
Static Analysis on x86 Executables for Preventing
Automatic Mimicry Attacks

Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Milano, Italy
Via Comelico 39/41, I-20135, Milano MI, Italy

{bruschi,sullivan,andrew}@security.dico.unimi.it

Abstract. In 2005, Kruegel et al. proposed a variation of the traditional mimicry
attack, to which we will refer to as automatic mimicry, which can defeat existing
system call based HIDS models. We show how such an attack can be defeated by
using information provided by the Interprocedural Control Flow Graph (ICFG).
Roughly speaking, by exploiting the ICFG of a protected binary, we propose a
strategy based on the use of static analysis techniques which is able to local-
ize critical regions inside a program, which are segments of code that could be
used for exploiting an automatic mimicry attack. Once the critical regions have
been recognized, their code is instrumented in such a way that, during the execu-
tions of such regions, the integrity of the dangerous code pointers is monitored,
and any unauthorized modification will be restored at once with the legal values.
Moreover, our experiments shows that such a defensive mechanism presents a
low run-time overhead.

1 Introduction

In their seminal work [13,12] about anomaly-based Host Intrusion Detection System
(HIDS), Forrest et al., introduced the idea that anomalous behavior of a process p can
be detected by learning the sequences of system calls executed by p in a sterile envi-
ronment, comparing them against those executed in a production environment, and de-
tecting any significant deviation among them. Such an approach has been investigated
by many researchers, who proposed several improvements over the original model, thus
obtaining more efficient and more precise (i.e., which recognize broader classes of in-
trusions) anomaly detection HIDS. In [31,30] Wagner et al. observed that all the system
call-based HIDS suffer a particular form of attack called mimicry. In its simplest form,
to which we will refer to as traditional mimicry, it basically consists of forcing a process
to execute an attack vector by mimicking the system calls sequences and learnt by the
HIDS. Subsequently, several strategies (see [23,11,5]) have been proposed for inhibit-
ing traditional mimicry attacks.

In a recent paper, Kruegel et al. [17] observed that even if the introduction of such
techniques in anomaly-based HIDS [5,11,23] has significantly reduced the possibility to
perform successful traditional mimicry attacks [26,25,31], they do not impose any kind
of restriction on the execution of arbitrary code which does not directly invoke system

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 213–230, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

214 D. Bruschi, L. Cavallaro, and A. Lanzi

calls (i.e., system call-free code). For example, a piece of code that is able to mod-
ify writable memory segments represents a threat by itself. This observation, brought
Kruegel et al. to devise a variation of the traditional mimicry attack which is able to
hijack a program execution flow, execute malicious system call-free code, relinquish
the execution flow to the diverted program to regain it later on.

This malicious code is usually executed as a preamble of in-trace syscalls. Its main
objective is either to change the value of the system call parameters in order to even-
tually execute arbitrary code, or to modify the value of some control-dependent data
variable in order eventually influence the process execution flow. In [17] a proof of
concept tool is provided which is able to automatically identify, inside a program, the
instructions which can be used for such a scope. For this reason we refer to such an
attack as automatic mimicry. More precisely, the main goal of the automatic mimicry
is to elude HIDS checks by continuously diverting the process execution flow in order
to execute arbitrary code with the purpose of changing system calls parameters with-
out directly invoking any system call. However, most of the time these steps cannot
be completed at once. Thus, any piece of malicious code has to take care of continu-
ously regaining the control of the execution flow. Such a task is usually performed by
modifying appropriate code pointers.

On the basis of the previous observation we devised a strategy for containing auto-
matic mimicry attacks. Such a strategy consists of localizing, inside a IA32 binary p, all
the dangerous regions ai, · · · , an, where by dangerous region, known also as liveness
area, we mean the code area between the definition d and use u of the values v of the
system calls parameters. After the liveness areas have been determined we collect, at
run-time, for any area ai 1 ≤ i ≤ n, the “trusted values” t1, · · · , tk of the code pointers
defined in ai. Subsequently, we instrument the process p image so that at run-time code
pointers in ai will always be restored to their corresponding trusted values, before their
use. Consequently the attacker will not be able to regain the control of p’s execution
flow and the attack will not be feasible.

A static analysis tool and a kernel-level module on a Linux system have been de-
veloped in order to assess the viability of our approach. Several experiments has been
performed both for verifying the correctness of the approach and its overheads. The
results obtained showed that our strategy defeats the automatic mimicry attack guaran-
teeing a low overhead impact in term of process execution time.

The paper is organized as follows. Related works are described in § 2 while § 3 in-
troduces some preliminary notions about static analysis and automatic mimicry attacks
that will be useful throughout the paper. The core of our code pointers integrity veri-
fication is faced in § 4, and § 5 shows the effectiveness of this defensive mechanism.
Technical details and experimental results are given in § 6 and § 7, while conclusion,
future works and final remarks are given in § 8.

2 Related Works

Generally speaking, memory error exploits which corrupt code pointers aim at pursuing
two main goals (or a combination of them), that is, (i) to perform IPE attacks [30] (to
bypass security critical checks), and (ii) to execute arbitrary malicious code.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 215

Several strategies have been proposed to deal with this problem. Some of them, such
as StackGuard [7] (SG) and Pro Police Stack Detector (also known as Stack Smashing
Protector, i.e., SSP) [10], aim at protecting the integrity of particular code pointers
(e.g., return address for SG and mainly return address and saved frame pointer for SSP).
However, beside stack smashing attacks [18], they do not address other kind of memory
error exploits based on the corruption of others code pointers (GOT, .dtors, heap
management information, and so on).

