
Live and Trustworthy Forensic Analysis of
Commodity Production Systems

Lorenzo Martignoni1 Aristide Fattori2 Roberto Paleari2

Lorenzo Cavallaro3

1University of California at Berkeley 2Università degli Studi di Milano

3Vrije Universiteit Amsterdam

13th International Symposium on Recent Advances in Intrusion Detection
Ottawa, Ontario, Canada, September 15-17 2010



Are Malware a Serious and Real Threat?

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 2



Are Malware a Serious and Real Threat?

In the early days malware were mostly created as pranks or
vandalism attempts

I Or to brag ourselves :-)

AV companies usually won by developing syntactic signatures

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 2



Are Malware a Serious and Real Threat?

Unfortunately, things changed rapidly!

Clear shift towards profit-driven goals

“[. . . ] the release rate of malicious code and other
unwanted programs may be exceeding that of legitimate
software applications”, Symantec 2008

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 2



Are Malware a Serious and Real Threat?

KlikTeamParty – 2008

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 2



Wait, we know how to defend ourselves. . .

The AV industry is moving towards behavioral solutions

Unfortunately, malware can still slip under the radar
(perfect detectors do not exist)

I New evasion techniques

Moreover, what to do if we suspect a system is compromised?

I Forensic analysis
I We all operate at the same privilege level. . .

. . . it is like a dog chasing its tail!

We must operate at a privilege level higher than the malware

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 3



Wait, we know how to defend ourselves. . .

The AV industry is moving towards behavioral solutions

Unfortunately, malware can still slip under the radar
(perfect detectors do not exist)

I New evasion techniques

Moreover, what to do if we suspect a system is compromised?

I Forensic analysis
I We all operate at the same privilege level. . .

. . . it is like a dog chasing its tail!

We must operate at a privilege level higher than the malware

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 3



Wait, we know how to defend ourselves. . .

The AV industry is moving towards behavioral solutions

Unfortunately, malware can still slip under the radar
(perfect detectors do not exist)

I New evasion techniques

Moreover, what to do if we suspect a system is compromised?
I Forensic analysis
I We all operate at the same privilege level. . .

. . . it is like a dog chasing its tail!

We must operate at a privilege level higher than the malware

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 3



Wait, we know how to defend ourselves. . .

The AV industry is moving towards behavioral solutions

Unfortunately, malware can still slip under the radar
(perfect detectors do not exist)

I New evasion techniques

Moreover, what to do if we suspect a system is compromised?
I Forensic analysis
I We all operate at the same privilege level. . .

. . . it is like a dog chasing its tail!

We must operate at a privilege level higher than the malware

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 3



Virtualization comes (again, back) to help

To analyze malicious samples and provide valuable information
(e.g., Anubis, CWSandbox, Wepawet)

To monitor the guests
(e.g., ReVirt, Ether)

To protect the guests from attacks
(e.g., SecVisor)

To run forensics analyses

Unfortunately. . .

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 4



Virtualization comes (again, back) to help

To analyze malicious samples and provide valuable information
(e.g., Anubis, CWSandbox, Wepawet)

To monitor the guests
(e.g., ReVirt, Ether)

To protect the guests from attacks
(e.g., SecVisor)

To run forensics analyses

Unfortunately. . .

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 4



Virtualization comes (again, back) to help

Unfortunately. . .

The target system must be already running inside a VM!

What can we do?
I Shut the system off and analyze it off-line

I What about all the volatile information?
(e.g., open files, registry keys, network connections, processes)

I What about production systems that cannot be shut down?
I What about production systems that cannot be frozen?

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 4



Our Contribution: HyperSleuth

A framework to perform live and trustworthy forensic analyses
of commodity production systems

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 5



Our Contribution: HyperSleuth

A framework to perform live and trustworthy forensic analyses
of commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

HyperSleuth is installed on an allegedly compromised target
as the target system runs

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 5



Our Contribution: HyperSleuth

A framework to perform live and trustworthy forensic analyses
of commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

The installation of HyperSleuth is attested with
the help of a trusted host

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 5



Our Contribution: HyperSleuth

A framework to perform live and trustworthy forensic analyses
of commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

The analyzed OS needs not to be modified at all, and applications
continue to run with no service disruption

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 5



Our Contribution: HyperSleuth

A framework to perform live and trustworthy forensic analyses
of commodity production systems

Potentially
compromised host

1. Load

Trusted host

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

At the end of the analysis, the results can be
sent to the trusted host

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 5



How?

