
Replay Attack in TCG Specification and Solution

Danilo Bruschi Lorenzo Cavallaro Andrea Lanzi
Mattia Monga

Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione
Via Comelico 39/41, I-20135, Milano MI, Italy

{bruschi, sullivan, andrew, monga}@security.dico.unimi.it

Abstract

We prove the existence of a flaw which we individuated
in the design of the Object-Independent Authorization Pro-
tocol (OIAP), which represents one of the building blocks of
the Trusted Platform Module (TPM), the core of the Trusted
Computing Platforms (TPs) as devised by the Trusted Com-
puting Group (TCG) standards. In particular, we prove,
also with the support of a model checker, that the protocol
is exposed to replay attacks, which could be used for com-
promising the correct behavior of a TP. We also propose
a countermeasure to undertake in order to avoid such an
attack as well as any replay attacks to the aforementioned
protocol.

1. Introduction

One of the most recent trends, undertaken by the Com-
puter Security community for the construction of more se-
cure Information and Communication Technology systems,
is based on the use of Trusted Computing Platforms (TPs).
Roughly speaking, TPs are computing platforms which con-
tain built-in trusted components whose functionalities can
be used for building secure services inside the platform such
as secure boot, digital signatures, software integrity check-
ing, and so on.

Initially inspired by the seminal work of Arbaugh et
al. [6], TPs have been extensively studied in these last years
and various computational model based on the TP concept
appeared in literature (see for example [10, 20, 2]). In
this paper we will concentrate our attention on the model
proposed by the Trusted Computing Group (TCG) [2], a
multi-vendor consortium formerly known as the Trusted
Computing Platform Alliance (TCPA). The TCG has pro-
posed a specification for systems that, by using a modified
BIOS and a supplementary chip hardwired on the mother-
board, can systematically verify the integrity of each soft-

ware component. The basic building block of the frame-
work is known as the Trusted Platform Module (TPM),
whose main task is to provide facilities that can be used
to verify the integrity of the system as well as to grant the
access to protected resources only to trusted components.
For performing such a task the TPM executes a set of well
defined protocols which have been designed for resisting to
various types of attacks.

In this paper we are interested in the Object-Independent
Authorization Protocol (OIAP), used by the TPM for per-
forming authorization tasks and specifically designed for
resisting to replay attacks. In particular, we will show that
during the execution of such a protocol, a replay attack is
indeed possible, and there exists the opportunity for an in-
truder to capture a message M exchanged between the TPM
and some authorized user, and to use M in a future session
for compromising the correct behavior of the trusted plat-
form. We will also be able to provide a formal proof of
the existence of such a bug via a model checker. The coun-
termeasures for solving the problem have been investigated
and a possible solution will be described as well.

The rest of the paper is organized as follows: in Section 2
we describe the notation used throughout the paper. In Sec-
tion 3 we recall the main concepts of the TCG specification
with a focus on the authorization protocols (Section 4). In
Section 5 we describe the attack we found, and in Section 6
we describe our use of a model checker to prove the exis-
tence of the design flaw. In Section 7 we propose a modifi-
cation of the protocol to protect a system against our attack,
and, finally, in Section 8, we draw some conclusions.

2. Notation

In this section we describe the notation which will be
used throughout the paper.

In the following we will use capital characters for de-
noting strings over the binary alphabet, while capital bold

letters will denote generic entities, such as hosts, hard-
ware/software components, generic users and so on.

• X.Y denotes X concatenated to Y ;

• A → B: M denotes that A sends the message M to B;

• Si denotes the i-th authorization session;

• A′, A′′, · · · indicates further “instances” of a pseudo-
random number A, e.g., A′ would indicate another
pseudo random number, different from A, generated
from the same pseudo-random number generator, so
that A and A′ have the same features, and so on.

3. Trusted Computing Platforms

Trusted Platforms (TPs) are computing platforms that in-
clude a set of built-in hardware components which are used
as a basis for creating trust in software processes. Such
components are the Core Root of Trust for Measurement
(CRTM) and the Trusted Platform Module (TPM). They are
hardwired on the TP motherboard and have to be “trusted”1

and protected from tampering in order to consider the whole
computing platform a TP.

