for the above attacks. These policies express the
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general principle that tainted data should be limited to non-control purposes; and
control-data, such as code pointers, scripts, or commands, should be untainted. Since
attackers prize their ability to take control over a victim application, taint policy en-
forcement has proved to be very effective against the most popular attacks prevalent
today. At the same time, due to the difficulty of developing accurate policies, many less
popular (but still very dangerous) data attacks are not addressed by taint-based tech-
niques, e.g., memory corruption attacks on non-control data [3], path traversals, race
conditions. Anomaly detection remains the best option for such attacks.

We present a new technique, called taint-enhanced anomaly detection (TEAD), that
combines the strengths of system-call-based anomaly detection with fine-grained taint-
tracking. This combination is effective, detecting attack types that have been problem-
atic for taint-based techniques, while significantly cutting down the false positives ex-
perienced by anomaly detection. The intuitive justification for this result is that a suc-
cessful attack involves unusual program behaviors that are exercised by an attacker.
Anomaly detection identifies unusual behaviors, while fine-grained taint can reduce
false positives by filtering out behaviors that are not dictated by attacker-provided data.

As with any other taint-based technique, TEAD begins with a specification of the
set of taint-sources and taint-sinks. Currently, our taint-sinks include all system calls
and a few other functions such as printf, and functions used for communicating with
external entities such as database servers or command interpreters. Like many previ-
ous techniques [26,4,8,7], our models rely on the contexts in which sink functions are
invoked. This model is augmented with information about taintedness of arguments.
In the simplest case, this information will indicate whether each argument of a sink
function is tainted. More generally, the model captures information such as the compo-
nents of aggregate data (e.g., fields of a C-structure, or components of a path name) that
can be tainted, or the lexical structure of tainted data (e.g., whether tainted data should
be alphanumeric or can contain various special characters). Attacks are flagged when
there is a significant change from tainting patterns observed during training. Some of
the advantages that TEAD can offer are:

1. Since tainted events correspond to a subset of events observed at runtime, TEAD’s
scope for false positives (FPs) is correspondingly reduced. In particular, TEAD can
work with limited training data on untainted events since it triggers alarms only on
tainted events. Note that a reduction in false positives can have an indirect effect on
reducing false negatives (FNs), since a lower FP can allow the detection threshold
to be lowered.

2. TEAD can be combined with more inclusive notions of taint, including those that
account for control-flows. Previous taint-based vulnerability defenses have largely
ignored control-dependencies, while also limiting taint propagation via pointers.
This was done in order to reduce false positives. With TEAD, the training phase can
help reduce these false positives by discarding those control dependences that were
also observed during training.

3. TEAD is deployed in conjunction with taint policies to guard against most com-
mon exploits such as control-flow hijacks. This combination can mitigate prob-
lems faced by learning-based techniques due to attacks in training data—the most
common attack types can be filtered out by removing event traces that violate
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taint policies. Likewise, it can also improve resistance to sophisticated mimicry
attacks [31,12], since these attacks rely on control-flow hijacks. Indeed, since
taint-tracking involves reasoning about input/output data, TEAD does not suffer
from a versatile mimicry attack [21] that can defeat previous system-call anomaly
detection techniques that all ignored arguments to operations such as read and
write [1,4,7,8,10,13,26,29,30,32].

2 Approach Description

2.1 Fine-Grained Taint-Tracking

TEAD relies on fine-grained taint information. In principle, it could be based on many of
the existing techniques for this purpose, but clearly, performance is an important factor.
For this reason, our implementation relies on DIVA [33], which is implemented using a
source-to-source transformation of C programs. On server programs—often the focus of
intrusion detection—DIVA has reported an overhead of about 5%. Binary taint-trackers
exist as well [24], although they tend to be less mature and/or more expensive.