In [1], Abadi et al. propose Control-Flow Integrity (CFI), an approach to guarantee
the integrity of the execution control flow of a protected application p. By forcing p’s
execution to dynamically follow only paths defined by its Control Flow Graph (CFG),
their approach defeats attacks which, as a final goal, attempt to hijack a program execu-
tion flow to alter its behavior. CFI leverages on fewer assumptions to achieve its goals.
In particular, it relies on non-writable code, and non-executable data segments. While,
generally, these are common sense requirements, as noted by the authors, the assump-
tions can be somewhat problematic in the presence of self-modifying code, run-time
code generation, and the unanticipated dynamic loading of code.

Program shepherding, proposed by Kiriansky et al., monitors control flow transfers
to enforce a security policy [16]. While CFI could be enforced by program shepherding,
the approach proposed by Kiriansky et al. is more general. In fact, it prevents execution
of data or modified code and ensures that libraries are entered only through exported
entry points, without making any assumption a priori. Moreover, program shepherding
provides sandboxing that cannot be circumvented, allowing construction of customized
security policies. On the other hand, this monitoring technique may impose a quite
moderate overhead for certain types of programs. Moreover, existing code attacks can
be stopped only in some cases.

In [29], a technique based on process address space layout randomization (ASLR)
has been proposed and realized by developing a kernel level patch which is in charge of
loading the process’ memory segments (code, data, heap, stack and mmap’d region) at
different, randomized memory locations. Since no knowledge on the process behavior
or structure is required, the approach can only guarantee the randomization of the seg-
ments base addresses but it lacks a more fine-grained randomization. Unfortunately, the
approach is vulnerable to information leakage attacks or it has been proved to be not so
effective on 32-bit Intel Architecture platforms [14].

Other address obfuscation techniques have been proposed in [21,20] by Bhatkar et
al. as a particular form of program transformations to combat memory error exploits.
Such approaches differ from the one proposed in [29] since they aim at providing a
more fine-grained address space obfuscation. The objectives of these transformations
are to randomize the absolute locations of all code and data in order to achieve pro-
tection from a broad class of memory corruption attacks, and to randomize the relative
distance between different data objects in order to defeat relative addressing attacks,
which are a subclass of non-control data ones [6]. To this end, various obfuscating
transformations have been proposed; they range from the randomization of the base ad-
dresses of common memory regions (stack, heap, mmap’d area, text and static data), the
permutation of the order of variables and routines, and the introduction of random gaps
between objects. A further improvement over such an idea has been proposed in [21],

216 D. Bruschi, L. Cavallaro, and A. Lanzi

where a source-to-source transformation on C programs has been developed to produce
self-randomizing programs.

All the aforementioned randomization approaches share a common concept: they
provide a probabilistic defensive mechanism that, in general, cannot provide certainty
in protecting from memory errors exploits. In this sense, quite recently, newer ap-
proaches have been devised [9,4] that make use of diversified process replicæto provide
protection from a broad class of memory error attacks which mainly corrupt applica-
tion’s code and data pointers. Even if the approach seems sound, promising, and an
on-going research topic, it currently presents a quite high overhead, and fewer practical
not fully solved limitations involving the management of shared memory, signals, and
threads.

In this paper, we address the problem of memory error attacks which corrupt code
pointers in order to perform an automatic mimicry attack. We believe that our technique
can defeat most of the memory error attacks, while experiencing a low overhead and
a transparent deployment1 in all the HIDS architectures. It is worth noting that our
technique is symbiotic with the HIDS and, consequently, several checks about stack
integrity, some form of traditional mimicry and some IPE attacks, are performed by the
HIDS itself.

3 Preliminaries

In this section we recall some basic notions about program static analysis that will be
useful to understand our approach, as well as further remarks on the automatic mimicry
attack.

Liveness Analysis. Given a program p, we use data-flow analysis techniques in order to
gather information about the data used by p. In particular, we use the liveness analysis to
define the liveness region of the program. From our point of view, a liveness region is a
sequence of instructions where a particular system call parameter is alive; a parameter is
alive if it holds a value that will/might be used in the future. Figure 1 shows the liveness
area of the variable a, which is defined at line 6 and used at line 10. All application
paths defined between the definition and use of the variable belong to the liveness area
of the variable itself. More precisely:

– Definition: the definition of a variable occurs when it is defined either by input-
related system call-aware functions, that is, functions that eventually invoke system
calls (e.g., read, recv, fgets), or, in according to the classic definition, with an
assignment of that variable. More precisely, we can classify the assignments in two
main categories:

• dynamic assignment. Such a kind of assignment is associated to the data com-
ing directly from the input. In such an assignment are involved all the input-
related system-call aware functions;

• static assignment. Such a kind of assignment is associated to the data whose
values do not come from input but are statically defined into the application by
constant values.

1 That is, without modifying neither the HIDS nor the binary code.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 217

– Use: the use of a variable occurs when it is used by some security sensitive system
call (e.g., write, execve, read) or by some function which eventually invokes
security sensitive system calls (e.g., fprintf). Any modification of the variable
achieved through arithmetic transformation, is not considered like an use. Roughly
speaking, we consider the use of a variable when it is only used by some security
sensitive routine.

