Practical Automated Vulnerability Monitoring Using Program State Invariants

Cristiano Giuffrida
Vrije Universiteit Amsterdam
giuffrida@cs.vu.nl

Abstract—Despite the growing attention to security concerns
and advances in code verification tools, many memory er-
rors still escape testing and plague production applications
with security vulnerabilities. We present RCORE, an effi-
cient dynamic program monitoring infrastructure to perform
automated security vulnerability monitoring. Our approach
is to perform extensive static analysis at compile time to
automatically index program state invariants (PSIs). At runtime,
our novel dynamic analysis continuously inspects the program
state and produces a report when PSI violations are found. Our
technique retrofits existing applications and is designed for both
offline and production runs. To avoid slowing down production
applications, we can perform our dynamic analysis on idle cores
to detect suspicious behavior in the background. The alerts
raised by our analysis are symptoms of memory corruption
or other—potentially exploitable—dangerous behavior. Our
experimental evaluation confirms that RCORE can report on
several classes of vulnerabilities with very low overhead.

Keywords-Program State Invariants, Vulnerability Analysis,
Memory Errors, Systems Security

I. INTRODUCTION

Memory errors represent a major source of security vul-
nerabilities for widely deployed programs written in type-
unsafe languages like C. According to the NIST’s National
Vulnerability Database [1], 662 memory error vulnerabilities
were published in 2011 and 724 in 2012. While software
engineers strive to identify memory errors and other vul-
nerabilities as part of the development process, dynamic
vulnerability monitoring and identification in production
runs is a compelling option for two important reasons.

First, many security vulnerabilities escape software testing
and are only later discovered in production applications at a
steady rate every year [2]. This is due to the limited power
of code analysis tools and the inability to test all the possible
execution scenarios effectively in offline runs. Given the
large-scale deployment of today’s production applications, it
is no wonder that the testing surface can increase drastically
in production runs, with different installations subject to very
different environments and workloads. This gives a much
better chance for zero-day vulnerabilities to emerge.

In addition, experience suggests that the number of un-
patched vulnerabilities is substantial every year. A recent
study [2] has shown that only 53% of the vulnerabilities
disclosed in 2012 were patched by the end of the year. When
prioritizing the known security vulnerabilities to go after

Lorenzo Cavallaro
Royal Holloway, University of London
lorenzo.cavallaro@rhul.ac.uk

Andrew S. Tanenbaum
Vrije Universiteit Amsterdam
ast@cs.vu.nl

becomes a necessity, a dynamic vulnerability monitoring
infrastructure can provide a useful feedback to analyze the
impact of those vulnerabilities in production.

Unfortunately, state-of-the-art solutions designed to detect
and protect against different classes of memory errors [3]-
[11] are not well-suited to be used for comprehensive vul-
nerability monitoring in production runs. Despite significant
effort, they still incur substantial overhead and often fail to
provide any meaningful feedback.

This paper presents RCORE, a new dynamic program
monitoring infrastructure that continuously inspects the state
of a running program and provides informative feedback
about generic memory errors and potential security vulner-
abilities. Our solution barely impacts running applications
and retrofits existing programs and already deployed shared
libraries. Our low-overhead design can completely decouple
the execution of a target program and the execution of the
monitor, isolating the monitoring thread on a separate core.

To detect many classes of memory errors, our approach
builds on a combination of static and dynamic analysis.
Static analysis is performed at compile time to embed in the
final binary all the program state invariants, which specify
inviolable safety constraints for the different components of
the program state (i.e., objects, types, values). The key idea
is to detect memory errors and suspicious behavior from
run-time violations of the prerecorded invariants maintained
in memory. To accomplish this task, our run-time monitor
continuously inspects the program state in the background
and reports every violation found, along with all the nec-
essary information to track down the original problem. Our
analysis is concerned with security and not space overhead,
given that RAM is hardly a scarce resource nowadays.

To achieve the lowest possible overhead—at the cost of
reduced precision—in production runs, our default invariants
analysis strategy is fully asynchronous. This approach results
in a probabilistic detection model specifically designed to
detect forms of global state corruption. This category covers
a significant fraction of emerging vulnerabilities, which
produce latent errors or silent data corruption and may
normally go undetected [12]. This trend is reflected in a
growing number of exploits moving from stack-based attacks
to data or heap-based attacks [13]. Our ultimate goal is to
build an automated security vulnerability reporting service,
similar, in spirit, to widely used remote crash reporting tools.

The contribution of this paper is threefold. First, we
introduce a novel program state invariants analysis which is
used as basis for our detection technique. Second, we show
that our invariants analysis can be effectively used to infer
both suspicious behavior that can cause memory errors and
memory corruption caused by a memory error, even when
the root cause is unknown. Our analysis covers the entire
global program state (i.e., data, heap, and memory-mapped
regions) and can detect a broad class of memory errors,
including buffer overflows, dangling pointers, double or
invalid frees, and uninitialized reads. Compared to existing
techniques, we support detection of memory corruption
caused by the libraries, application-specific memory man-
agement, and memory errors that do not spread across data
structure boundaries (e.g., buffer overflow inside a struct).
Third, we have developed a system, termed RCORE, which
can reuse dedicated spare cores to perform our invariants
analysis on a running program in real time. Our prototype
demonstrates that our analysis can be efficiently parallelized
and used in practical vulnerability monitoring scenarios. To
the best of our knowledge, we are the first to support such
a fine-grained vulnerability analysis and show that it can be
performed in real time with very low overhead.

II. PROGRAM STATE INVARIANTS

Program state invariants (PSIs) represent global safety
constraints that restrain the run-time behavior of every state
element in the program in an execution-agnostic fashion. We
use the term state element (or s-element) to refer to typed
memory objects (i.e., variables or dynamically allocated
objects) and their recursively defined members (e.g., struct
fields or array elements) indiscriminately. We consider PSIs
for both pointer and nonpointer s-elements for programs
written in type-unsafe languages like C.

Our current system supports three types of PSIs: value-
based PSls, target-based PSls, and type-based PSls. Value-
based PSIs restrict the set of legal values for both pointer and
nonpointer s-elements. Target-based PSIs specify the set of
valid targets a pointer s-element can point to (i.e., a pointer
must point to a valid s-element in memory). Finally, type-
based PSIs restrict the set of legal types a pointer s-element
can point to (e.g., a function pointer must point to a valid
function s-element with a matching type).

Unlike other invariant-based techniques [14]-[20] or more
general learning-based techniques [21], [22] that aim to
automatically detect anomalous behavior, our invariants are
execution-agnostic and solely determined from static analy-
sis. While this strategy might miss some valid invariants that
can only be determined by fine-grained dynamic monitoring,
our approach eliminates the coverage problems that arise
when learning invariants at runtime and results in a more
conservative invariants analysis, ruling out false alarms at
detection time—other techniques incorrectly raise an alert
whenever a program element reports a legitimate value

never observed in the training phase. In particular, when not
using proactive detection of suspicious behavior like long-
lived dangling or off-by-N pointers, RCORE’s conservative
analysis squarely meets the goal of zero false positives.