Like all taint-tracking techniques, DIVA relies on a specification of taint sources such
as network read operations. In particular, on return from a system call that is a taint
source, DIVA uses taint source specifications to mark the data returned by the system
call as tainted. DIVA is a byte-granularity taint-tracker, and hence will mark each byte of
data read from an untrusted source as tainted. This taint information is maintained in a
global bit-array called tagmap. In particular, the taint associated with a byte of memory
located at an address A is given by tagmap[A]. DIVA’s source-to-source transforma-
tion ensures that data reads, arithmetic operations, and data writes are all augmented
so as to propagate taint. DIVA can transform arbitrary C-programs, including various
libraries, when their source-code is available. If source is unavailable, it can make use
of summarization functions that capture taint propagation. In particular, after a call to
a function f whose source code is unavailable, DIVA’s transformation will introduce a
call to f ’s summarization function in order to correctly propagate taint. (DIVA’s taint-
source marking specifications are a special case of summarization functions.)

Although DIVA’s focus is on capturing direct data flows, it does incorporate features
to track some control flows. These features enable it to correctly handle certain fre-
quently encountered constructs such as the use of translation tables. This factor reduced
the need for using full control dependency tracking in our implementation of TEAD.
Even though DIVA operates on C-programs, it is applicable to many interpreted lan-
guages such as PHP and shell scripts. This applicability has been achieved by transform-
ing the interpreters themselves to perform taint-tracking. As discussed before, TEAD

enforces policies that block control-flow hijack, SQL injection and command injection
attacks during its operation. This is done using the policies incorporated into DIVA as
described in [33].

2.2 Taint-Enhanced Behavior Models

As with any other taint-based technique, TEAD begins with a specification of the set
of taint-sources and taint-sinks. Currently, our taint-sinks include all system calls and a
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few other functions such as main, and printf, and functions used for communicating
with external entities such as database servers or command interpreters. Unlike policy
enforcement techniques such as DIVA that require policies to be associated with each
sink, TEAD simply requires the identification of sinks. As a result, TEAD can handle
numerous sinks without any significant specification efforts.

Since taint is a property of data, we focus primarily on learning properties of system
call arguments. Let Σ be the set of all the sinks, and s(a1, a2, · · · , an) ∈ Σ be a generic
sink, where a1, a2, · · · , an denote the sink’s arguments. Rather than learning properties
common to all invocations of s, our approach learns properties that are specific to each
context in which s is invoked. In our prototype, the context is simply the calling loca-
tion, except that calls made within shared libraries are traced back to program locations
from which these library functions were invoked [26] (more refined notions of contexts,
such as those of [4,8,7] could be used as well). The use of calling contexts increases the
accuracy of models. For instance, a context-sensitive model can distinguish between
open system calls made from two different parts of a program. If one of these is used
to open a configuration file and the other one is used to open a data file, then it would
be possible for the model to capture the intuitive property that a configuration file name
cannot be controlled by the attacker, but a data file name may be.

As with other anomaly-based approaches, TEAD builds models during a learning
phase. Deviations from this model are identified and reported as anomalies during a de-
tection phase. Below, we detail the types of information embedded into TEAD models.

2.3 Coarse-Grained Taint Properties

For each argument ai of each sink s, TEAD learns if any of its bytes are tainted. More
generally, TEAD could learn whether ai has control dependence, data dependence, or
no dependence on tainted inputs, but control dependence is not tracked in our current
prototype. For pointer arguments, taintedness of pointers could be learned, as well as the
taintedness of the objects pointed by the pointer. At detection time, an alarm is raised
if an argument that was not tainted during training is now found to be tainted. This
approach can detect many buffer overflow attacks that modify system call arguments,
as opposed to modifying control flows. For instance, an attack may overwrite a filename
that is supposed to represent a file containing public data with /etc/shadow. This may
allow the attacker to obtain the contents of /etc/shadow that he may subsequently use
for an offline dictionary attack.

2.4 Fine-Grained Taint Properties

For aggregate data, the above approach may lose too much information by combining
taint across the entire data structure. To improve precision, TEAD refines taint properties
to capture more details regarding different parts of the data that may be tainted. The
simplest case to handle in this regard are C-structures. For them, TEAD associates a
taint with each field of a struct. This is particularly useful for some system calls,
e.g., sendmsg, writev, etc. A more complex case concerns non-struct data, such as
strings. String data, such as file names, database queries, scripts and commands are
frequently targeted in data attacks. TEAD includes several algorithms for learning fine-



164 L. Cavallaro and R. Sekar

grained taint properties that is motivated by such use of string data. We organize these
algorithms based on whether a sink argument ai is fully or partially tainted.