1 int main(int argc, char **argv)
2
3 int a, b, c;
4 c = 40;
5 b = 30;
6 a = 25;
7 b = 2 * c;
8 c = c * 2;
9 c = c + 1;

10 b = a + 1;
11 c = c + 10;

Fig. 1. The Liveness Area of the Variable a

For the sake of clarity, we have reported in Figure 2 an example of the liveness region
of the parameter cmd of the execl system call-aware function, which is defined be-
tween line 26 and line 30. At line 26 the parameter cmd is defined through the fgets
system call-aware function, whilst at line 30 cmd is used by execl. All the statements
between these lines represent the zone where the cmd parameter is alive. In order to
compute the liveness regions, we will apply the classic data-flow algorithms [19] ac-
cording to the aforementioned description of use and definition.

Automating Mimicry Attack. The main purpose of the automatic mimicry is to com-
promise an application overcoming any protection mechanism provided by an anomaly-
based system call-based HIDS. The applications which can be compromised using an
automatic mimicry attack have to satisfy some particular characteristics. More
precisely, an application a has to contain a vulnerability that allows the injection of
malicious code, and a sequence of system calls s1, . . . , sn which can be triggered for
performing some unauthorized action. The main task which the injected code j has to
perform is (i) to modify the code pointers inside a so that j can be executed before the
legal in-trace syscall si is invoked, (ii) to relinquish the execution flow to a, and (iii) to
eventually regain the execution flow to modify others code pointers used in a to change
the behavior of a system call sj .

For the sake of clarity and to better understand this evasion technique, we describe
two successful automatic mimicry attacks2 performed against the code snippet shown
in Figure 3 and 4 proposed in [17]. In the former attack, the attacker exploits the stack-
based buffer overflow [18] vulnerability related to the strcpy (line 8) in order to
overwrite the return address of check_pw, and point it to the attacker code. In writing
such a code he may follow two options, that is, to either (i) directly invoke an in-trace

2 Assuming no particular OS protection mechanisms, such as Address Space Layout Random-
ization (ASLR) [29,20,27] and non-executable data area [28,15,29] are deployed.

218 D. Bruschi, L. Cavallaro, and A. Lanzi

1 #define CMD_FILE "commands.txt"
2
3 int enable_logging = 0;
4
5 int check_pw(int uid, char *pass)
6 {
7 char buf[128];
8 strcpy(buf, pass);
9 return !strcmp(buf, "secret");

10 }
11
12 int main(int argc, char **argv)
13 {
14 FILE *f;
15 int uid;
16 char passwd[256], cmd[128];
17
18 if ((f = fopen(CMD_FILE, "r")) == NULL) {
19 perror("error: fopen"); exit(1);
20 }
21
22 uid = getuid();
23 fgets(passwd, sizeof(passwd), stdin);
24
25 if (check_pw(uid, passwd)) {
26 fgets(cmd, sizeof(cmd), f);
27 if(enable_logging)
28 printf("uid[%d]: %s", uid, cmd);
29 setuid(0);
30 if (execl(cmd, cmd, 0) < 0) {
31 perror("error: execl"); exit(1);
32 }
33 }
34 }

Fig. 2. The Liveness Area of the Parameter cmd

system call, but, due to the system call coordinates checks [11], he cannot neither in-
voke a system call from an illegal call site nor returning into different location after
the system call-aware function termination, or (ii) set enable_logging, overwrite
the printf GOT entry with the address of the injected malicious code, fix the stack
layout in order to restore the original check_pw return address (the one at line 26,
supposing the function does not return 0) and saved frame pointer and, finally, volun-
tarily relinquish the execution flow to the application code. Since no system call has
been executed so far, no HIDS checks are performed and everything runs smoothly un-
til the execution flow reaches the printf at line 28. At this point, before executing the
real syscall-aware library function that, however, has to be executed in order to keep the
write syscall performed by the printf in-trace, the malicious code is executed in
order to change the content of the cmd “string” so that arbitrary command will eventu-
ally be executed (line 30) with full privileges (thanks to the setuid at line 29). After
this simple little black magic, the attack ends by relinquishing the execution flow to the
application code so that the legal in-trace printf can be executed from the permitted
call site with a correct return address.

Obviously, things can be much harder from the attacker perspective than the one just
described. In fact, if the attacker is not able to find suitable GOT entries to overwrite, he
has to find out different code pointers to play with (e.g., application function pointers),
as depicted in Figure 4. In this scenario, the attacker can exploit the same vulnerability
as in the previous example, but this time no suitable GOT entries are available in order
to regain the control of the execution flow later on. However, by carefully looking at
the code, check_pw return address can be forced to point to a malicious code that will
set enable_logging and uid (a signed 32-bit integer). The former variable will be

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 219

1 #define CMD_FILE "commands.txt"
2
3 int enable_logging = 0;
4
5 int check_pw(int uid, char *pass)
6 {
7 char buf[128];
8 strcpy(buf, pass);
9 return !strcmp(buf, "secret");

10 }
11
12 int main(int argc, char **argv)
13 {
14 FILE *f;
15 int uid;
16 char passwd[256], cmd[128];
17
18 if ((f = fopen(CMD_FILE, "r")) == NULL) {
19 perror("error: fopen"); exit(1);
20 }
21
22 uid = getuid();
23 fgets(passwd, sizeof(passwd), stdin);}
24
25 if (check_pw(uid, passwd)) {
26 fgets(cmd, sizeof(cmd), f);
27 if(enable_logging)
28 printf("uid[\%d]: \%s", uid, cmd);
29 setuid(0);
30 if (execl(cmd, cmd, 0) < 0) {
31 perror("error: execl"); exit(1);
32 }
33 }
34 }

Fig. 3. First Vulnerable Program

used to reach the do_log function that will allow the attacker to regain the control of
the code, while the latter will be used to exploit the vulnerability present in do_log
function (line 14) that will enable the attacker to overflow the buffer and overwrite the
return address with the malicious code address. In fact after the pointer arithmetic is
performed on line 14, do_log return address is overwritten with the cmd_id value
(controlled by the attacker as well), so that it can make it point into the malicious code.
Once the execution flow is regained, the attacker can change the value of cmd parameter
performing any privileged command.