Another advantage of using static compile-time informa-
tion to learn properties of the program behavior is the ability
to derive restrictive and fine-grained PSIs. This immediately
suggests that run-time PSI violations can be used as an
accurate predictor for memory errors. The key intuition is
that, when some form of arbitrary state corruption occurs,
the probability of no PSI being violated is low. This is true
independently of the particular memory error that caused
the corruption. For example, when a global data pointer is
corrupted with arbitrary data, the chance that the pointer is
still pointing to an object of a valid type (as determined by
static analysis) is negligible—equivalent to the probability
of randomly guessing the address of a valid memory object.
Similarly, a global function pointer corrupted with arbitrary
data by a memory error is unlikely to still point to a valid
function with a valid type (as determined by static analysis).
As a result, both scenarios will allow RCORE to detect a
target- or type-based PSI violation with high probability for
the corrupted pointer s-elements and immediately generate
a report on the memory errors found.

Finally, the violation patterns reported can be used to
effectively classify the memory errors detected (e.g., con-
tiguous s-elements with PSI violations in a buffer overflow).

III. ARCHITECTURE

Our architecture comprises 5 main components: compiler
driver, static instrumentation component, metadata frame-
work, dynamic instrumentation component, and run-time
analyzer. The compiler driver is designed to support static
analysis and instrumentation of existing applications and
libraries, integrating seamlessly with existing build systems.

The static instrumentation component—implemented on
top of the LLVM compiler framework [23]—inspects the
program to identify all the s-elements and PSIs at compile
time and instruments the final binary to store the correspond-
ing metadata. The latter are used to validate the program
state against all the prerecorded invariants at runtime. For
this purpose, the metadata framework provides an API to
query and manage statically and dynamically created meta-
data. The framework is transparently linked to the program
by the compiler driver during the build process.

The dynamic instrumentation component creates and de-
stroys dynamic metadata to support uninstrumented shared
libraries. This step is necessary to perform a conservative
target-based analysis and avoid spurious alerts. In contrast,
using only the dynamic instrumentation component without
any static instrumentation as done in state-of-the-art memory
allocators [13], [24], would degrade the effectiveness of
our analysis, as explained later. The run-time analyzer is
responsible for monitoring the behavior of the program in

(" Application Threads Y | | {~ Monitoring Threads

Original Program

- Fonime
((Appcaton cous)
I I Library|Wrapper

Static Instrumentation y

r v v

Dynamic
Instrumentation

Link time
Runtime

Instrumented Program | -

Metadata
Data
Instrumented Code |
Metadata Framework

Modify Metadata Lookup |Metadata
A, Y

Metadata Framework l

Core 1 ‘) Core 2

Figure 1. RCORE architecture.

real time and detecting PSI violations. At each monitoring
cycle, the analyzer uses the metadata framework to intro-
spect the program state and check annotated PSIs for each s-
element found. Figure 1 depicts RCORE’s architecture and
the interactions between the components at runtime.

A. Static Instrumentation

The static instrumentation component is an LLVM link-
time pass that analyzes and instruments the program and
statically linked libraries to embed state metadata into the
resulting LLVM bitcode. The latter is then processed by a
valid LLVM back end to produce the final binary.

Our static analysis starts by extracting relocation and type
information on variables and functions used in the program.
These objects will become part of the embedded metadata
that index all the s-elements and the corresponding PSIs.

To index types, we extract all the relevant type infor-
mation available using the LLVM API. The language- and
architecture-independent LLVM type hierarchy found in the
original bitcode is extracted and then stored directly into
the program using a convenient format. Our data struc-
tures use a compact tree-like representation with leaf nodes
representing primitive types. For example, similar to the
original LLVM type system, an array of 10 f1loat* pointers
is represented by 3 distinct type nodes linked together:
array ([10 x floatx]), pointer (float*), and primitive
(float), respectively. Only types referring to state entities
are made part of the type hierarchy.

Global variables extracted from the program represent
the first important state entity. Metadata information about
global variables is stored in a number of state entries (or s-
entries) made available at runtime. Each s-entry contains the
name, type, and address of the variable. In addition, flags are
used to mark constant variables and variables that have their
address taken. Size and padding information for aggregate
variables are computed at runtime (for portability reasons)
and stored directly in the type hierarchy. This is important
to efficiently support target-based and type-based PSIs.

A similar approach is adopted for functions, but only
functions that have their address taken are made part of
the embedded metadata information. This is possible since
functions are only used to enforce target-based and type-
based PSIs and not to introspect the state of the program.

Indexing pointer casts. To enforce type-based PSIs for
pointer s-elements we need knowledge of pointer types
that are allowed for each s-element at runtime. Unfortu-
nately, type-unsafe languages like C allow for arbitrary casts
between different types and recording metadata on static
pointer types is not sufficient for a conservative analysis.
To address this problem, our static analysis extracts all the
pointer casts from the original program and enriches the
type hierarchy with casts-fo links between compatible type
nodes. Luckily, LLVM explicitly represents both implicit and
explicit pointer casts in the intermediate representation. The
bitcast instruction is used to represent pointer-to-pointer
casts, while the inttoptr and the ptrtoint instructions
are used to handle integer-to-pointer casts and vice versa.

Indexing value sets. To enforce value-based PSIs it is
necessary to store metadata for the set of legal values
allowed for a given s-element at runtime. When possible,
our static instrumentation annotates each type of the type
hierarchy with the set of the legal values allowed. The value
set is directly stored in a type node to simplify sharing and
s-element-level metadata management. Our current value
analysis module supports basic value-set analysis (VSA) and
can annotate both pointer and nonpointer s-elements. For
pointer s-elements, we analyze inttoptr instructions and
attempt to determine the set of all the legal integer values.
When our conservative analysis fails, no value set is recorded
but the pointer is marked as an integer candidate. Our simple
analysis is, however, very often successful in real-world
scenarios, where integer values usually refer to some special
predefined constants (e.g., SIG_DFL and SIG_IGN defined
for the POSIX sigaction system call). For nonpointer s-
elements, our current module records metadata for enums,
constants, and variables assigned to constant expressions, but
it would be straightforward to incorporate more sophisticated
value analyses (e.g. range analysis).

Memory management instrumentation. To index dy-
namically allocated memory objects, we replace all the
memory management functions in the program with our
own wrappers to create and destroy metadata at runtime.
Our current implementation supports all the POSIX malloc-
like and free-like functions, including the mmap family,
the mem_align family, and shared memory functions. Each
memory allocation wrapper takes, along with the original
arguments, an additional parameter that describes the run-
time type of the to-be-created dynamic state entry (or ds-
entry). Each ds-entry provides metadata for a dynamically
allocated memory object represented as a typed array and
contains similar information to the one included in a s-entry.

To determine the run-time type of a ds-entry correctly,
we devised a conservative type inference algorithm for our
static instrumentation component. Our algorithm recursively
walks through all the possible uses of the value returned
by each memory allocation function and considers all the
global and local variables in the caller to which the value

can be possibly assigned. When the run-time type can
be determined unambiguously, the type node and all the
relevant casts encountered are added to the type hierarchy.
This approach provides the ability to introspect dynamically
allocated objects at the finest level of granularity possible at
runtime, while dealing with the ambiguous cases in a con-
servative way by indexing all the pointer casts encountered.
Our type inference algorithm can also automatically rec-
ognize and handle application-specific memory allocation
wrappers (e.g., my_malloc) with arbitrary levels of nesting
by analyzing the interprocedural propagation of weak pointer
types (i.e., voidx). In these cases, the algorithm is repeated
recursively and the final run-time type propagated through-
out all the wrappers encountered. When the type cannot be
correctly determined, the instrumentation component resorts
to the special void type used to describe a block of untyped
memory, which, however, hampers the ability to introspect
the memory object at runtime. In our current prototype, this
scenario can occur in practice with programs relying on
region-based memory management implementations [25]. To
deal with such schemes and improve the coverage of our run-
time analysis, our static instrumentation can be instructed
to locate and automatically construct typed wrappers for
region-based memory allocation/deallocation functions.