Properties of Fully Tainted Arguments

Maximum length (MaxTaintLen). This property is an approximation of the maximum
permissible length lmax of a tainted argument. This helps to detect attacks that overflow
buffers with the intent to overwrite security sensitive data.

Structural inference (StructInf). Often, an attacker may not try to overflow any buffers.
Instead, he may try to modify the normal structure of an argument to bypass some
security checks. To this end, the structure of ai is inferred so that each byte is clus-
tered in proper class. Currently, our model classifies (or maps) uppercase letters (A-
Z) to the class represented by A, lowercase letters (a-z) to a, numbers (0-9) to 0, and
so on. Each other byte belongs to a class on its own. For instance, if the model sees
an open("/etc/passwd", ...) system call invocation, the finite state automaton
(FSA) which is generated for the string /etc/passwd will recognize the language
/a*/a*. We further simplify the obtained FSA by removing byte repetition, as we are
not concerned about learning lengths with this model. The final FSA will thus recog-
nize the simplified language /a/a. If during detection the structure of the considered
argument is different from the one learned, an alarm will be raised.

It can be noted that for particular sinks, trying to infer their (tainted) argument struc-
ture can lead to FPs if the structure for that sink is highly variable, e.g., arbitrary binary
data read from the network. For this reason, our prototype limits fine-grained learning
to those sinks and arguments where it is explicitly specified. An alternative possibility
is to limit it to string data (i.e., char *).

Properties of Partially Tainted Arguments

In this case, a tainted argument consists of a combination of tainted and untainted bytes.
The tainted portion is subjected to the learning of the aforementioned properties, while
the following learning rules are considered for the untainted part.

Untainted common prefix (UCP). It is often the case for string-valued data that the
interpretation of the trailing components is determined by the leading components. Ex-
amples include filenames which are interpreted within the directory specified by the
leading components of the string; and command arguments that are interpreted by a
leading command name. TEAD learns the longest common untainted prefix for every
sink argument that is partially tainted. This algorithm can be easily generalized to learn
a small number of common prefixes, rather than a single prefix.

Allowable set of tainted characters (ATC). Many applications expect tainted data will
be limited to a subset of the alphabet. For instance, tainted components of filenames may
be expected to be free of “/” and “.” characters in some contexts. In other contexts, they
may be expected to be free of special characters such as “;” or whitespace characters.
To capture such constraints, we can learn the set of characters that cannot appear in
tainted context. To improve convergence, we utilize character classes as before, e.g.,
upper-case and lower-case characters and numbers. But most punctuation and white-
space characters form a class of their own.
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3 Implementation

As mentioned before, our TEAD prototype relies on the DIVA implementation, which
takes a program P as input and produces PT , a semantically-equivalent taint-enhanced
version of it. In particular, for every taint sink (or source) f , DIVA allows us to associate
a wrapper fw that will be called before (or after) it. Our prototype uses these wrappers to
learn properties of sink arguments, as well as for marking source arguments as tainted
(e.g., those coming from the network). We enable DIVA policies that protect against
control-flow hijack and command injection attacks during detection phase, and to filter
out attack-containing traces during training.

PT is monitored during the training phase and a log file is created. The log file
includes sink names and their context information (e.g., calling site), sink arguments
and, for each argument, byte-granularity taint information. For instance, a typical log
entry looks like the following:

read@0x8048f5c 3 arg0={ A:U } arg1={ A:U V[0-98]:T C:99:0:ls -la } arg2={ A:U }

The meaning is as follows. The sink name (read) is followed by its calling site
(0x8048f5c). Next, the number of arguments follows (3) and details about these argu-
ments are recorded. For instance, the entry for the second argument (arg1) tells us that
the address (A) where the sink buffer of size 99 (V[0-98]) is stored is untainted (A:U),
while the buffer content is tainted (V[0-98]:T). The content of the tainted buffer,
which starts at offset 0, is ls -la1. This information will be used by the next step.