4 Defeating Automatic Mimicry Attacks

In this section we will explain the strategy we devised in order to prevent automatic
mimicry attacks. Our approach is based on the use of the information contained in the
Inter-procedural Control Flow Graph (ICFG) of the binary which has to be protected.

4.1 Defensive Strategy

A fundamental requirement of any automatic mimicry attack is the possibility to modify
a process code pointers in order to execute the injected malicious code. Thus, automatic
mimicry can be defeated if the integrity of such data is guaranteed. This is exactly the
strategy we adopt. It is based on a three phases process: code analysis, data collection,
and code pointers restoring. During the code analysis phase, the ICFG of the program
p we want to protect is computed, and it is used to recognize the dangerous regions.

220 D. Bruschi, L. Cavallaro, and A. Lanzi

1 int enable_logging = 0;
2 int cmd_id = 0;
3 int uid_table[8192];
4
5 int check_pw(int uid, char *pass)
6 {
7 char buf[128];
8 strcpy(buf, pass);
9 return !strcmp(buf, "secret");

10 }
11
12 void do_log(int uid)
13 {
14 uid_table[uid] = cmd_id++;
15 }
16
17 int main(int argc, char **argv)
18
19 if (check_pw(uid, passwd)) {
20 fgets(cmd, sizeof(cmd), f);
21 if (enable_logging)
22 do_log(uid);
23 setuid(0);
24 if (execl(cmd, cmd, 0) < 0) {
25 perror("error: execl"); exit(1);
26 }
27 }
28 }

Fig. 4. Second Vulnerable Program

Afterwards, the data collection phase collects the “trusted” values of the code pointers
contained in p’s dangerous regions. Such a phase is performed by executing p in a sterile
environment. Finally, at run-time, the code pointers restoring phase restores the code
pointers values collected during the data collection phase.

Code Analysis. The purpose of this phase is to determine the dangerous regions of
p, using p’s ICFG. In particular, we consider only nodes (basic blocks) that contain
dangerous system calls, as defined by Xu. et al. [32]. Our method works as follows.
Initially, we build p’s ICFG, then:

– each node of the ICFG which contains a dangerous system call, is marked with u
(i.e., we determine parameters’ use);

– Let p1, · · · , pm be parameters used by a dangerous system call. For any pj , 1 ≤
j ≤ k we collect the program locations where the parameter is defined3, according
to the definition given in § 3. To achieve this goal we use the standard equations
defined by the data-flow analysis [19]. Such equations provide us the list of the
defined variables on a per-basic block granularity. We mark all these nodes with d
(i.e., we determine parameters’ definition);

– subsequently, we visit the entire ICFG, and every time we meet a basic block
marked by u, we perform the following steps. We apply the depth first search al-
gorithm backward, starting from a node t marked with u and visiting the ICFG
until we reach nodes marked by d, which contain the definition of the parameters
used in node t. The sub-graph constituted by all visited nodes represents one of the
dangerous regions we are interested in, and it is stored inside a database.

Figure 5, reports a fragment of a partial ICFG of the code depicted in Figure 3. In
particular, we want to build a dangerous regions that is able to protect the parameter

3 p is an ET_EXEC ELF executable so, code and data hold fixed absolute references.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 221

cmd used inside the execl dangerous function. Gray nodes represent the dangerous
regions built around the execl dangerous function and the leaf of the dangerous region
is represented by the node marked with 4 (fgets function) in which the variable cmd
is defined.

setuid

printf

fgets

check_pw

fgets

getuid

 execl
exit

exit

1

2

3

4

5

6

7 8
9

dangerous region

Fig. 5. Dangerous Region

Data Collection. After the code analysis phase, we collect the “trusted” addresses
of the potential “dangerous” code pointers defined inside the dangerous regions. In
particular, we collect the following information:

– GOT Function Addresses: For performance reasons we are interested only in the
GOT addresses of the functions which are defined in dangerous regions4. GOT
addresses are collected in two steps. Initially we execute the program p and we force
the corresponding process to resolve all dynamic symbols collecting the address
values; subsequently, we associate the GOT code pointers inside the dangerous
regions with the discovered address values, and we store such relationships inside
the database;

– Function Pointers: Another technique proposed by Kruegel et al. in order to per-
form the automatic mimicry attack is to exploit code pointers such as application
function pointers. In order to collect such code pointers values, first we look for
the program locations where the code pointers are defined, only inside dangerous
regions; afterwards, through data-flow techniques we compute all code pointers
destinations values and we save the correlation between program locations and
such values into a database. Such operands represent the “trusted” values of the
code pointers which will be used to check if an anomaly occurs during the program
execution.

4 We allow the attacker to regain control of the execution flow only in those locations of the
application that are not dangerous to perform a successful automatic mimicry attack.