B. Metadata Framework

The metadata framework provides the data structures for
all the metadata entities (i.e., types, functions, s-entries,
and ds-entries) and the API to manage them at runtime.
The metadata API provided by the framework offers 3
primary functionalities. First, API functions are available to
introspect the entire program state. For example, a callback-
based mechanism is used to process s-entries and ds-entries
and conveniently operate on all the s-elements found therein.
Second, a lookup API is available to locate any metadata
entity given an appropriate search key. For example, the
points-to lookup API—used to check target-based PSIs—
locates a target s-entry given a valid pointer s-element.
Finally, the framework provides an API to create and destroy
metadata at runtime. This is used in the predefined memory
management wrappers included in the framework.

To achieve good performance, our wrappers store the ds-
entries using in-band metadata. Similar to prior approaches,
we use canaries [26] to detect metadata corruption due to
overflows, and optionally flip the top bit of every metadata
word before and after use as suggested in [24] to mitigate
dangling pointers. If necessary, strategies adopted by out-of-
band memory allocators [13], [24] can be incorporated in
our implementation to offer additional protection at the cost
of more overhead. Note that the metadata canaries are con-
tinuously checked for consistency by the run-time analyzer.
This eliminates the need to determine application points to
check the canaries, which hampered the effectiveness of this
approach in prior work, as evidenced in [13].

To achieve loose synchronization between memory wrap-
pers executed in the application context and run-time ana-
lyzers executed on a separate monitoring thread, our design
provides a lock-free interface for metadata management
operations. This avoids any lock contention overhead and
guarantees a scalable implementation. Our design arranges
the ds-entries in a singly-linked list with newly-created ds-
entries always added to the top. With the top of the list main-
tained stable, this strategy offers a lock-free stack interface
to the memory allocation wrappers. A push-only lock-free
stack can be implemented very efficiently using compare-
and-swap (CAS) primitives, avoiding extra implementation
complexities to ensure scalability in face of significant push
and pop contention for the top of the stack or to deal with
the “ABA problem" [27]. To maintain the top of the ds-
entry list stable, the application threads are never allowed to
perform a pop operation on the stack. This is accomplished
by marking the state of the corresponding ds-entry as “dead”
in the memory deallocation wrappers (e.g. free) without
actually removing the ds-entry from the list. This allows
metadata destroy operations to be completely lock-free,
using lockless ds-entry state updates. The monitoring thread,
in turn, periodically deallocates all the dead ds-entries and
the corresponding data. To maintain the top of the list stable,
a removal operation on the top is always deferred until the
next ds-entry is pushed onto the stack. Multiple monitoring
threads can concurrently operate and check PSIs on the same
ds-entry list using lock-based synchronization (not exposed
to the application threads). Note that this does not interfere
with our memory wrappers and introduces no additional
lock-contention overhead for the application threads.

C. Dynamic Instrumentation

The dynamic instrumentation component is an interpo-
sition library responsible for indexing deployed uninstru-
mented libraries at runtime to avoid spurious alerts in
our invariants analysis. The component provides three key
functionalities. First, the component creates ds-entries for
dynamically linked libraries at program initialization time.
This step is necessary to enforce target-based invariants in
case of application pointers pointing to text or data regions
created by the dynamic linker. To address this problem, we
rely on the same data structures used by the dynamic linker
to introspect the address space of the program and locate all
the dynamic objects that belong to uninstrumented libraries.

Our current implementation is based on the ELF binary
format. To introspect dynamic objects, it is sufficient to parse
the ELF header to locate the GOT and the 1ink_map data
structure used by the linker. For each text region found, we
extract all the symbols and create a single untyped ds-entry
(i.e., a ds-entry with the special type void) for each library
function. Note that we need to index all the uninstrumented
library functions, since the knowledge of whether a function
can have its address taken is irretrievably lost, and so are the

original symbol types. For each data region found, in turn,
we create a single untyped ds-entry describing the region.

The second important responsibility of the dynamic instru-
mentation component is to keep track of dynamically loaded
shared libraries at runtime and create and destroy the cor-
responding ds-entries when necessary. For this purpose, the
interposition library includes wrappers for the programming
interface to the dynamic linking loader provided by POSIX.
We use a dlopen wrapper to create or update ds-entries—
POSIX defines a reference counter to reuse existing library
mappings—and a dlclose wrapper to destroy existing ds-
entries when the reference counter drops to zero.

For dynamically loaded libraries, our wrappers follow
the same approach adopted to index dynamically linked
libraries. New ds-entries are similarly created for the new
memory regions, and each ds-entry is marked as text or
data depending on the particular region type considered.
Finally, the dynamic instrumentation component needs to
handle all the memory management functions invoked at
runtime from uninstrumented libraries. For this purpose, the
interposition library includes dynamic wrappers for all the
memory management functions supported by the metadata
framework and redirects execution to the original static
wrappers accordingly. Since the type information is lost for
uninstrumented libraries, the run-time type provided to the
original wrappers is always void. This explains why it is
crucial to combine static and dynamic instrumentation to
handle memory management functions. Dynamic instrumen-
tation is necessary to create metadata for all the possible
dynamic memory objects and avoid proliferation of spurious
alerts. At the same time, dynamic instrumentation alone
would produce only untyped ds-entries, making it harder to
reason about dynamically allocated memory blocks, a com-
mon problem in prior work [24]. In our approach, untyped
memory objects hamper state introspection—as for example
expected for uninstrumented libraries—and decrease the
accuracy of our target-based and type-based PSIs.

D. Run-time Analyzer

The run-time analyzer is responsible for sampling the
program state periodically and checking PSIs to detect
any violation. The initialization code prepares all the data
structures used in the analysis and transparently allocates
the monitoring thread on a predefined core. Depending on
the configuration given, it is possible to allocate multiple
monitoring threads on the same or different cores to increase
the frequency PSIs are checked. In the other direction,
it is also possible to reduce the frequency of monitoring
cycles to reduce CPU utilization. This allows us to trade off
security and CPU utilization when power consumption is
of concern. If strict backward compatibility is not required,
the application could also be slightly modified to start the
analysis only in face of particular events, saving monitoring
cycles when the application is idle. The analyzer runs the

monitoring thread in an endless loop, although the analysis
can be interrupted and restarted on demand, if necessary.
At each cycle, the program state is sampled to check PSIs.
The analyzer cycle comprises 5 (not necessarily sequential)
phases: state introspection, invariants analysis, recording,
reporting, and feedback generation.

State introspection. The analyzer locates all the indexed
s-entries (and ds-entries) and recursively walks through all
the s-elements found using the functions provided by the
metadata framework. All the s-elements that have candidate
PSIs are considered for analysis. Our default strategy ana-
lyzes all the relevant s-elements sequentially but, depending
on the threat model considered, additional policies can be
used to prioritize particular state regions (e.g., heap) and
check corresponding PSIs at a higher frequency.

Invariants analysis. The analysis is carried out for all the
PSIs supported for any given s-element. First, the value of
the s-element is atomically read and checked for value-based
PSIs whenever a value set is available. If the value is not
part of the value set, a violation is flagged.