The log file is analyzed off-line to build a profile M of the behavior of PT by using
the aforementioned information. In particular, (i) identical events, that is events whose
names and call sites are identical, are merged into a single event instance, and (ii) un-
tainted events are inserted into the model just for evaluation reason.

For instance, considering the previous example, the tainted sink read invoked at
the calling site 0x8048f5c has its first and third argument untainted, while the second
argument a1 is tainted. Moreover, lmax, the maximum length for a2 is 99 while, its
structure is given by a -a. The profile created during this step is serialized and re-
loaded during the next step. PT is then monitored during the detection phase. Deviations
from the model learned in the previous step are reported.

4 Evaluation

4.1 Effectiveness in Detecting Attacks

TEAD main focus is on non-control data attacks. This section considers attacks taken
from [3] and other sources. Where necessary, we slightly modify the example to show
that our approach is effective even when some of the specifics of an attack are changed.

1 To avoid noise into the log file we actually base64 encode buffer contents which are decoded
by the off-line log analyzer to create the application profile.
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Format String Attack against User Identity Data. A version of WU-FTPD is vul-
nerable to a format string vulnerability in the SITE EXEC command. The non-control
data exploit of this vulnerability, described by Chen et al. [3], is based on the following
code snippet that is used to restore the effective userid of the ftp server to that of the
user logged in. (This restoration follows operations where the server briefly needed to
utilize root privilege to perform setsockopt operation.)

1 FILE ∗ g e t d a t a s o c k ( . . . ) {
2 . . .
3 s e t e u i d ( 0 ) ;
4 s e t s o c k o p t ( . . . ) ;
5 . . .
6 s e t e u i d ( pw−>pw uid ) ;
7 . . .

The attack aims to overwrite the pw uid field to zero, so that the restoration code
will leave the process with root-privileges. This would enable the current user, a non-
privileged user, to assume root privileges on the system hosting the server.

Our approach detects this attacks in two different ways. It either considers whether
the seteuid’s argument is tainted, or it detects structural divergence in the tainted
arguments of the printf-like function used to exploit the format string vulnerability.
The latter method relies on the presence of a particular memory error vulnerability, and
can be detected using taint policies as well. For this reason, we focus on the former
method. In particular, our approach learns that the seteuid argument pw->pw uid at
line 6 was always untainted during training. During an attack, pw->pw uid is marked
as tainted, since it was overwritten by copying some attacker provided data. This causes
the argument of seteuid to become tainted, thus raising an alarm.

It is worth pointing out that, in this context, taint-based learning seems to provide
better results than what could be achieved with a conventional anomaly detection tech-
nique, even if the latter relies on very comprehensive training data. For instance, a
conventional anomaly detector observing a limited number of authenticated users may
be vulnerable to an attack where attackers are able to impersonate one of such users.

Heap Corruption Attacks Against Configuration Data. We report on two heap-
based memory error vulnerabilities and attacks as described by Chen et al. [3].

Null HTTPD. This attack aims to overwrite the CGI-BIN configuration string. Note
that the name of every CGI program invoked by a client will be prefixed with this
string. Thus, by changing it from its default value of /usr/local/httpd/cgi-bin
to the string /bin, a malicious client would be able to execute programs such as the
shell interpreter on the server.

In this scenario, it can be observed that the available options for the attacker are
mainly two: (a) to either completely overwrite the original CGI-BIN configuration
string, or (b) partially overwrite the configuration string. In this latter case, the goal
would typically be to perform a path traversal to ascend above the original CGI-BIN di-
rectory and then to descend into a directory such as /bin or /usr/bin. For simplicity,
let us consider that the sink of interest here is the open system call.
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(a) During training, our approach would learn that the first argument of open sys-
tem call invoked at a context C is a combination of untainted data (i.e., the original
CGI-BIN configuration string) and tainted data (i.e., the command derived from un-
trusted input); and has an untainted prefix that includes all of the original CGI-BIN
string. Thus, the UCP model will detect this attack since the common untainted
prefix observed during training is no longer present.