222 D. Bruschi, L. Cavallaro, and A. Lanzi

Code Pointers Restoring. The code pointers restoring is the last phase and it guaran-
tees the integrity of the code pointers defined inside the dangerous regions. This phase
is composed by two main steps. The first one, which takes place at loading time, per-
forms a run-time code instrumentation of the process p, and loads the code pointers
program locations and their trusted values inside a custom kernel data structures used
by our kernel module component. The second step acts at run-time and performs the
code pointers integrity verification step which is in charge of executing various checks
on the “dangerous” code pointers and to restore the appropriate process execution flow.

run-time process instrumentation. The main goal of this step is to allow the execu-
tion of the integrity verification step in a transparent way without modifying neither
the program source nor the binary code. It is performed as following. Initially it
loads the kernel data structures containing the trusted values of the code pointers
collected during the data collection phase. Subsequently, the code pointers instruc-
tions (i.e. call, ret) found inside the dangerous region (code analysis phase)
are substituted by the int35 assembly instruction. The original instructions are
saved inside the saving instruction table (see Figure 6) and will be restored after
the integrity verification phase takes place.

Such a table will contain the op-codes of the substituted instructions and it is
used to restore the execution flow of the process after the code pointers integrity
verification step. Since the table is stored in p’s address space, to guarantee that
every tampering attempt is detected by the kernel before using the data provided by
the table, its integrity is verified by using common cryptographic hash algorithms
(SHA-1 and MD5). If the integrity cannot be satisfied, the kernel kills the process
being protected, otherwise it is safe to use the data provided by the table to perform
the next steps.

integrity verification. Due to the instrumentation process every time a potential dan-
gerous function terminates its execution, or a (function) code pointer is invoked,
the int3 instruction brings the execution in kernel land to a custom module which
performs the appropriate checks. Such checks are strongly dependent on the type
of code pointers we are trying to protect, and they can be classified in three main
sets:

– GOT entries: the trusted values of GOT entries are retrieved from the entry
in the kernel memory structures associated to the substituted instructions, and
replaced into the appropriate GOT entries locations of p;

– Return addresses: in order to get the appropriate return address we instrument
the call statement associated to the called function f ; consequently, when-
ever f is invoked the integrity verification module v will be able to retrieve
and store inside its own memory structures the “active” f ’s return address (i.e.,
the address of the instruction next to the considered call statement). When f
has to return (ret instruction) v will check if the return address is equal to the
“active” return address retrieved during the call invocation; if so, the module

5 Such an instruction issues a software interrupt and it is usually used by programs debugger.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 223

will not perform any actions6 and the process will continue its execution. Oth-
erwise, v will restore the appropriate return address retrieved during call
invocation, raising an alarm and allowing the process to continue its execution.

– Function Pointers: whenever a function pointer is invoked, the integrity veri-
fication module v will check if the function pointer belongs to the set learnt
during the static analysis phase; if so, v will not perform any actions and the
process will continue its execution. Otherwise, the module raises an alarm and
stops the process execution.

restoring process control flow. After the integrity verification phase, the module
checker must restores the normal process flow. Such a process is executed by a
kernel module that will perform two actions according on the type of the substi-
tuted instructions:

– call: for each substituted call, the module copies inside the saving instruc-
tion table the call instruction followed by a jmp statement. Once the kernel
restores the process flow after the integrity verification phase, it brings the ex-
ecution flow to the appropriate call inside the table; at this point the call is
executed and the address of the next instruction, that is jmp, is saved onto p’s
stack; afterwards, whenever the function invoked by the call returns, the pro-
gram counter (%eip register) points to the jmp instruction which will jump to
inside the executable process memory after the int3 statement, restoring the
normal execution process flow.

– ret: the module copies inside the saving instructions table the ret statement,
which will bring the control flow to the appropriate process location, after the
checks are performed.

Figure 6, reports the steps of the restoring process flow. In step 1 the process raises
an exception and the control flow is transferred to kernel land then, after the check
on the trusted code pointers is performed, the module checker restores the pro-
gram counter value to the entry associated to the substituted instructions (step 2).
At the end, after the execution of the call *%edx, the flow returns to the jmp
instruction inside the saved table, which brings the process execution flow to the
appropriate program location (step 3).

5 Effectiveness

In this section we will describe some properties of our defensive mechanism and in
particular we will show its effectiveness on two practical examples. It is worth noting
that in order to evaluate the effectiveness of our strategy we must consider the goals
of our defensive mechanism and some properties of the application execution context.
More in details:

– our defensive mechanism is symbiotic with the HIDS. Consequently, for perform-
ing a successful attack an attacker must elude both the HIDS and the code pointers
integrity verification checks;

6 The attacker should pick and change the address inside the set learnt in the static analysis
phase. Such an attack, however, fall into the IPE category and the HIDS will be able to detect
it.

224 D. Bruschi, L. Cavallaro, and A. Lanzi

8049aa0: push %ebp
8049aa1: mov %esp,%ebp
8049aa3: sub $0x8,%esp
8049aa6: cmpb $0x0,0x805a410
..............
8049ac8: int3 ## call *edx
8049aca: mov %eax,0x805a008
8049acf: mov (%eax), %edx
............
8049adc: leave
8049add: int3 ## ret
............
8049cc5: call 0x8049aa0
8049cca: mov (%eax),%edx

call *edx

jmp 0x8049aca

ret

INT3 Handler

Code Pointers Checker

KERNEL SPACE

USER SPACE

SAVE INSTRUCTIONS TABLE

INSTRUMENTATION PROCESS CODE

12

3

Fig. 6. Process Execution Flow Restoring Step

– the main goal of our defensive strategy is to defeat the attacks that use code pointers
as a way to divert a process execution flow. It is worth noting that a vulnerability
could occur inside the dangerous regions in some positions where the attacker must
not use any code pointers to change the value of the syscall parameters; such an
attack is generally known as non-control data [6] and it is not currently addressed
by our approach7;

In the following we will show how our technique works on the two examples of
automatic mimicry attack described in [17].