Roughly speaking, TPs provide three additional func-
tionalities with respect to standard computing platforms:

1. identity: a TP can be identified in a unique and secure
way, i.e., thus avoiding impersonation;

2. measurement: a TP can compute a “complete” and
reliable integrity check of its software and hardware
components;

3. protected storage: the TP may provide protec-
tion to sensible data (passwords, cryptographic keys,
passphrases, data and so on).

A TP starts its execution by running the CRTM
code2 [3]. Such code performs an integrity check of every
hardware and software components (both code and data).
These measurements are then stored into a protected stor-
age provided by the TPM, through the use of a well de-
fined API [5, 4]. In fact, such measurement values are
stored into several tamper-resistant areas, called shielded lo-
cations. These are protected memory regions which can be
accessed only by using special protected capabilities, which
require the use of some form of authorization, defined more
extensively in Section 4. The most important shielded loca-
tions are the Platform Configuration Registers (PCRs) and

1Trusted here means that the behavior of these components have to be
certified by trusted third parties.

2Usually the whole BIOS or the BIOS Boot Block for compound
BIOSes.

Data Integrity Registers 3 (DIRs), which are also used to ef-
fectively store integrity measurements and to provide a se-
cure and authenticated boot sequence facilities [7]. More-
over, in order to enable a trusted verification of the soft-
ware environment, the TPM communicates the computed
integrity measurements to a challenger by exploiting a chal-
lenge/response protocol, as defined in [7, 18].

4. Authorization protocols

TPs use authorization protocols every time a subject is-
sues a command (for a list of such commands see [5]) which
requires the access to some protected resource. The main
scope of the authorization protocols is to release access ca-
pabilities to authorized subjects in compliance with the con-
fidentiality and integrity policies regarding the involved re-
source.

The TCG specification describes two main authoriza-
tion protocols: the Object-Independent Authorization Pro-
tocol (OIAP) and the Object-Specific Authorization Pro-
tocol (OSAP). OIAP opens an authorization session dur-
ing which the same command can be issued several times,
potentially acting on different protected resources. OSAP
works in a similar way, but, in a single authorization ses-
sion, every command has to refer to the same protected re-
source. In this paper we focus our attention on the OIAP.

4.1. OIAP

The OIAP works as follows. Let U be a generic subject
that wishes to use a resource R protected by the TPM T,
and let AR be a secret shared between U and T. Moreover,
let

• GC be the authorized command which U wants to ex-
ecute on R, that is, GC is a command which requires
authorization in order to be used. An authorization
protocol is used to provide such a requirement.

• Rc be a success return code,

• Re be an invalid authorization code,

• D be the data related to GC (it may be empty),

• RES be the result of the execution of GC on R (it
may be empty),

• Ne be a 160-bit non-predictable even random number
used to provide the freshness property (more on this,
later),

3This holds in the TCG specification version 1.1. Version 1.2 of the
specification generalizes the concept by introducing Non-Volatile memory
area and related capabilities.

• No be a 160-bit non-predictable odd random number
having the same Ne properties, and,

• Auth = {GC.S1.Ne.No} be the concatenation of
data on which a key-hashed cryptographic function has
to be computed in order to detect for corrupted data
transmission.

Initially, U requests to open an authorization session by
sending the command CMD OIAP to T (step 1, Figure 1),
and T sends back to U the session information needed to
handle the authorization session itself (step 2, Figure 1). If
such a step is correctly performed, U will send to T the
command GC to execute, which embeds the prove that she
knows AR (step 3, Figure 1). Afterwards, T will verify the
message authenticity and integrity and, if they are satisfied,
T will execute GC on behalf of U, sending back to U the
result obtained (step 4, Figure 1). Otherwise the connec-
tion will be closed by T. Figure 1 depicts the OIAP above
described, where resAuth = {Rx.GC.S1.N

′
e.No}, Rx is

either Rc (correct) or Re (error) accordingly to the sub-step
4 chosen.