We also analyze pointer s-elements that have been marked
as integer candidates with no value set provided. In partic-
ular, if the pointer points anywhere in the set of reserved
pages at the beginning or at the end of the address space,
our analysis marks the pointer as safe. This strategy reflects
the knowledge that pointers marked as integer candidates
are typically assigned to special constants that do not reflect
valid memory addresses. Although some corrupted pointer
in this category may go undetected, when the pointer is
dereferenced a fault will immediately be triggered. If an
integer candidate points to an address outside the reserved
range, the pointer is promoted to a regular pointer and further
PSIs are normally checked for violations.

For all the pointer s-elements considered for further
analysis, target-based PSIs are checked next. The metadata
API is used to look up the s-entry or ds-emtry each s-
element points to. If no valid entry can be found or the
entry refers to an object that does not have its address taken,
a violation is flagged. Upon successful lookup, the target
entry is recursively analyzed to determine the run-time type
or types the pointer is pointing to. If the analysis fails, for
example the pointer is illegitimately pointing to padding data
of a struct, a violation is flagged. When valid target types
are found, type-based PSIs are considered.

For type-based PSIs, we first check the static pointer
type and determine whether it matches any of the run-time
types the pointer is pointing to. When no match with the
static pointer type is found, the analyzer examines the set
of compatible pointer types retrieved from our linked type
hierarchy. If no match is found, a PSI violation is flagged.
When the target s-entry is untyped, the nature of the target
is considered. If the original pointer is a data pointer and
points to a s-entry referring to a text memory region (or
vice versa), a violation is flagged.

Recording. The results of our analysis are recorded to
collect fine-grained statistics on each s-element with anno-
tated PSIs. For each s-element, we record the PSI violations
found. For pointers, we also record the distribution of target
types found (with the number of occurrences sampled for
each type) and the corresponding memory regions (i.e., data,
heap, mmap, shared memory, text).

Reporting. To be effective in different scenarios, RCORE
supports policy-based detection mechanisms. Policies decide
what events indicate suspicious behavior and need to be
reported. RCORE supports two default detection mecha-
nisms: synchronous detection and window-based detection.
The synchronous detection mechanism simply logs all the
PSI violations found. While useful in development mode,
this mode of operation is not always desirable in production.
Some short-lived PSI violations may be sometimes accept-
able and expected in the normal execution of the program.
For example, consider a pointer that is freed and then imme-
diately set to NULL. The asynchronous analysis performed by
the monitoring thread might sample the pointer value right
after the free call. In this case, a dangling pointer would
be immediately reported as dangerous although the pointer
is dangling only for a very short period of time and never
used. To address this issue and reduce the number of alerts
in production, RCORE defaults to another (window-based)
detection mechanism for dangling pointers. In this mode of
operation a sliding window is used to collect a number of
state samples over a time interval. The resulting distribution
is used to enforce detection policies and log suspicious
events on a per s-element basis. The size of the window
is configurable, and so are the policies supported for each
particular event. The default policy is to report only the PSI
violations that occur for all the samples in a single detection
window, but more sophisticated policies are possible. This
simple policy is effective in real-world scenarios, allowing
one to tune the number of alerts logged by simply varying
the window size. Reasonably short detection windows avoid
logging common dangling pointer violations and provide
accurate detection for the suspicious cases.

Feedback generation. For each logged event, we generate
accurate information on the PSIs violated and report all the
statistics gathered on a per s-element basis. The detailed
information provided in the feedback can help developers
track and reproduce the original problem for debugging
purposes. In addition, the feedback can be used to automati-
cally classify the violations basing on the patterns observed.
For example, a common pattern we have observed for the
distribution of target types of a dangling pointer is NULL,
type x, target-based PSI violation.

Debugging. RCORE includes a flexible debugging in-
terface to support offline analysis of all the PSI viola-
tions found. Our asynchronous detection strategy provides
a debug-friendly environment for offline runs, with the run-
time analyzer imposing minimal disruption on the applica-

tion threads and the static instrumentation preserving symbol
table and stack information. To quickly locate and fix the
original problem, developers can use the debugging interface
to set arbitrary breakpoints and interrupt the program exe-
cution upon specific PSI violations (e.g., break on any PSI
violation found for the pointer my_ptr). Debugging support
reflects our goal of simplifying the entire vulnerability
discovery and patch development-deployment lifecycle.

IV. MEMORY ERRORS DETECTED

Dangling pointers. RCORE supports proactive detection
of memory errors derived from dangling pointers, which are
explicitly recognized using PSI violations and knowledge
of known heap regions. Dangling pointers can be detected
immediately, even before they are actually dereferenced.
This is crucial for a dynamic vulnerability monitoring
infrastructure. Common are cases where even extensive
dynamic analysis fails to trigger corruption caused by a
vulnerable dangling pointer. For instance, the pointer may
be dereferenced only in code paths that are rarely triggered
during normal execution. For this reason, RCORE uses
window-based detection to report all the suspicious long-
lived dangling pointers, which can then be further inspected
offline. In addition, arbitrary corruption caused by incorrect
use of dangling pointers can be detected by PSI violations
on the corrupted target region.

Off-by-one pointers. RCORE supports proactive detec-
tion of off-by-one pointers, which are often legitimately used
to mark buffer boundaries. If incorrectly used, however, they
can introduce overflows or indirectly cause other memory
errors. RCORE’s target-based analysis can explicitly rec-
ognize generic off-by-N pointers even before they can do
any harm. A policy determines whether our analysis should
report (immediately or using window-based detection) or
ignore these cases. Similar to dangling pointers, memory
corruption caused by incorrect use of these pointers is still
always reported by our invariants analysis.

Overflows/underflows. RCORE supports detection of
buffer overflows (and underflows) using invariants analysis
to detect the resulting memory corruption occurred. Note
that, in contrast to existing source-level approaches, our
fine-grained analysis allows RCORE to detect arbitrary
overflows, even those for buffers inside a struct or buffers
allocated using application-specific dynamic memory allo-
cation. In most cases, it is very easy to classify a suspicious
event as a buffer overflow or underflow, depending on the
patterns observed. This is reflected by a number of PSI
violations reported for contiguously allocated s-elements.

Double and invalid frees. Like other common memory
allocators, RCORE detects most double and invalid frees
directly in the memory management wrappers, using in-
band metadata canaries. In the remaining cases, arbitrary
memory corruption caused by the illegal operation can still
be detected by PSI violations on the corrupted region.

Uninitialized reads. RCORE supports probabilistic de-
tection of uninitialized reads. Our default strategy is to start
checking PSIs for s-elements described by a given ds-entry
as soon as the ds-entry is created. Dynamically allocated s-
elements, however, may not have been initialized yet when
the analysis starts and the random garbage contained therein
would likely trigger PSI violations. To address this issue, we
allow a configurable grace period before introspecting new
ds-entries in the analysis. This strategy follows the intuition
that new s-elements that are left uninitialized for too long
increase the probability of uninitialized reads and should
therefore be considered for offline inspection. This strategy
is effective even for reasonably short grace periods. As in
other cases, memory corruption indirectly caused by unini-
tialized reads—for example dereferencing an uninitialized
pointer and write data to an arbitrary memory region—can
be detected by PSI violations on the corrupted region.