5.1 GOT Protection

We apply the mechanism described in § 4 to the automating mimicry attack presented
in Figure 3 . Our goal is to protect the cmd parameter used by the execl syscall. Af-
ter the code analysis phase, we have defined the dangerous region of the program line
26-30, the Kernel module checker c has loaded inside its memory structures the trusted
values of the code pointers (i.e execl’s GOT line 30, fgets (line 26), printf (line
28), setuid (line 29) etc.) and the process has been instrumented. At this point, dur-
ing the program execution, whenever the attacker exploits the vulnerability inside the
check_pw function, he probably will rewrite the GOT of a function defined inside
the dangerous regions which will be executed before execl function (line 30). The
next attacker’s action is to relinquish the control of the code to the application after the
check_pw function, and regaining it when that particular function will be invoked.
But after the attacker relinquished the control code to the ”original” application, when

7 However, some forms of such attacks can be defeated by protecting the use and definition area
of the sensitive variables.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 225

the execution flow reaches one of the checks previously set, the program flow will pass
to c that will rewrite the appropriate code pointers, blocking so the attack.

5.2 Code Pointers Protection

In the example shown in Figure 4 the attacker uses a return stack as code pointer to
regain code. During the learning phase the Kernel module checker retrieves the return
addresses of the dangerous functions, do_log function, and during the loading it sub-
stitutes the ret instruction of such a function, with the breakpoint instruction ret.

Whenever the attacker exploits the vulnerability in the function check_pw, he
changes the value of the variable uid writing a value that, once used by do_log func-
tion, will overwrite the function return address of that function bringing the execution
inside the malicious code. Once the attacker has modified the uid value, it relinquishes
the process execution flow back to p which will follow the normal flow. Whenever the
program is about to return from do_log function, the execution flow will pass, by
means of int3, to the code pointers integrity verification module which will overwrite
the function return address with the “trusted” one, preventing to malicious code to re-
gain control on the p’s execution flow later on.

6 Technical Details

In this section we provide technical details of the prototype we developed for a GNU/
Linux system (kernel 2.4.28 version). We will describe the static analysis tool used to
perform the static analysis phase, the process instrumentation performed at load time
after the dynamic linker process takes place, and the modifications of the int3 kernel
handler performed in order to manage the code pointers integrity verification process.

6.1 Static Analysis Tools

Static analysis of p has been performed using a static analysis tool for ELF IA32 binaries,
developed by our group. The core of the tool is written using the Python language and
some parts using the C language. Such a tool is able to obtain the Inter-procedural
Control Flow Graph (ICFG) and to perform the basic data-flow analysis of the program
being analyzed. In particular, the tool works following these steps:

– initially the pre-processing phase is performed in order to recognize some impor-
tant ELF information such as symbol table location, code section location, dynamic
section information, and so on;

– after gathering the preliminaries information, the tool disassembles the instructions
contained inside the code section and converts them to an intermediate form. We
used the well-known recursive traversal algorithm defined in [22] to disassemble
the binary;

– the tool computes the ICFG (§ 3), afterwards the program is converted into the SSA
form using the standard Ferrant’s algorithm [8];

– finally, the tool uses the classic equations of the liveness analysis defined in [2] to
perform this analysis.

226 D. Bruschi, L. Cavallaro, and A. Lanzi

Moreover, the tool is able to compute both the control dependencies and the classic
data-flow analysis equations defined in [2].

6.2 Process Instrumentation

The process instrumentation phase is performed by the instrumentator, a program we
have developed which trace the program p to be protected and, by using the ptrace
system call, substitutes the appropriate instructions with the int3 statement. Moreover,
the instrumentator has to build the saving instructions table. Such a table will be mapped
at a fixed address known by the kernel code pointers integrity verification module as
well; this can be easily achieved by using the mmap system call with a MAP_FIXED
flag.

6.3 int3 Exception Handling

In order to perform the code pointers integrity verification checks, we have modi-
fied the int3 kernel exception handler implemented in the do_trap kernel func-
tion (traps.c). In particular, when the int3 exception is raised the control flow is
transferred from user space application to the kernel code which calls the do_int3
kernel function (see entry.S) which eventually invokes do_trap. Figure 7, reports
a snippet of the do_trap function we modified to add our code pointers integrity
verification.

More in detail, when the exception int3 is executed, the do_trap function checks
the exception number and the process name (line 7 and 8) which raises the exception.
Consequently, if the process name8 and the exception number are appropriate, we per-
form the code pointer checks and restore the flow as already explained in § 4 (line 10
and 11); otherwise the handler will work in the usual way and the code inside the if
statement (line 7) will not be executed.