1. U → T: CMD OIAP
2. T → U: S1, Ne

3. U → T: GC.R.D.S1.Ne.No.H(AR, Auth)

if the verification of H(AR, Auth) is successful, then
T execute GC on R and

4a. T → U: Rc.GC.RES.N ′
e.No.

H(AR, resAuth)

else

4b. T → U: Re.GC.RES.N ′
e.No.

H(AR, resAuth)

Figure 1. Description of the OIAP

4.2. OIAP threats

As any communication protocol, OIAP is subjected to
replay, Man-in-The-Middle (MiTM) and Denial of Service
(DoS) attacks. TCG specification only addresses the first
two types of attacks, while explicitly does not take into
account DoS [7]. Indeed, the specification does not avoid
someone to be in the middle of a communication (note that
OIAP has been designed in order to also work in a network
environment [5]), but it tries to provide a protection against
a Dolev-Yao MiTM, which acts like “an active saboteur,
[one] who may impersonate another user and may alter or
replay the message” [9].

In order to deal with replay and packet mangling attacks,
the OIAP adopts, respectively, a rolling nonces paradigm
and Hashed Message Authentication Code (HMAC).

Nonces are unique non-predictable pseudo-random num-
bers which are used just once4. Rolling nonces are ex-
changed back and forth between the involved parties, in or-
der to permit them to check for the freshness of messages
(freshness property) [17]. In fact, referring to the OIAP
protocol previously described, T can verify (see Figure 1,
step 3), that the received nonce is equal to Ne, as chosen
and sent in step 2 by U. More generally, any involved party
is able to verify the freshness property for each exchanged
message and, as long as the parties verify this property, they
are able to detect if a packet coherently belongs to the on-
going session.

On the other side, TCG-based TPs are able to detect
packets alteration by deploying HMAC, but they are not
able to distinguish between common network errors and
real packet mangling performed by a MiTM. This will play
a fundamental role in the OIAP attack we devised as ex-
plained in Section 5.

5. The attack

In this section we will outline the strategy adopted for
attacking the OIAP, while a more formal description of the
attack will be presented in Section 6. The attack exploits a
particular feature of the OIAP, as defined in the TCG spec-
ification, which requires that the authorization session cre-
ated by a genuine TPM_OIAP command is kept opened in-
definitely by a TPM, unless either it chooses to close the
session explicitly or an erroneous message (i.e., a message
with wrong parameters or an invalid HMAC) is received on
that authorization session.

Given such a specification an attacker may be able to
perform a straight replay attack ([19, 14]) in the following
way. After the user and the TPM have exchanged the first
two messages of the protocol (Steps 1, 2 of Figure 2) the
attacker intercepts the next message originating from a user
(Step 3 of Figure 2), and stores it in order to be able to inject
the message into another run of the protocol. Meantime, the
attacker fools the user by sending her a reset message (re-
member that the attacker lies in between the communication
channel between the user and the TP). This message resem-
bles a “legal” reply message, such as the one sent at step 4a,
shown in Figure 1, but with some erroneous bits in it, giving
the “illusion” of a temporary network error. Moreover, we
are assuming that, as it is common practice, the client appli-
cation, closes a connection when something goes wrong [1],
though this is not explicitly stated in the specification.

At the end of this phase there exists an open authorized
session towards the TPM, and the user is not aware of it. At

4Nonces can be thought as a “numbers [to be used] once”.

this point, the intruder will wait for the next user action and,
subsequently, he will take the appropriate decision.

Having seen that his first connection attempt failed the
user could:

(a). open a new authorization session and re-send the faulty
command acting on different data;

(b). re-send the faulty command on the same data;

(c). execute another kind of authorized command.

Obviously from the intruder point of view only the case (a)
can produce significant consequences in order to perpetrate
the attack in a meaningful way, considering the fact that the
attacker has already been able to start the attack. In fact,
opting for case (c) would bring us to another run of the pro-
tocol where the attack might be performed again from the
beginning, while opting for case (b) would not produce sig-
nificant effects beside a mere DoS attack due to request,
reset messages sent back and forth respectively by the user
and the attacker. Instead, if the user opted for case (a) the
last phases of the attack might take place. In fact, using the
aforementioned still opened authorization session and the
intercepted message, the intruder will be able to overwrite a
TPM protected resource, hopelessly compromising the cor-
rect behavior of the platform.