V. EVALUATION

The current RCORE implementation runs on Linux, but
most components can be easily ported to other operating
systems and binary formats other than ELF. Our compiler
driver is implemented in python in 1200 lines of code (LOC).
The static instrumentation component is implemented as an
LLVM pass in 6000 LOC, and supports all the standard
LLVM optimizations. The metadata framework is imple-
mented as a static library written in C in 3700 LOC.
The dynamic instrumentation component and the run-time
analyzer are implemented as shared libraries written in C
in 800 LOC and 2300 LOC, respectively. The libraries are
preloaded using platform-specific support offered by the
dynamic linker (e.g., the LD_PRELOAD UNIX environment
variable) to override the default run-time program behavior.

A. Performance

We evaluated the overhead of our solution using the
C programs in the SPEC CPU2006 benchmarks. We ran
our experiments on a Dell Precision workstation with two
2.27GHz Intel Xeon E5520 quad-core processors and 4GB
of RAM running a 2.6.35 Linux kernel. Each core has two
hyper-threads sharing the L1 and L2 cache, whereas the four
cores on the same die share an 8-MB L3 cache.

We executed each experiment 11 times and reported the
median. We evaluated both the overhead introduced by our
static and dynamic instrumentation and the one introduced
by these components and the RCORE run-time analyzer
allocated on dedicated cores. Figure 2 shows the execution
time of the RCORE version of our benchmarks normalized
against the baseline.

The static and dynamic instrumentation components of
RCORE introduce 3% run-time overhead on average (ge-
ometric mean). The whole framework in its default con-
figuration (one run-time analyzer) introduces 8% overhead
on average. The average, however, is heavily influenced

Instrumentation only

Instrumentation and 1 run-time analyzer on 1 core
Instrumentation and 7 run-time analyzers on 4 cores
Instrumentation and 15 run-time analyzers on 8 cores

111

Normalized execution time

by,
\f/oe @%

% % ’))/,'o o '5/5/)7 %, % '590 /62 “2),5/ %
9, S % 2
05

%% % 9‘{9

S % 2
% 3 @ 2
“»

Figure 2. Run-time performance overhead introduced by RCORE for the
SPEC CPU2006 benchmarks.

by benchmarks like perlbench due to the massive use
of dynamic memory allocations, which inevitably results
in high memory management instrumentation overhead and
significantly increased contention for memory bandwidth
between application and monitoring threads. Encouragingly,
for the majority of the benchmarks RCORE introduces a
negligible overhead with a median value of only 1.5%.

The last two bars in each benchmark show the overhead
imposed by RCORE when configured with 7 and 15 run-
time analyzers assigned to 4 and 8 independent cores with
hyper-threading (9% and 24% on average, respectively).
The significantly higher overhead introduced in the latter
scenario acknowledges the impact of the increased con-
tention for memory bandwidth caused by multiple monitor-
ing threads scheduled on different dies with no cache shared.
Our results confirm the importance of a shared cache to
achieve good performance in concurrent dynamic monitoring
applications, as also recognized in prior work [28].

We now compare our SPEC results with WIT [29] and
Cruiser [30], two recent low-overhead solutions to detect
memory errors. RCORE reports lower overheads than WIT
on average, which shows an average overhead of 10% on
SPEC CPU2000 benchmarks. WIT’s object-level analysis
for memory writes is also more coarse-grained than ours,
although WIT’s run-time checks follow the main application
flow and are thus less probabilistic than RCORE’s asyn-
chronous detection model. RCORE reports lower average
overhead than Cruiser, which shows an average overhead
of 12.5% on SPEC CPU2006 Integer benchmarks in its
lazy version. The overhead drops to 5% for Eager Cruiser,
which, however, requires recovery techniques and may incur
false positives. Cruiser’s detection model is asynchronous
like ours, but focuses only on heap-based buffer overflows.

Our second set of experiments evaluated the through-
put and latency degradations introduced by RCORE on
nginx [31] (version 0.8.54) and lighttpd [32] (version
1.4.28), two popular web servers. The web servers were
independently deployed on the same Dell Precision work-

1000

900

Connection rate
Avg reply rate
Response time (ms)

i

1000

- 900

1000

800 : 800 o
700 L0 E
o 600 4‘ . I 600 OE’
Y 48 N
= £
S 500 S 5000 o
&2 17}
- c
400 400 §
300 - 300 @
[0}
200 - 200 CC
100 - 100
0 ; ; ; ; ; T T 0
0 100 200 300 400 500 600 700 800 900 1000
Request/s
(a)
Figure 3.

station used above. A number of clients were deployed on
different Dell workstations with a 3.33GHz Intel Core 2 Duo
CPU and 4GB of RAM, each running a 32-bit 2.6.35 Linux
kernel and connected to the servers through a Gbit link.
Figure 3 shows the average throughput and latency of
nginx under different workloads (i.e., requests per second)
while retrieving a 50KB file. In particular, we started with a
rate of 100 req/s up to 1000 req/s, increasing the request rate
by 100 reg/s on each subsequent run. Each request opened
a connection to download the requested file. Each run lasted
for at least 75 seconds and issued as many connections
as needed to match the request rate for the duration of
the whole run considered. This allowed httperf [33],
our web benchmarking tool, to collect enough evidence
(i.e., samples) needed to produce statistically sound results.
Figure 3(a) refers to tests performed on an unmodified
version of nginx and represents our baseline. Figure 3(b),
in contrast, refers to tests performed on the RCORE (1
run-time analyzer on a dedicated core) version of nginx.
Figure 3(a) shows that the baseline achieved the maximum
throughput at around 500 requests per second, at which time
httperf issued 37500 connections in total. As we further
increased the request rate, the server became saturated, as
shown by the gradual throughput and latency degradation.
We have checked that the server was the bottleneck by
performing a number of additional experiments to verify
that all the clients could keep up with that maximum request
rate. Similarly, Figure 3(b) shows that the RCORE version
of nginx was able to match the same maximum rate and
response time of the baseline, introducing only a negligible
overhead. We have performed the same set of experiments
on lighttpd and under different workload scenarios and
obtained similar results with negligible overhead. We omit
the figures of such experiments due to lack of space. The
overall results here outlined are encouraging and show that
our approach introduces negligible overhead on the end
performance of the RCORE version of the program oper-
ating at full capacity. This enables a practical and realistic
deployment of our solution in production systems.

1000
Connection rate —

900 4 Avg reply rate - - [900
800 -|-| Response time (ms) ; '/‘, 800 &
700 / L0 E
» 600 / < 600 OE’

2 e - N

> 7~ R e =
S 500 L 500 o
élg %]
L c
400 400 8_
300 r 300 o
[0
200 - 200 (OC

100 — 100

0 7 7 ; ; ; T T 0
0 100 200 300 400 500 600 700 800 900 1000
Request/s

(b)

nginx benchmark: (a) Uninstrumented and (b) RCORE version.

B. Detection Accuracy

Decoupling security checks from the main application
flow guarantees low overhead but inevitably introduces a
latency in the detection of PSI violations. The latency
depends on the monitoring frequency and the number of run-
time analyzers and cores used. Lower detection latencies are
desirable for better accuracy. Higher detection latencies, on
the other hand, reduce power consumption. The appropriate
tradeoff can be tuned for each particular scenario considered.