Exploit hardware support for virtualization

1. A tiny hypervisor

2. A secure loader that installs the hypervisor
I It verifies the hypervisor’s code, data and its environment

The forensic framework runs at the hypervisor privilege level
(it is more privileged than the OS and completely isolated)

I Lazy physical memory dumper
I Lie detector
I System call tracer (not discussed in this talk)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 6



How?

Exploit hardware support for virtualization

1. A tiny hypervisor

2. A secure loader that installs the hypervisor
I It verifies the hypervisor’s code, data and its environment

The forensic framework runs at the hypervisor privilege level
(it is more privileged than the OS and completely isolated)

I Lazy physical memory dumper
I Lie detector
I System call tracer (not discussed in this talk)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 6



A Glimpse at Hardware-assisted Virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 7



A Glimpse at Hardware-assisted Virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 7



A Glimpse at Hardware-assisted Virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

The OS needs not to be modified

Minimal overhead

The hardware guarantees transparency & isolation

Available on commodity x86 CPUs

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 7



A Glimpse at Hardware-assisted Virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Hypervisor Kernel/App

Enter Exit Enter

An exit/enter event causes the CPU to save the
state of the guest/host inside the VMCS

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 7



A Glimpse at Hardware-assisted Virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Hypervisor Kernel/App

Enter Exit Enter

The events that trigger an exit to root mode
can be configured dynamically

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 7



HyperSleuth Virtual Machine Monitor

Software-based MMU virtualization through shadow PTs
Unrestricted guest access to I/O devices
Direct network access
VMM on-the-fly removal

Physical memory

GDT/LDT

Page
table

Page
table

Page
table

IDT

Data &
Code
Data &

Code
Data &

Code

VMCS

Guest state
area

Host state
area

Control
fields

GDT/LDT

Page
table

IDT

Data &
Code

Non-root mode Root mode

VMM code/data isolation from the guest OS
(i.e., VMM can access guest’s resources, but not the other way around)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 8



HyperSleuth Virtual Machine Monitor

Software-based MMU virtualization through shadow PTs
Unrestricted guest access to I/O devices
Direct network access
VMM on-the-fly removal

Physical memory

GDT/LDT

Page
table

Page
table

Page
table

IDT

Data &
Code
Data &

Code
Data &

Code

VMCS

Guest state
area

Host state
area

Control
fields

GDT/LDT

Page
table

IDT

Data &
Code

Non-root mode Root mode

VMM code/data isolation from the guest OS
(i.e., VMM can access guest’s resources, but not the other way around)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 8



How?

Exploit hardware support for virtualization

1. A tiny hypervisor

2. A secure loader that installs the hypervisor
I It verifies the hypervisor’s code, data and its environment

The forensic framework runs at the hypervisor privilege level
(it is more privileged than the OS and completely isolated)

I Lazy physical memory dumper
I Lie detector
I System call tracer (not discussed in this talk)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 9



Trusted Execution Environment

The loader provides a trusted execution environment (TEE)

Provides a Dynamic Root of Trust (DRT) for live analyses

Characteristics

1. Tamper-proof execution of HyperSleuth and its analyses

2. Aposteriori bootstrap of the TEE, aka late launch

3. Transparency to the system and attacker

4. Persistency

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 10



Software-based Attestation through Challenge-Response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The verifier challenges the untrusted system (to compute a
checksum)

Any attempt to tamper the execution environment results in
a noticeable overhead in checksum computation

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 11



Software-based Attestation through Challenge-Response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The untrusted system executes the checksum function

Should be executed at the highest level of privilege

Should execute without any interruption

Any attempt to tamper the execution environment results in
a noticeable overhead in checksum computation

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 11



Software-based Attestation through Challenge-Response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The checksum must be received within a time interval

Time is measured by an external entity (the verifier)

If the checksum is wrong or the timeout has expired,
attestation fails

Any attempt to tamper the execution environment results in
a noticeable overhead in checksum computation

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 11



Software-based Attestation through Challenge-Response

Verifier Untrusted system

1. Send challenge

2. Compute checksum

3. Send back the checksum

The checksum must be received within a time interval

Time is measured by an external entity (the verifier)

If the checksum is wrong or the timeout has expired,
attestation fails

Any attempt to tamper the execution environment results in
a noticeable overhead in checksum computation

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 11



Live Forensic Analyses

Exploit hardware support for virtualization

1. A tiny hypervisor

2. A secure loader that installs the hypervisor
I It verifies the hypervisor’s code, data and its environment

The forensic framework runs at the hypervisor privilege level
(it is more privileged than the OS and completely isolated)