As a consequence of such an attack, the “active saboteur”
is able to replay any (captured) authorized commands at
will, potentially altering the sense of trust users place in the
TP. For example, the TCG specification provides a shielded
location, known as Non-Volatile (NV) storage area, that is
protected by the TPM in a way that only protected capabil-
ities can modify its value. If such an area is used to hold
important integrity measurement values, playing the attack
herein proposed, would permit an attacker to overwrite the
stored “up-to-date” value, with an old “out-of-date” one,
previously captured. Doing so, the attacker would be able
to replace up-to-date measured software packages or data,
with older ones that represent a security risk for the system,
avoiding TP detection.

For ease of exposition, we denoted by X∗ an intruder
who impersonates the entity X and we divided the attack
into three phases, namely the message storing phase (Fig-
ure 2) aimed at intercepting the message, the message re-
sending phase (Figure 3) aimed at observing the user be-
havior and the replay attack phase (Figure 4) in which the
attack is finally perpetrated.

6. Model checking the protocol

We analyzed formally the OIAP in order to mathemati-
cally prove the existence of the design flaw described in the
previous section. Our analysis was performed using SPIN,

Message storing phase

1a. U → T∗: CMD OIAP
1b. U∗ → T: CMD OIAP
2a. T → U∗: S1.Ne

2b. T∗ → U: S1.Ne

3a. U → T∗: GC.R.D.S1.Ne.No.
H(AR, Auth)

3b. T∗ → U: reset

Figure 2. The OIAP message storing attack
phase.

Message re-sending phase

4a. U → T∗: CMD OIAP
4b. U∗ → T: CMD OIAP
5a. T → U∗: S2.N

′
e

5b. T∗ → U: S2.N
′
e

6a. U → T∗: GC.R.D′.S2.N
′
e.N

′
o.

H(AR, Auth)
6b. U∗ → T: GC.R.D′.S2.N

′
e.N

′
o.

H(AR, Auth)
7a. T → U∗: Rc.GC.RES′.N ′′

e .N ′
o.

H(AR, resAuth)
7b. T∗ → U: Rc.GC.RES′.N ′′

e .N ′
o.

H(AR, resAuth)

Figure 3. The OIAP message re-sending at-
tack phase.

Replay attack phase

8a. U∗ → T: GC.R.D.S1.Ne.No.
H(AR, Auth)

8b. T → U∗: Rc.GC.RES.N ′
e.No.

H(AR, resAuth)

Figure 4. The OIAP replay attack phase.

a model checker written by Gerald J. Holzmann [13] based
on Büchi automata5. Given a system M (appropriately
modeled) and a property P (often expressed as a propo-
sition in a Linear Temporal Logic), the model checker is
able to verify whether P is valid in any sequence of states
which M may traverse. More precisely, SPIN represents M
and the negation of P as a Büchi automaton, respectively
automatonM and automaton¬P , and computes the intersec-
tion I of the languages accepted by the automatonM and the
automaton¬P . If it is empty, then the property P is verified
for every possible sequence of states of M . Conversely,
every phrase of the non-empty language I is a stat of M
in which P is not verified. In our context, M is a system
executing the OIAP and P is a proposition stating that the
protocol execution is not flawed.

In order to model a system, SPIN provides its own de-
scription language called PROMELA. PROMELA allows for
expressing state-based computations non-deterministically.
The computation flow is regulated by guarded commands
à la Dijkstra and communication among different sequen-
tial processes is expressed by Hoare’s CSP primitives [11].
Properties to be checked can be expressed as formulae in a
linear time temporal logic (LTL), as system or process in-
variants, as formal Büchi automata, or as “never” claims.