(b) In this case, the untainted prefix property may still hold. However, the set of al-
lowable tainted characters (i.e., the ATC model) are different due to the presence
of tainted characters such as “.” and “/”. In addition, structural inference would
have learned previously that the tainted component of open argument consisted of
alphanumeric characters, whereas now it has a different structure that consists of a
long, alternating sequence of alphanumeric and special characters.

Netkit Telnetd. The attack described in [3] exploits a heap-based buffer overflow vul-
nerability. It aims to corrupt the program name which is invoked upon login request by
referencing the loginprg variable as shown by the following code snippet.

1 void s t a r t l o g i n ( char ∗ hos t , . . . ) {
2 addarg (& argv , l o g i n p r g ) ;
3 addarg (& argv , ”−h” ) ;
4 addarg (& argv , h o s t ) ;
5 addarg (& argv , ”−p” ) ;
6 execve ( l o g i n p r g , a rgv ) ;
7 }

As a result of a successful attack, the application invokes the program interpreter
/bin/sh -h -p -p (underlined characters are tainted). This raises an alarm in the
UCP model: during detection, the untainted prefix contained the entire command name,
which should be longer than the current untainted prefix /bin.

SquirrelMail Command Injection. Shell command injections can be somewhat tricky
for policy-based techniques. In particular, a typical policy would be one that prevents
tainted whitespace or shell metacharacters except inside quoted strings. Unfortunately,
such a policy is susceptible to false positives as well as false negatives. False positives
arise with applications that permit untrusted users to specify multiple command argu-
ments. (SquirrelMail itself is one such application.) These applications may, in fact, be
incorporating checks to ensure that the arguments are safe. On the other hand, false neg-
atives may arise because a string literal may be passed down to a command that further
parses the string into components that are handed down to another command inter-
preter, e.g., consider bash -c ’ls -l xyz; rm *’. For these reasons, we believe
command injections are better handled by a technique such as TEAD that can utilize
learning to fine-tune the characters that can legitimately appear within arguments.

Specifically, SquirrelMail version 1.4.0 suffered from a shell command injection vul-
nerability in version 1.1 of its GPG plugin. The vulnerability involves the use of a shell
command to invoke gpg to encrypt email contents. gpg program needs to access the
public key of the recipient, so the recipient name should be provided as a command-
line argument. SquirrelMail retrieves the name of the recipient from the “to” field on the
email composition form. An attacker can provide a malicious value for this email field,
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such as “nobody; rm -rf *” that causes SquirrelMail to delete files. This attack can
easily be detected by the ATC model: in the absence of attacks, tainted characters in the
execve argument will never include shell delimiters such as semicolons.

Stack Buffer Overflow Attack against User Input Data. The exploitation of this
stack-based buffer overflow vulnerability was somewhat tricky but the authors of [3]
were able to bypass the directory traversal sanity check enforced by the application. In
summary, after the directory traversal check and before the input usage, a data pointer
is changed so that it points to a second string which is not subjected to the application-
specific sanity check anymore, thus it can contain the attack pattern (similar to a TOCT-
TOU). Other than this TOCTTOU aspect, this attack is very similar to case (b) of the
Null HTTPD attack, and hence is detected in the same way.

Straight Overflow on Tainted Data. The following example is from Mutz et al. [18].
The memory error attack is simple. The user filename array obtained at line 7 (gets
function) is guarded by a security check (privileged file function at line 9) which
checks whether user filename specifies a name of a privileged file or not. In the
affirmative case, the program prints an error message and quits. Otherwise (i.e., a non
privileged file), more data is read into the array user data using the function gets at
line 14, and the file name specified by user filename is opened at line 15. Instead
of corrupting write user data return address, an attacker can overwrite past the end
of user data and overflow into user filename. As the overflow happens after the
security check performed at line 9, an attacker can specify a privileged file name for
user filename that will be replaced subsequently by the overflow attack.