1 trap_signal(...)
2 {
3 struct task_struct *tsk = current;
4 tsk->thread.error_code = error_code;
5 tsk->thread.trap_no = trapnr;
6
7 if ((trapnr == 3) && !(strcmp(tsk->comm, "process_name")))
8 {
9 check_code_pointers();

10 restore_flow() ;
11 return;
12 }
13 else
14 {
15 if (info)
16 force_sig_info(signr, info, tsk);
17 else
18 force_sig(signr, tsk);
19 return;
20 }
21 }
22 }

Fig. 7. Modified do trap Function

8 Indeed, a check on the program’s i-node number would be better. Otherwise, the check can be
easily bypassed by a local attacker by using symbolic links, for example.

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 227

7 Experimental Results

In this section we will describe the system used in order to make our experimental test
and then present the set of experiments we ran to collect the measurements about the
overhead introduced by our code pointers integrity verification module. All the experi-
ments have been executed on an Intel Pentium IV processor with 3 GHz clock, running
a GNU/Linux Debian operating system, 2.4.28 Linux kernel and 128 MB of RAM.

Our module acts on the code used by the kernel in order to manage the checking
performed at runtime, so we focus our attention on those routines, defined into the file
traps.c. In order to measure time lapses we used the time-stamp counter processor
register (tsc, using the rdtsc assembly instruction). The counter, available on all
kinds of Pentium processors is a 64-bit register that gets incremented at each clock
tick. Using this measure we are able to provide the most accurate measurement of the
system.

In the first phase of our experiments we have measured two main pieces of code of
our obfuscation model, providing three measurements for each of them: the best time,
the average time and the standard deviation of execution; in particular we have:

– Context Switch: this measure represents the amount of time used to perform the
context switch from kernel to user mode context and vice versa, executed during
the code pointers integrity verification process. The overhead in this case is 144μs±
493μs (8.5% overhead) on average (reporting 63μs, i.e., 5%, on the best-case).

– Hash Table access time: this measure represents the amount of time needed to ac-
cess the hash table (saving instruction table) used in order to replace the trusted
code pointers values and for bringing the execution flow back to the process. The
hash table size depends on the number of different instrumentation locations de-
fined by the application. For the test we conducted, our hash table contained 50 lo-
cations on an average. Thus, the obfuscator overhead in this case is 114μs±437μs
(6.5% overhead) on average (reporting 61μs, i.e., 1.6%, on the best-case).

As a second phase of our test we have considered three different kind of applications:
server web dhttpd version 1.02a, the tftpd server version 0.17 − 15, and sudo
application version 1.6.8p12. Table 1 reportes the results of the static analysis phase;
for each service we can see the number of the dangerous regions found and the total
number of the code pointers that must be protected defined inside those regions.

After the static analysis phase we have performed the run-time analysis. For the
HTTP server we have used a small web site with the following features: total size 500
KB, 12 static HTML pages, and 6 pdf documents (document’s size 200 KB); for the
tftpd server we have considered download and upload operations of a file which size

Table 1. Dangerous Regions

Services # Dangerous Regions # Code Pointers found in the Dangerous Regions

dhttpd 6 30
tftpd 7 39
sudo 14 75

228 D. Bruschi, L. Cavallaro, and A. Lanzi

Table 2. Runtime Analysis

Services #Checks Execution Time μs Checking Time μs Overhead

dhttpd 724 1407000 72400 5.1%
tftpd 467 1200000 37600 3.1%
sudo 110 99150 8800 8.8%

is 500 KB, and for the sudo utility we have considered the execution on the cat
command on a small file. In Table 2 we have reported the run-time analysis overhead
for each service, the number of the checks performed during the execution time, the
total amount of the time spent by the process (we do not considered the I/O idle time),
the time spent by the integrity verification process and, in the last column, the overhead
inserted by our integrity verification module for those particular services.

8 Conclusion and Future Works

This paper presents a novel defensive technique based on the Inter-procedural Control
Flow Graph; such a mechanism is represented by the code pointers checker module at
the kernel-level, which is able to protect the HIDS against automatic mimicry attack
with a low overhead.

One of the main problem of our defensive mechanism is represented by the accu-
racy of the static analysis phase performed on x86 binaries. In fact, the imprecision of
such an analysis could increase both the false positive and negative in our system. In
particular, there are two main problems which must be addressed when working on an
executable binary: (1) the CFG’s completeness and (2) the aliasing problem. In order
to improve the CFG’s completeness we can adopt the technique described in [24]. In
this approach, the authors use the data-flow analysis in order to determine the values
of the indirect calls so to improve the completeness of CFG. Instead, for the aliasing
problem we can use the algorithm describe in [3]. This technique works on the x86
executable and has obtained good results. However, in future we think to work on the
source code of the program in order to solve the problems that binary static analysis
techniques arise.

Another problem of our approach is the size of the dangerous regions. In fact, some-
times there exists a great distance between the definition and use of a particular variable;
consequently, if the region’s size is very large, the attacker could have more chances to
perform the attack successfully. In fact, if the vulnerability is positioned inside the dan-
gerous regions the attacker can change the value of the system call parameters success-
fully without using any code pointers. We are investigating for improving our technique
in order to solve these issues and to mitigate other attacks such as the non-control data.