From its beginning SPIN was used to find flaws in net-
work protocols [12], however its use in a security context is
quite new. PROMELA does not provide any security prim-
itives, such as encryption or hashing and even if model
checkers with such capabilities exist (see for example Bru-
tus [8]), we decided to build a model of OIAP in which the
use of cryptographic hash functions were abstracted away.

A challenging problem we faced was that, since we
wanted to check OIAP strength against replay attacks, we
had to model not only the protocol itself, but also the at-
tacker. To this end, we decided to model the attacker as
a process able to produce every valid OIAP related com-
mand. Moreover, we assumed the attacker was unable to
forge hashes, since we think HMAC usage is correctly de-
ployed by the TCG specification as protection against pack-
ets mangling attacks6. In the following we sketch the model
we used and the results we found.

6.1. Modeling the property that should be preserved

PROMELA models consist of processes (which we call
actors), message channels, and variables. Actors are global
objects that represent the concurrent entities of the system
under analysis. Messages are modeled without consider-
ing HMACs, since we were interested just in analyzing

5Büchi automata are finite state automata with infinite inputs able to
recognize ω-regular languages.

6That is also the reason why we removed cryptographic has functions
away from our model description.

counter-replay attack strength. As actors we considered a
Caller, a MiTM and a TPM. Following the Dolev-Yao [9]
model, in order to represent an intruder (MiTM) who lies
in the middle of the communication channel between the
Caller and the TPM, we defined two half-duplex unbuffered
“physical” channels, namely caller_mitm_wire and
mitm_tpm_wire, that represent a unique logic channel
used for Caller/TPM communication, as shown in Figure 5.

Subsequently using PROMELA we modeled the Caller,
MiTM and TPM using the following criteria (the code we
implemented is reported in the Appendix A).

The Caller strictly follows the OIAP rules. Precisely, the
caller can:

1. open an authorization session with the TPM by which
an authorized command is executed;

2. send an authorized request command to the TPM in
order to use a TPM protected object; an authorization
session must be previously opened, i.e., a TPM_OIAP
must be issued before sending an authorized com-
mand;

3. receive the authorized command reply from the TPM.

The TPM is also acting strictly according to the TCG
specification, so it can:

1. open authorization session as requested by a caller, by
setting up all the relevant protocol’s information, such
as nonces, needed by the TPM itself or that have to be
sent back to the caller;

2. execute an authorized command which acts on some
TPM protected objects, after having verified com-
mand’s consistency, i.e., its authentication and in-
tegrity;

3. send back to the caller a reply about the just issued au-
thorized command, by stating whether everything went
fine or not.

The MiTM lies in the middle of the communication
channel between the caller and TPM actors and it is not
constrained to necessarily follow the protocol rules. In fact,
the MiTM “model” acts like “an active saboteur, [one] who
may impersonate another user and may alter or replay the
message” [9]. We model him as an actor able to:

1. open an authorization session with the TPM, like the
caller. However no authorized command can be gener-
ated, since the MiTM does not know the authorization
shared secret;

2. forward legal messages coming from the caller going
to the TPM and viceversa.

Figure 5. MiTM environment.

3. store in transit messages;

4. inject previously stored message, in attempt to perform
replay attacks;

5. close opened authorization sessions by sending mal-
formed packets.

Once defined the model of the system we have to formal-
ize the property which the system should always satisfy. In
order to define such a property, we associated three session
states, namely Failed, Success and Unknown, to the TPM
and the Caller.

We say that during a protocol session, the TPM enters
the Failed state when it receives a request command with
wrong parameters such as nonces, session parameters and
so on. When the TPM receives such a wrong command,
it closes the connection, if it has been previously opened.
Instead, if the command is a valid one, the TPM executes it
and after the execution, it enters into Success state, sending
back to the Caller the command answer. In all the other
cases the TPM session state will be Unknown.

On the Caller side, we used the Failed state when the
Caller receives a command answer with wrong parameters.
If so happen, the Caller closes the connection and enters
into Failed state. Instead, if the Caller receives the right
command answer, it enters into the Success state and closes
the connection. In all the other cases the Caller session state
will be set to Unknown. Using these three states, we are
able to define an OIAP logical property as follows.