1 void w r i t e u s e r d a t a ( void ) {
2
3 FILE ∗ fp ;
4 char u s e r f i l e n a m e [ 2 5 6 ] ;
5 char u s e r d a t a [ 2 5 6 ] ;
6
7 g e t s ( u s e r f i l e n a m e ) ;
8
9 i f ( p r i v i l e g e d f i l e ( u s e r f i l e n a m e ) ) {

10 f p r i n t f ( s t d e r r , ” I l l e g a l f i l e n a m e . E x i t i n g .\ n ” ) ;
11 e x i t ( 1 ) ;
12 }
13 e l s e {
14 g e t s ( u s e r d a t a ) ; / / o v e r f l o w i n t o u s e r f i l e n a m e
15 fp = fopen ( u s e r f i l e n a m e , ”w” ) ;
16 i f ( fp ) { f p r i n t f ( fp , ”%s ” , u s e r d a t a ) ; f c l o s e ( fp ) ; }
17 }
18 }

Our approach detects this data attack by learning the maximum length lmax of the
tainted arguments of the gets invoked at line 7, and 14, during the learning phase.
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Format Bug to Bypass Authentication. The following example has been described
by Kong et al. in [11]. Normally, the variable auth is set to 1 or 0 depending on the
fact that the right authentication credential is given as input or not (line 5). An attacker,
however, can exploit the format string vulnerability at line 11 and overwrite auth with
a non-null value so that the subsequent check of the credential at line 12 will grant an
access to the system.

1 void d o a u t h ( char ∗passwd ) {
2 char buf [ 4 0 ] ;
3 i n t a u t h ;
4
5 i f ( ! s t r cmp ( ” e n c r y p t e d p a s s w d ” , passwd ) )
6 a u t h = 1 ;
7 e l s e
8 a u t h = 0 ;
9

10 s c a n f ( ”%39s ” , buf ) ;
11 p r i n t f ( buf ) ; / / f o r m a t s t r i n g
12 i f ( a u t h ) a c c e s s g r a n t e d ( ) ;
13 }

This attack can be stopped by modeling tainted format string directives. By model-
ing the tainted format string of the printf function invoked at line 11 our approach
learns whether tainted format directives have been used during the training step, along
with their structure (structural inference on tainted arguments). If no tainted formatting
directives are learned during the learning phase, then no tainted formatting directives
can be subsequently encountered during detection phase without raising an alarm.

4.2 False Positives

Table 1 shows the false positives rate we obtained by conducting experiments on the
proftpd ftp server and apache web server. Table 2 attributes these false positives to
each of the models used.

Table 1. Overall False Positives

Program # Traces (Learning) # Traces (Detection) Overall FP rate

proftpd 68, 851 983, 740 1.7 × 10−4

apache 58, 868 688, 100 2.5 × 10−3

As shown by Table 2, the majority of false positives were caused by violation of
structural inference models. We expected a relatively high number of false positives
as the model proposed in § 2 is a simple non-probabilistic model. The main focus of
this paper is to show the benefits of using taint information to improve the false pos-
itive rates of anomaly detection, so we have not emphasized the use of sophisticated
learning techniques. The use of more sophisticated learning techniques (e.g., [17,1]) is
orthogonal to our technique, and can further reduce false positives.
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Table 2. False Positives Breakdown

Program Tainted Events UCP StructInf MaxTaintLen Overall FP Rate

proftpd 3.0 × 10−5 0 1.4 × 10−4 0 1.7 × 10−4

apache 0 0 2.4 × 10−3 0 2.5 × 10−3

To assess the effectiveness of taint information in reducing the false positives of
learning-based anomaly detection, we carried out the following test. We computed the
false positive rate of the anomaly detection techniques underlying TEAD, when taint
information is ignored. In particular, an alarm is counted each time a system call s is
invoked in a context different from those observed during training. This led to false
positive rates of 2.4× 10−4 and 4.3× 10−4 for proftpd and apache respectively. We
then compute the false positive rate that would be observed when taintedness of the ar-
gument was taken into account. In particular, an alarm was raised only if the anomalous
system call was also associated with anomalous taint, i.e., a previously untainted argu-
ment was now tainted. This reduced the false positives on these programs to 3.0×10−5

and zero respectively. Thus, the use of taint information reduces the false positive rate
by about an order of magnitude or more.

As a second way to assess the impact of taint-tracking on false positives, we com-
pared the fraction of system calls that were tainted during the learning and detection
phase. As Table 3 depicts, half of the traces of apache have been considered during
detection, while only a small fraction of them have been considered for proftpd. By
omitting the rest, TEAD can avoid FPs that may arise due to them.