Figure 4 depicts the monitoring cycle time achieved by
RCORE and the resulting number of PSI violations detected
when injecting into the program 100 memory corruptions
with a lifetime uniformly distributed in [1, 200]ms. The
values are plotted as a function of the overall CPU utiliza-
tion allowed to the run-time analyzers, with one or more
dedicated hyper-threads hosting a single analyzer each. At
100% CPU utilization, the default configuration (1 run-
time analyzer on 1 thread) completes a monitoring cycle
and checks the PSIs of a given s-element every 24ms.
Conversely, the time elapsed between any two checks with 1
run-time analyzer at 20% CPU utilization is around 110m:s.
The configuration with 7 analyzers allocated on 7 threads
sharing the L3 cache (700% CPU utilization) with the
application achieves the lowest detection latency of 10ms.
The resulting percentage of PSI violations detected in these
3 configurations is 94%, 72%, and 98%, respectively. These
results have been obtained for nginx, but similar behavior
can be observed for other programs, with the detection
latency dependent on the number and the complexity of
the data structures used. When compared to the simpler
canary-based detection strategy used in Cruiser [30], our
analysis incurs higher detection latencies, but encompasses
many more memory errors than only heap-based buffer
overflows. To further improve RCORE detection latency,
we can increase the number of monitoring threads or instruct
the run-time analyzers to focus on particular portions of the
program state, for example, on those that are observed to
change more often.

120 ! — . 120

I I I I T
Monitoring Cycle time (ms) —e—
PSi| violations detected (%) - -o= -
100;__.__,__,__‘___‘___1__‘ - 100
_______ .l
T= Te

80 -1 80

60 -1 60

40 -1 40

20 - 20

Monitoring cycle time (ms)
PSI violations detected (%)

0 i i i i i i i i i i i i i 0
700 600 500 400 300 200 100 90 80 70 60 50 40 30 20

Overall CPU utilization allowed on a per hyper-thread basis (%)

Figure 4. Monitoring cycle time and PSI violations detected in nginx for
decreasing overall CPU utilization.

C. Effectiveness

To evaluate the effectiveness of RCORE in detecting
memory errors using our invariants analysis, we performed
two complementary experiments: (1) a feedback evaluation,
which measured the accuracy achieved by RCORE during
testing runs of proftpd version 1.3.3e and exim version
4.69, two well-known FTP and SMTP servers; (2) a CVE
(Common Vulnerabilities and Exposures) evaluation, which
assessed the ability of RCORE to detect representative
memory error vulnerabilities related to nginx and openssl.
Our ultimate goal is to evaluate RCORE’s effectiveness at
detecting real-world memory errors as PSI violations and
providing useful feedback to pinpoint the original problem.

The feedback evaluation performed on exim allowed
us to find a previously unknown, potentially exploitable,
vulnerability. In particular, the vulnerability is represented
by an out-of-bounds pointer, mainlog_datestamp (log.c),
that is dereferenced for reading. This may potentially lead
to a denial of service situation, such as, process crash
or file resource exhaustion. Conversely, proftpd’s feed-
back evaluation reported an interesting long-lived dangling
pointer, capabilities (mod_cap.c). Even a careful code
inspection was insufficient to assess whether this dangling
pointer could lead to a vulnerability, but the code should
probably be better restructured to avoid problems.

We then proceeded to assess whether RCORE is able to
detect real-world vulnerabilities. To this end, we selected
the CVE advisory 2009-2629, which describes a buffer un-
derflow vulnerability that affects several versions of nginx,
including those from 0.6.x before 0.6.39, among others (our
analysis was performed on nginx version 0.6.38), and the
CVE advisory 2010-2939, which describes a double-free
vulnerability affecting openssl version 1.0.0a.

The CVE 2009-2629 advisory states that a specially
crafted HTTP request may produce memory corruption
enabling the execution of arbitrary code. We selected this
CVE because it was a particularly representative case of

global state corruption introduced by a typical memory
underflow vulnerability. In addition, nginx relies heavily
on application-specific memory management and uses many
struct types with buffer variables; all elements that make
the detection of memory corruption hard in the general
case. The execution flow that triggers the vulnerability
starts with nginx invoking ngx_http_init_request()
when processing network input. This function allocates a
1024-byte pool using application-specific memory alloca-
tion functions and fills the pool with a number of data
structures containing several nested pointers and the parsed
input Z at the end (e.g., ngx_table_elt_t). The under-
flow causes a temporary pointer, initially pointing to Z,
to traverse back up to the next ’/’ character encountered
(ngx_http_parse_complex_uri). Depending on the par-
ticular memory layout at the moment of the underflow, the
temporary pointer may land within the same struct that
included the original input buffer (e.g., ngx_str_t), within
the same pool-dedicated block, or on a different memory
block. Depending on the input provided, the pointer is then
used to write garbage that overrides a number of consecutive
s-elements. In our multiple experiments with different input
distributions, the observed memory corruption repeatedly
triggered several PSI violations, given the significant number
of pointers corrupted. As a result, RCORE was able to
detect the corruption in all our tests, no matter where
the temporary pointer initially landed. Existing approaches
would have failed to detect the corruption in the general case.
We were also positively impressed by the accuracy of our
invariants analysis. In particular, our type-based invariants
were extremely accurate in detecting type violations for all
the corrupted function pointers, given the small fraction of
s-elements referring to the same given function type.
Conversely, the CVE 2010-2939 advisory states that a
specially crafted private key may allow context-dependent
attackers to execute arbitrary code due to a double-free
vulnerability in the function ss13_get_key_exchange of
openssl version 1.0.0a. In our experiments, RCORE re-
peatedly detected the vulnerability in the memory manage-
ment wrappers using in-band metadata canaries. To simu-
late the scenario of a new valid memory block overriding
the memory location of the original canary with a legal
canary value, we disabled all our checks in the memory
management wrappers and only checked for PSI violations
instead. When the allocator happened to allocate a new
memory block in the same memory region as the old block’s
metadata, the unchecked double free corrupted arbitrary data
in the new block. Similarly to what was observed for nginx,
our experiments in this scenario promptly reported type- and
target-based PSI violations on the corrupted data.

VI. LIMITATIONS

RCORE is primarily targeted at reporting on known or
unknown vulnerabilities during normal in-the-field execu-

tion. Due to the probabilistic nature of our asynchronous
detection model (crucial to achieve low overhead), however,
we can make no claim that RCORE can identify all the
short-lived vulnerabilities or attacks that affect the global
program state. Attacks, in particular, can only be detected
under the following conditions. First, memory corruption
induced by the attacker must trigger some PSI violations.
This is often the case when the attacker cannot make strong
assumptions on the layout of the corrupted region. In this
scenario, RCORE is very likely to identify PSI violations,
especially for pointers corrupted with arbitrary data. On the
other hand, even if the attacker can reliably craft a request
that produces no PSI violation, his exploitation power is
clearly reduced. For example, our PSI analysis would only
allow an attacker to corrupt a function pointer with the
address of a function of the same type.

Second, the lifetime of the corruption introduced should
be no shorter than a monitoring cycle. To evade detection,
the attacker may be able to execute arbitrary code shortly
after corrupting critical data and quickly perform recovery
actions. In our experience, while generally practical for stack
smashing and other short-lived attacks, this strategy cannot
be taken for granted for attacks that exploit global state
corruption. Our claim is also supported by other similar
(but less generic) asynchronous detection models which have
been successfully applied to heap-spraying [34] and heap-
based buffer overflow [30] attacks.