I Lazy physical memory dumper
I Lie detector
I System call tracer (not discussed in this talk)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 12



Physical Memory Dumper

Traditional approaches for dumping physical memory have
drawbacks

I PCI cards
I FireWire devices
I Kernel drivers

Tricky problem: memory dumps should be done atomically
I To guarantee the integrity of the dumped data
I To avoid attacker’s interference with the analysis and results

Atomic memory dumps are likely to freeze the system
I Time-consuming, esp. when marginal evidence of compromise
I Consequent money loss and dangerous

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 13



Physical Memory Dumper

Traditional approaches for dumping physical memory have
drawbacks

I PCI cards
I FireWire devices
I Kernel drivers

Tricky problem: memory dumps should be done atomically
I To guarantee the integrity of the dumped data
I To avoid attacker’s interference with the analysis and results

Atomic memory dumps are likely to freeze the system
I Time-consuming, esp. when marginal evidence of compromise
I Consequent money loss and dangerous

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 13



HyperSleuth’s Lazy Physical Memory Dumper

Lazily dumps the content of physical memory
I The CPU is not monopolized
I Processes running in the system are not interrupted

State of dumped physical memory ≡ state of physical memory
at the time the dump is requested

No process can clean the memory after HyperSleuth is installed
(we trap to the hypervisor)

Memory dumps lazily transmitted via network

I Compatible with off-the-shelf tools for memory forensic analysis
(e.g., Volatility)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 14



HyperSleuth’s Lazy Physical Memory Dumper

Lazily dumps the content of physical memory
I The CPU is not monopolized
I Processes running in the system are not interrupted

State of dumped physical memory ≡ state of physical memory
at the time the dump is requested

No process can clean the memory after HyperSleuth is installed
(we trap to the hypervisor)

Memory dumps lazily transmitted via network

I Compatible with off-the-shelf tools for memory forensic analysis
(e.g., Volatility)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 14



HyperSleuth’s Lazy Physical Memory Dumper
The algorithm

The algorithm is loosely inspired by the OS’ Copy-on-Write

Dump-on-Write (DOW)
(i.e., dump the page before it is modified by the guest)

Dump-on-Idle (DOI)
(i.e., dump the page when the guest is idle)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 15



HyperSleuth’s Lazy Physical Memory Dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

The VMM intercepts updates of the page table address, page-fault
exceptions, and CPU idle loops

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 15



HyperSleuth’s Lazy Physical Memory Dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

During a context switch (CR3 update) the algorithm grants
read-only permissions to physical not yet dumped pages

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 15



HyperSleuth’s Lazy Physical Memory Dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

Our write protection is reinforced after every update of the
page tables

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 15



HyperSleuth’s Lazy Physical Memory Dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

Write accesses to pages not yet dumped trigger page fault
exceptions, and pages are dumped before being modified (DOW)

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 15



HyperSleuth’s Lazy Physical Memory Dumper
The algorithm

switch (VMM exit reason)

case CR3 write:

Sync PT and SPT

for (v = 0; v < sizeof(SPT); v++)

if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

SPT[v].Writable = 0;

case Page fault: // ’v’ is the faulty address

if (PT/SPT access)

Sync PT and SPT and protect SPTEs if necessary

else if (write access && PT[v].Writable)

if (!DUMPED[PT[v].PhysicalAddress])

DUMP(PT[v].PhysicalAddress);

SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

else

Pass the exception to the OS

case Hlt:

for (p = 0; p < sizeof(DUMPED); p++)

if (!DUMPED[p])

DUMP(p); DUMPED[p] = 1;

break;

To guarantee termination, pending pages are dumped
on CPU idle loops

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 15



HyperSleuth’s Lazy Physical Memory Dumper
Experimental setup

Current implementation of HyperSleuth specific to Microsoft
Windows XP (32-bit)

Hardware features of the host running HyperSleuth
I Intel CPU Core i7
I 3GB Ram
I Realtek RTL8139 100Mbps network card

Trusted host is a common laptop machine

DNS server was compromised and subjected to the heavy loads

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 16



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 17



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

Before launching HyperSleuth, the average
round-trip time was ∼ 0.34ms

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 17



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

DRT bootstrap and the installation of the VMM (∼ 0.19s),
then RTT stabilized around 1.6ms

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 17



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

When we started the dump, a lot of frequently accessed pages
were dumped

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 17



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

Then, RTT stabilized again around 1.6ms

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 17



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

Regular peaks (∼ 32ms) were caused by periodic dump of
non-written pages

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 17



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

The system never entered the idle loop (heavy load)
I Configured to dump at least 64 pages every second

Whole physical memory dump in about 180 minutes

Non-negligible overhead, but no service interruption
I No DNS request-reply timed out
I Decreasing dumping time possible with higher RTT
I Possibly 640 pages/sec on a 1Gbps media with no add. overhead

I 3GB RAM dumped in about 18mins with no service interruption

Traditional, atomic, dumping approaches would have taken
I 24s, 50s, 4mins on a 1Gbps, 480Mbps, 100Mbps, respectively
I No real guarantee on the integrity of the dump. . .