Table 3. Fraction of tainted system calls

Program # Traces (Learning) # Tainted (%) # Traces (Detection) # Tainted (%)

proftpd 68, 851 2, 986 (4.3%) 983, 740 7, 120 (0.72%)

apache 58, 868 46, 059 (82.1%) 688, 100 354, 371 (51.5%)

4.3 Performance Overheads

The dominant source of overhead in TEAD is that of taint-tracking. Overhead due to
DIVA has been reported in [33] to be about 5% for I/O-intensive applications such as
apache, and about 50% for CPU-intensive applications. Most real-world applications
experience overheads in between these two figures.

Our preliminary results indicate that the additional overhead introduced by TEAD is
relatively low. So far, we have measured only the overheads due to proftpd, but we
hope to measure apache overhead in the near-future. In particular, for proftpd, we
experienced slowdowns of 3.10% due to taint-tracking only, 5.90% due to taint-tracking
and model profiling during the learning phase, and 9.30% due to taint-tracking and
model matching during the detection phase. proftpd overheads were measured when
the program was subjected to a variety of operations, including changing of directories,
file uploads and downloads, and recursive directory listing.
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Note that taint-learning overhead includes only the overhead of logging, and omits
the cost of offline learning that uses these logs. In contrast, detection is performed on-
line, and hence its overheads are higher.

We point out that unlike DIVA, whose overhead increases for CPU-intensive compu-
tation, TEAD’s anomaly detectors experience higher overheads for I/O-intensive com-
putations, e.g., computations characterized by a high rate of system calls.

5 Related Work

Anomaly Detection Based on System Calls. Forrest et al. [6,9] first introduced
anomaly detection techniques based on system calls made by applications. This sys-
tem is built following the intuition that the “normal” behavior of a program P can be
characterized by the sequences of system calls it invokes during its executions in an
attack-free environment. In the original model, the characteristic patterns of such se-
quences, known as N -grams, are placed in a database and they represent the language
L characterizing the normal behavior of P . To detect intrusions, sequences of system
calls of a fixed length are collected during a detection phase, and compared against
the contents of the database. This technique was subsequently generalized in [32] to
support variable-length system-call sequences.

The N -gram model is simple and efficient but it is associated with a relatively high
false alarm rate, mainly because some correlations among system calls are not captured
in the model. Furthermore, it is susceptible to two types of attacks, namely mimicry [31]
and impossible path execution (IPE). Newer algorithms have since been developed to
address these drawbacks, primarily by associating additional context with each system
call. Reference [26] uses the location of system call invocation as the calling context,
while References [4] and [7] can potentially use the entire list of return addresses on the
call stack at the point of system-call invocation. Techniques have also been developed
that rely on static analysis for building models [30,8], as opposed to learning.

These newer models make mimicry and IPE attacks harder, but they still remain pos-
sible. In particular, the use of calling contexts make mimicry attacks difficult: although
an attacker may be able to make one system call using an exploit, the attack code will
not be able to resume control after the execution of this system call. This is because
the IDS will otherwise observe a return address on the stack that resides in attacker-
provided code, and hence would not be in the IDS model. Kruegel et al. then devised a
clever approach [12] that relied on corrupting data items such as saved register contents
or local variables in order to reacquire control after making a system call. Moreover,
Chen et al [3] demonstrated powerful attacks that don’t modify control flows at all —
instead, they only change non-control data, yet achieve the same end goals achieved by
(the more popular) control-flow hijack attacks.

The above developments focused more research efforts on techniques that incorpo-
rate system call argument data into IDS models [13,29,1,17,18,15]. Unfortunately, since
most of these techniques do not reason about bulk data arguments such as the data read
from (or written to) files or the network, they remain vulnerable to a class of mimicry
attacks [21]. This attack works on any I/O-data-oblivious IDS, i.e., IDS that may pos-
sess perfect knowledge about system calls, their sequencing, and their argument values,
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with the singular exception of data buffer arguments to read and write operations. Since
TEAD examines read buffers and write buffers to check for anomalous taint, it is not
I/O-data-oblivious, and hence this attack is not applicable to TEAD.