In our future work, we intend to improve our attack
detection accuracy by reducing RCORE’s monitoring cycle
and further investigate the different security-performance
tradeoffs, e.g., by switching to a more deterministic “stop-
the-world” detection model under particular conditions.

VII. RELATED WORK

Memory errors represent a major category of vulnera-
bilities and have received much attention in recent years.
Bounds checking is a largely explored solution devised to
address common memory errors in C programs, but tradi-
tional approaches [8]-[10] suffer from significant overhead.
More recent bounds checkers have used efficient checks and
static analysis [3], [6] to achieve better performance but are
still unsuitable for large-scale adoption. More widespread
adoption has been gained by StackGuard [35], which uses
“canaries” before the return address of a function to detect
buffer-overflow errors. Other techniques [36], [37] have
used a shadow stack to separate the return address and
other sensitive data from buffer variables that are subject to
overflow. More recent approaches, in contrast, are specific
to heap-based memory errors. Some suggest a particular
memory allocator design [13], [24], [38], others use canaries
to detect heap-based overflows [26], [39]. ValueGuard [39]
instruments the original code to add canaries for both
global and local variables. LibsafePlus [40] detects overflows
that occur in particular unsafe C library functions (e.g.,

strcpy). This is done by analyzing debugging information
and instrumenting the code to describe ranges for local,
global, and dynamically allocated buffers. The metadata
collected, however, is coarse grained and only used to
perform range checking. In a similar direction, MEDS [11]
uses a basic low-level type system to perform run-time
detection of memory errors, but requires software dynamic
translation incurring extremely high overhead. Like ours,
other approaches have used the general idea of enforcing
static analysis results at runtime. Control-flow integrity [4]
computes the program control-flow graph and prevents devi-
ations from it at runtime. Similarly, Castro et al. [7] present
an approach to enforce data-flow integrity at runtime using
a precomputed data-flow graph.

WIT [29] is a low-overhead solution that uses static
analysis to determine the set of objects that can be written by
each instruction in the program and instruments the code to
enforce write integrity at runtime. Albeit static, their points-
to analysis presents similarities with our target-based PSI
analysis. Their checks, however, are always performed at the
object level and subject to the precision of static analysis
to identify accurate object sets. In contrast, our invariants
analysis is fine-grained and generalizes their approach with
generic program invariants. The approach we propose is
more radical. Our static analysis extracts as much informa-
tion as possible from the program and enforces all the PSIs
found at runtime. In addition, WIT cannot support out-of-
bound reads without incurring additional overhead.

None of the approaches examined is general and fine-
grained enough to support several classes of memory errors,
with low overhead. Our PSI analysis can be used to detect
arbitrary memory corruption, even when the source of the
corruption is unknown. For example, RCORE can also de-
tect hardware memory errors when the resulting corruption
leads to PSI violations. Moreover, we support fine-grained
analysis of both static and dynamically allocated objects,
including introspection of structs and objects managed by
custom memory allocators. None of the approaches consid-
ered can support either. Finally, while RCORE was designed
to operate in a fully asynchronous fashion, we believe our
invariants analysis can be used in different contexts as a
generic state checking mechanism, as also demonstrated by
our prior work in the context of live update [41].

We conclude by briefly surveying a number of relevant
multicore security applications. He et al. [42] describe
dynamic multicore-based program monitoring and compare
the performance of their compiler-driven optimizations with
instrumentation-based monitoring. Ruwase et al. [43] show
how to efficiently parallelize dynamic information flow
tracking with several threads running on different cores.
Aftandilian et al. [44] propose asynchronous assertions to
inexpensively evaluate heavyweight programmer-provided
checks concurrently to the execution of the program.

Other approaches [45], [46] explore parallel execution

of program variants to detect attacks from divergent be-
havior. Finally, Cruiser [30] is a low-overhead solution for
concurrent heap buffer overflow monitoring. Their work is
similar in spirit to ours, but they focus only on a particular
class of memory errors using a detection mechanism based
on canaries. Our invariants analysis, in contrast, is much
more general and targeted toward several classes of mem-
ory errors. Their implementation, however, includes a very
efficient lock-free dynamic memory allocator that maintains
out-of-band metadata, which could also be incorporated in
RCORE if using out-of-band metadata is required.

VIII. CONCLUSION

Current approaches that aim to detect memory error
vulnerabilities are either specific to particular categories of
memory errors or incur significant overhead, which hinders
their widespread adoption in vulnerability monitoring sce-
narios in production. Despite claiming backward compati-
bility, existing solutions make also strong assumptions on
the nature of the program under analysis, for example that
no application-specific memory management is used.

In this paper, we presented RCORE, a low-overhead
dynamic program monitoring infrastructure that can leverage
available cores to continuously inspect running programs
and report on a broad class of memory errors. RCORE
uses extensive static analysis to extract as many PSIs as
possible from a given program and make them available
at runtime for fine-grained invariants analysis. RCORE
covers all the standard C features and explicitly supports
application-specific memory management not to lower the
accuracy of the results at invariants checking time. Our
investigation demonstrates that common memory errors can
all be mapped to PSI violations and classified to provide
an informative feedback to the developers. Our invariants
analysis can be used to detect both dangerous behavior (e.g.,
long-lived dangling pointers) and memory corruption. In
the latter case, our dynamic analysis concentrates on the
effect of the corruption rather than on the cause, enabling
probabilistic detection of arbitrary memory errors, even
when the cause is unknown or not directly controlled. As a
result, RCORE can seamlessly detect memory corruptions
in the program state caused by the libraries or by arbitrary
hardware memory errors.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their comments. This work has been supported by European
Research Council under ERC Advanced Grant 2008 - R3S3.

REFERENCES

[1] NIST, “National vulnerability database,” http:/nvd.nist.gov.

[2] IBM Security X-Force, “Mid-Year trend and risk report,”
http://www-935.ibm.com/services/us/iss/xforce/trendreports,
2012.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy
bounds checking: an efficient and backwards-compatible de-
fense against out-of-bounds errors,” in Proc. of the 18th
USENIX Security Symp., 2009, pp. 51-66.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,”
ACM Trans. on Inf. and System Security, vol. 13, no. 1, pp.
1-40, 2009.

[5] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient tech-
niques for comprehensive protection from memory error
exploits,” in Proc. of the 14th USENIX Security Symp., 2005,
p- 17.

[6] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens,
and W. Joosen, “PAriCheck: an efficient pointer arithmetic
checker for C programs,” in Proc. of the Fifth ACM Symp. on
Inf., Computer and Commun. Security, 2010, pp. 145-156.

[7]1 M. Castro, M. Costa, and T. Harris, “Securing software by
enforcing data-flow integrity,” in Proc. of the Seventh USENIX
Symp. on Oper. Systems Design and Impl., 2006, pp. 147-160.

[8] J. Clause, 1. Doudalis, A. Orso, and M. Prvulovic, “Effective
memory protection using dynamic tainting,” in Proc. of the
22nd IEEE/ACM Int’l Conf. on Automated Software Eng.,
2007, pp. 284-292.

[9] D. Dhurjati and V. Adve, “Backwards-compatible array
bounds checking for C with very low overhead,” in Proc.
of the 28th Int’l Conf. on Software Eng., 2006, pp. 162—-171.

[10] O. Rowase and M. S. Lam, “A practical dynamic buffer over-
flow detector,” in Proc. of the 11th Network and Distributed
System Security Symp., 2004, pp. 159-169.