Acknowledgements

We thank the anonymous reviewers for their helpful comments that improved the qual-
ity of the paper. We thank Monirul Sharif for help in reviewing the paper and we

Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks 229

thank Christopher Kruegel and Lorenzo Martignoni for their extensive comments and
suggestions.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: CCS ’05: Pro-
ceedings of the 12th ACM conference on Computer and communications security, pp. 340–
353. ACM Press, New York (2005)

2. appel, a.w.: Modern compiler implementation in c. Cambridge University Press, Cambridge
(2004)

3. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: Duesterwald,
E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg (2004)

4. Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-Tuong,
A., Hiser, J.: N-Variant Systems: A Secretless Framework for Security through Diversity. In:
15th USENIX Security Symposium (2006)

5. Bruschi, D., Cavallaro, L., Lanzi, A.: An Efficient Technique for Preventing Mimicry and Im-
possible Paths Execution Attacks. In: 3rd International Workshop on Information Assurance
(WIA 2007) (April 2007)

6. Chen, S., Xu, J., Sezer, E., Gauriar, P., Iye, R.K.: Non-Control-Data Attacks Are Realistic
Threats. In: 14th USENIX Security Symposium (2005)

7. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang,
Q., Hinton, H.: StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In: Proc. of the 7th Usenix Security Symposium, pp. 63–78 (January 1998)

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Program. Lang.
Syst. 13(4), 451–490 (1991)

9. Bruschi, D., Cavallaro, L., Lanzi, A.: Diversified Process Replicæ for Defeating Memory
Error Exploits. In: 3rd International Workshop on Information Assurance (WIA 2007) (April
2007)

10. Etoh, H.: GCC extension for protecting applications from stack-smashing attacks (ProPolice)
(2003), http://www.trl.ibm.com/projects/security/ssp/

11. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly Detection using Call Stack
Information. IEEE Symposium on Security and Privacy, Oakland, California (2003)

12. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: SP ’96: Proceedings of the 1996 IEEE Symposium on Security and Privacy, p.
120. IEEE Computer Society Press, Los Alamitos (1996)

13. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion Detection Using Sequences of System
Calls. Journal of Computer Security 6(3), 151–180 (1998)

14. Shacham, H., Page, M., Pfaff, B., Goh, E.-J.: On the Effectiveness of Address-Space Ran-
domization. In: CCS ’04: Proceedings of the 11th ACM Conference on Computer and Com-
munications Security, pp. 298–307. ACM Press, New York (2004)

15. iSec.pl Development Team. kNoX - Implementation of non-executable Page Protection
Mechanism (February 2005)
http://www.isec.pl/projects/knox/knox.html

16. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program shepherding.
In: Proceedings of the 11th USENIX Security Symposium, pp. 191–206, Berkeley, CA, USA,
USENIX Association (2002)

17. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Automating Mimicry Attacks Us-
ing Static Binary Analysis. In: Proceedings of the USENIX Security Symposium, Baltimore,
MD (August 2005)

http://www.trl.ibm.com/projects/security/ssp/
http://www.isec.pl/projects/knox/knox.html

230 D. Bruschi, L. Cavallaro, and A. Lanzi

18. Elias Aleph One Levy. Smashing the Stack for Fun and Profit. Phrack Magazine, vol.
0x07(#49), Phile 14–16 (December 1998)

19. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis (1999)
20. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address Obfuscation: An Efficient Approach to

Combat a Broad Range of Memory Error Exploits. In: 12th USENIX Security Symposium
(2003)

21. Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient Techniques for Comprehensive Protection
from Memory Error Exploits. In: 14th USENIX Security Symposium (2005)

22. Schwarz, B., Debray, S., Andrews, G.: Disassembly of Executable Code Revisited. In: Pro-
ceedings of the Ninth Working Conference on Reverse Engineering (2002)

23. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A Fast Automaton-Based Method for De-
tecting Anomalous Program Behaviors. In: IEEE Symposium on Security and Privacy, Oak-
land, California (2001)

24. De Sutter, B., De Bus, B., De Bosschere, K., Keyngnaert, P., Demoen, B.: the static analysis
of indirect control transfers in binaries. In: Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA,
pp. 1013–1019 (June 2000)

25. Tan, K.M.C., Killourhy, K.S., Maxion, R.A.: Undermining an anomaly-based intrusion de-
tection system using common exploits. In: Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection (2002)

26. Tan, K.M.C., McHugh, J., Killourhy, K.S.: Hiding intrusions: From the abnormal to the nor-
mal and beyond. In: Information Hiding, pp. 1–17 (2002)

27. The Linux Kernel 2.6 Development Team. The Linux Kernel 2.6 (February 2005),
http://lwn.net/Articles/121845/

28. The OpenWall Development Team. The OpenWall Project (February 2005),
http://www.openwall.com

29. The PaX Team. PaX: Address Space Layout Randomization (ASLR)
http://pax.grsecurity.net

30. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Symposium on Se-
curity and Privacy, Oakland, California (2001)

31. Wagner, D., Soto, P.: Mimicry Attacks on Host Based Intrusion Detection Systems. In: Proc.
Ninth ACM Conference on Computer and Communications Security (2002)

32. Xu, H., Du, W., Chapin, S.J.: Context Sensitive Anomaly Monitoring of Process Control
Flow to Detect Mimicry Attacks and Impossible Paths. In: Jonsson, E., Valdes, A., Almgren,
M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 21–38. Springer, Heidelberg (2004)

http://lwn.net/Articles/121845/
http://www.openwall.com
http://pax.grsecurity.net

	Static Analysis on x86 Executables for Preventing Automatic Mimicry Attacks
	Introduction
	Related Works
	Preliminaries
	Defeating Automatic Mimicry Attacks
	Defensive Strategy

	Effectiveness
	GOT Protection
	Code Pointers Protection

	Technical Details
	Static Analysis Tools
	Process Instrumentation
	int3 Exception Handling

	Experimental Results
	Conclusion and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