Dependency and Taint-Based Techniques. The core idea behind TEAD was described
in an abstract in [2]. This paper represents the full development of those core ideas.

Dataflow anomaly detection [1] provides an interesting contrast with TEAD. In par-
ticular, dataflow anomaly detection uses learning to infer information flows. For this
reason, it focuses on so-called binary relations that capture relationships between the
arguments of different system calls. In contrast, TEAD relies on actual information
flows present in a program. Since it has access to information flow already, it uses
only unary relations in the terminology of dataflow anomaly detection, and does not
consider relationships between arguments of different system calls. Key benefits of
dataflow anomaly detection over TEAD are: (a) it does not require access to source
code, and (b) it has much lower overheads. On the other hand, taint-tracking is much
more reliable as compared to dataflow inference, which should lead to a lower false
positive rate for TEAD.

Whereas dataflow anomaly detection focuses on security-sensitive data such as file
names and file descriptors, dataflow inference [25] is concerned with inferring more
general dataflows, e.g., between the data read and written by an application. This ne-
cessitates the use of more powerful matching algorithms as compared to the simpler (ex-
act or prefix-matching) algorithms used in dataflow anomaly detection. While dataflow
inference can provide low overheads and avoids the need for heavy-weight instrumenta-
tion, it is limited to applications that do not perform complex transformations on inputs.

SwitchBlade [5] has some similarity with TEAD in combining taint-tracking with
system call anomaly detection. However, the similarity is only superficial since our
goals as well as the techniques are quite different. In particular, TEAD uses taint infor-
mation to improve attack detection and false positives of a typical system call anomaly
detector. SwitchBlade’s main goal is not one of improving anomaly detection, but in-
stead, to reduce the overhead of taint-based policy enforcement techniques [28,19,33].
In particular, they aim to stop control-flow hijacks that are prevented by [28,19,33],
but do so without the overheads of runtime taint-tracking. They achieve this by using
system call anomaly detection as a low-overhead filter to screen out potential exploits
from normal behaviors. These potential exploits are then verified by replaying them
on a taint-tracked version of the victim process. If a taint policy violation is observed
during replay, an attack is reported. Otherwise, the new behavior is added to the IDS
model. To reduce the likelihood of missing exploits, SwitchBlade develops new tech-
niques that personalize system-call IDS models to each deployment site, and injects
random system calls into the model.

Sarrouy et al [23] also observe that attacks result from tainted data that feeds into
system calls. However, their technical approach is quite different from ours. In particu-
lar, their approach does not rely on system call models, but instead, captures invariants
involving a program’s internal state that may hold at various points during execution.

Ming et al [16] are concerned with the problem of improving the accuracy of so-
called gray-box anomaly detectors that focus on data [13,29,1,14]. In particular, these
techniques may end up learning properties that were observed during training but do
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not necessarily hold in general. Ming et al show that taint-tracking can resolve such
questions, and establish whether training observations truly support the rules learned by
an anomaly detector. In contrast, our work shows that by leveraging taint information,
we can extend the class of attacks that can be reliably detected by an anomaly detector.

In summary, although numerous works have studied learning-based anomaly detec-
tion and information-flow tracking, none of them have considered our approach of aug-
menting anomaly detection models with taint data in order to reliably detect non-control
data attacks that have been challenging for all previous intrusion detection techniques.

6 Conclusion

In this paper, we presented a new approach which combines fine-grained taint-tracking
and learning-based anomaly detection techniques. By exploiting the information pro-
vided by the taint-tracking component, our approach was able to detect a variety of
non-control data attacks that have proved to be challenging for previous intrusion de-
tection or policy enforcement techniques. False positives, one of the main drawbacks
of learning-based approaches, are caused due to the fact that training can never be ex-
haustive. Our approach limits this drawback as it considers only tainted traces, which
usually are a small percentage of the whole traces executed by an application. Our eval-
uation results show that the false positive rate of a learning-based approach is reduced
by about a factor of ten due to the use of taint-tracking.
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