[11] J. D. Hiser, C. L. Coleman, M. Co, and J. W. Davidson,
“MEDS: the memory error detection system,” in Proc. of
the First Int’l Symp. on Engineering Secure Software and
Systems, 2009, pp. 164-179.

[12] P. Fonseca, C. Li, and R. Rodrigues, “Finding complex
concurrency bugs in large multi-threaded applications,” in
Proc. of the Sixth European Conf. on Computer Systems,
2011, pp. 215-228.

[13] G. Novark and E. D. Berger, “DieHarder: securing the heap,”
in Proc. of the 17th ACM Conf. on Computer and Commun.
Security, 2010, pp. 573-584.

[14] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to sup-
port program evolution,” in Proc. of the 21st Int’l Conf. on
Software Eng., 1999, pp. 213-224.

[15] S. Hangal and M. S. Lam, “Tracking down software bugs
using automatic anomaly detection,” in Proc. of the 24th Int’l
Conf. on Software Eng., 2002, pp. 291-301.

[16] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torrellas, “AccMon: automatically detecting memory-
related bugs via program counter-based invariants,” in Proc. of
the 37th Annual IEEE/ACM Int’l Symp. on Microarchitecture,
2004, pp. 269-280.

(17]

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

M. Dimitrov and H. Zhou, “Unified architectural support for
soft-error protection or software bug detection,” in Proc. of
the 16th Int’l Conf. on Parallel Architecture and Compilation
Techniques, 2007, pp. 73-82.

M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna, “Swad-
dler: an approach for the anomaly-based detection of state
violations in web applications,” in Proc. of the 10th Int’l Conf.
on Recent advances in intrusion detection, 2007, pp. 63-86.

S. V. Adve, V. S. Adve, and Y. Zhou, “Using likely program
invariants to detect hardware errors,” in Proc. of the IEEE
Int’l Conf. on Dependable Systems and Networks, 2008, pp.
70-79.

K. Pattabiraman, G. P. Saggese, D. Chen, Z. T. Kalbarczyk,
and R. K. Iyer, “Automated derivation of application-specific
error detectors using dynamic analysis,” IEEE Trans. Dep.
Secure Comput., vol. 8, no. 5, pp. 640-655, 2011.

W. Robertson, G. Vigna, C. Kruegel, and R. Kemmerer,
“Using generalization and characterization techniques in the
anomaly-based detection of web attacks,” in Proc. of the 13th
Network and Distributed System Security Symp., 2006.

D. Mutz, W. Robertson, G. Vigna, and R. Kemmerer, “Ex-
ploiting execution context for the detection of anomalous
system calls,” in Proc. of the 10th Int’l Conf. on Recent
Advances in Intrusion Detection, 2007, pp. 1-20.

C. Lattner and V. Adve, “LLVM: a compilation framework
for lifelong program analysis & transformation,” in Proc. of
the Int’l Symp. on Code Generation and Optimization, 2004,
p- 75.

P. Akritidis, “Cling: a memory allocator to mitigate dangling
pointers,” in Proc. of the 19th USENIX Security Symp., 2010,
p- 12.

E. D. Berger, B. G. Zorn, and K. S. McKinley, “Reconsidering
custom memory allocation,” in Proc. of the 17th ACM Conf.
on Object-oriented Programming, Systems, Languages, and
Applications, 2002, pp. 1-12.

W. Robertson, C. Kruegel, D. Mutz, and F. Valeur, “Run-
time detection of heap-based overflows,” in Proc. of the 17th
USENIX Systems Admin. Conf., 2003, pp. 51-60.

D. Hendler, N. Shavit, and L. Yerushalmi, “A scalable lock-
free stack algorithm,” in Proc. of the 16th Symp. on Paral-
lelism in Algorithms and Architectures, 2004, pp. 206-215.

J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley, “A
concurrent dynamic analysis framework for multicore hard-
ware,” in Proc. of the 24th ACM Conf. on Object-Oriented
Programming, Systems, Languages, and Appilcations, 2009,
pp. 155-174.

P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro,
“Preventing memory error exploits with WIT,” in Proc. of the
IEEE Symp. on Security and Privacy, 2008, pp. 263-277.

Q. Zeng, D. Wu, and P. Liu, “Cruiser: Concurrent heap buffer
overflow monitoring using lock-free data structures,” in Proc.
of the 32nd ACM SIGPLAN Conf. on Prog. Lang. Design and
Impl., 2011, pp. 367-377.

“nginx,” http://nginx.org.

(32]
(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

“lighttpd,” http://www.lighttpd.net.
“httperf,” http://www.hpl.hp.com/research/linux/httperf.

P. Ratanaworabhan, B. Livshits, and B. Zorn, “NOZZLE: a
defense against heap-spraying code injection attacks,” in Proc.
of the 18th USENIX Security Symp., 2009, pp. 169-186.

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattle, A. Grier, P. Wagle, and Q. Zhang, “Stack-
Guard: automatic adaptive detection and prevention of buffer-
overflow attacks,” in Proc. of the Seventh USENIX Security
Symp., 1998, p. 5.

T. Chiueh and F. Hsu, “RAD: a compile-time solution to
buffer overflow attacks,” in Proc. of the 21st IEEE Int’l Conf.
on Distr. Computing Systems, 2001, pp. 409—-417.

Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended
protection against stack smashing attacks without perfor-
mance loss,” in Proc. of the 22nd Annual Computer Security
Appl. Conf., 2006, pp. 429-438.

E. D. Berger and B. Zorn, “DieHard: probabilistic memory
safety for unsafe languages,” in Proc. of the 27th ACM
SIGPLAN Conf. on Prog. Lang. Design and Impl., 2006, pp.
158-168.

S. Van Acker, N. Nikiforakis, P. Philippaerts, Y. Younan, and
F. Piessens, “ValueGuard: protection of native applications
against data-only buffer overflows,” in Proc. of the Sixth Int’l
Conf. on Inf. Systems Security, 2010, pp. 156-170.

K. Avijit, P. Gupta, and D. Gupta, “TIED, LibsafePlus: tools
for runtime buffer overflow protection,” in Proc. of the 13th
USENIX Security Symp., 2004, p. 4.

C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and
automatic live update for operating systems,” in Proc. of the
18th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2013, pp. 279-292.

G. He and A. Zhai, “Efficient dynamic program monitoring
on multi-core systems,” J. of Systems Architecture, pp. 121—
133, 2011.

O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran,
S. Chen, M. Kozuch, and M. Ryan, “Parallelizing dynamic
information flow tracking,” in Proc. of the 20th Symp. on
Parallelism in Algorithms and Architectures, 2008, pp. 35—
45.

E. E. Aftandilian, S. Z. Guyer, M. Vechev, and E. Yahav,
“Asynchronous assertions,” in Proc. of the 26th ACM Conf.
on Object-oriented Programming, Systems, Languages, and
Applications, 2011, pp. 275-288.

B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra:
intrusion detection using parallel execution and monitoring
of program variants in user-space,” in Proc. of the Fourth
European Conf. on Computer Systems, 2009, pp. 33-46.

B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner,
and M. Franz, “Multi-variant program execution: Using multi-
core systems to defuse Buffer-Overflow vulnerabilities,” in
Proc. of the 2008 Int’l Conf. on Complex, Intelligent and
Software Intensive Systems, 2008, pp. 843-848.