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 18



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

The system never entered the idle loop (heavy load)
I Configured to dump at least 64 pages every second

Whole physical memory dump in about 180 minutes

Non-negligible overhead, but no service interruption
I No DNS request-reply timed out
I Decreasing dumping time possible with higher RTT
I Possibly 640 pages/sec on a 1Gbps media with no add. overhead

I 3GB RAM dumped in about 18mins with no service interruption

Traditional, atomic, dumping approaches would have taken
I 24s, 50s, 4mins on a 1Gbps, 480Mbps, 100Mbps, respectively
I No real guarantee on the integrity of the dump. . .

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 18



HyperSleuth’s Lazy Physical Memory Dumper
Evaluation

The system never entered the idle loop (heavy load)
I Configured to dump at least 64 pages every second

Whole physical memory dump in about 180 minutes

Non-negligible overhead, but no service interruption
I No DNS request-reply timed out
I Decreasing dumping time possible with higher RTT
I Possibly 640 pages/sec on a 1Gbps media with no add. overhead

I 3GB RAM dumped in about 18mins with no service interruption

Traditional, atomic, dumping approaches would have taken
I 24s, 50s, 4mins on a 1Gbps, 480Mbps, 100Mbps, respectively
I No real guarantee on the integrity of the dump. . .

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 18



Lies, lies, nothing but lies!

Kernel-level malware insidious and dangerous
I Operate at a very high privilege level
I Able to hide any resource an attacker wants to protect

(e.g., processes, network communications, files)

Different techniques to force the OS to lie about its state

How can we disguise such liars?
I Retrieve Sguest , the state perceived by the (guest) system
I Retrieve SVMM , the state perceived by the VMM
I Sguest = SVMM?

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 19



HyperSleuth’s Lie Detector

HyperSleuth’s loader runs a minimalistic in-guest utility
I Collects the state of the system as perceived by the guest
I Such information is sent to the trusted host
I The utility makes an hypercall that causes a VM exits

HyperSleuth’s loader establishes the TEE and launch the VMM
I System’s state is collected from within the VMM

(OS-aware inspection)
I Results are sent back to the trusted host

Diffs ? “infected” : “not infected”

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 20



HyperSleuth’s Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 21



HyperSleuth’s Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X

FUTo leverages DKOM to hide malicious resources. We scan
Windows’ internal structures that must be left intact to preserve

system functionalities

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 21



HyperSleuth’s Lie detector
Evaluation

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X

HaxDoor hooks system calls and filters their result. We observed
hidden registry keys were missing from the untrusted view.

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 21



Conclusions

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 22



Conclusions

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 22



Conclusions

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 22



Conclusions

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 22



Conclusions

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 22



Live and Trustworthy Forensic Analysis of
Commodity Production Systems

Thank you!
Any questions?

Lorenzo Cavallaro
<sullivan@cs.vu.nl>



Backup slides



How Does Conqueror Work?

Variation of the traditional challenge-response scheme

The challenge is not a seed, but consists in the whole
checksum function

The checksum function is:

1. Generated on demand
2. Obfuscated
3. Self-decrypting

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 25



Conqueror Protocol

t0

Verifier Untrusted system

1. Checksum function

2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 26



Conqueror Protocol

t0

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 26



Conqueror Protocol

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 26



Conqueror Protocol

t ′

Verifier Untrusted system

1. Checksum function
2. Decryption key

4

6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output

Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 26



Conqueror Protocol

Verifier Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o

m
p

u
te

ch
eck

su
m

5. Checksum

7. Output
Executable

Send function

Checksum function

TPEB

Executable

Send function

Checksum function

TPEB

Generated on demand,
obfuscated and encrypted

Hardware-dependent

If t ′ > t0 + ∆t or checksum is wrong,
attestation fails

L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro Live and Trustworthy Forensic Analysis of Commodity Production Systems 26


	Motivation
	Contribution
	Live Forensic Analyses
	Physical memory dumper
	Lie Detector