In order to perform a replay attack, a MiTM has to
be able to inject to the TPM a captured authorized com-
mand and let this command be executed, without any caller
knowledge. If such elusion occurs, the caller session may
theoretically fall into two main states, namely either Failed
or Success state. Indeed, the latter case cannot happen be-
cause the MiTM has no ability to reply with a legal autho-
rized command answer, unless he knows the shared secret
protecting the target resource. On the other hand, the TPM
authorization session may fall into either an Unknown or a
Success. Thus, if the caller authorization session falls into
the Failed state and the TPM authorization session falls into
the Success state, the MiTM has been able to perform a re-
play attack successfully, as described in Section 5.

Thus a system where a MiTM has no success has to be
characterized by the following:

Correctness Property 1 (Session Understanding) Let S
be a set of sessions of the OIAP, and Tt and Tc the set of
the states of respectively the TPM and the Caller during all
the sessions contained in S. Given ts ∈ Tt and cs ∈ Tc,
both bound to the same authorization session s ∈ S, then

@s ∈ S : (ts = Success ∧ cs = Failed)

In other words, Property 1 means that both TPM and
Caller session states should be synchronized7.

6.2. Results of the analysis

Both the model M and the above property have been
given as input to SPIN which exposed two major OIAP
drawbacks, namely a DoS attack and a more dangerous
trouble related to the counter-replay mechanism adopted by
the TCG specification.

While the DoS attack is already considered by the TCG
specification and it is not an issue at all in this context (al-
though it exists), the counter-replay measures weaknesses
are, indeed, a serious security issue, since, it is possible to
perform a straight replay attack as shown in the trace de-
picted in Figure 6. More precisely, after the OIAP session
is opened by the TPM on behalf of the Caller, the MiTM
stores the authorized command issued by the Caller and re-
sets (i.e., a forced “close”) her just opened authorization
session. At this point, the Caller enters into the state Failed,
while nothing can be said about the TPM, whose corre-
sponding session is still opened and thus set to an Unknown
state. Sooner or later the MiTM will be able to replay the
previously captured authorized message, without the Caller
knowledge. At this point, no changes have been done on
the Caller session state, while the TPM enters into a Suc-
cess state. As we can see, this is in contrast with the logical
property aforementioned, leading to an inconsistent session
understanding between the involved parties.

7. A proposed solution

As just mentioned, rolling nonces were the mechanism
adopted by OIAP for avoiding replay attacks. Our attack,

7Although we considered the case of ts = Failed ∧ cs = Success
in the OIAP PROMELA description we made, the logical property here ex-
posed does not consider it since it should not happen in a real case scenario.

Figure 6. Overall OIAP replay attack.

Figure 7. Overall OIAP replay attack’s solu-
tion.

however, shows that the mechanism was not sufficient con-
firming that, as just noted by other authors ([16, 15]), rolling
nonces are not a silver bullet against replay attacks.

In our specific case the attack was possible because of the
possibility of having multiple open sessions and the lack of
a coherent and synchronized “session knowledge” between
the parties involved. In fact, at the end of our replay attack,
T and U, have a different knowledge about the session state.

The countermeasure we devised in order to avoid this
situation is based on the introduction in any authorized ex-
changed message between the parties, of a new field whose
value is computed by the user. Such a field is a bitmask and
represents the user knowledge about the state of all autho-
rization sessions previously opened. Its value is computed
by the user according to the following rules:

• the i-th bit is set to 0 if the i-th authorization session is
considered either open or in an unknown state;

• the i-th bit is set to 1 if the i-th authorization session
is considered failed, i.e., either a reset or an erroneous
message8 has been received as a response to an autho-
rized command previously sent (see step 3b, Figure 2).

Using such an information, which will be protected from
tampering by using HMAC, the TPM will become aware of
the user knowledge about “established” connections and it
will be able to detect any inconsistency. Furthermore, when
it finds some incoherence between its own knowledge and
the user one (e.g., user S1 Failed and TPM S1 Unknown),
it closes the correspondent session. In such a way, it will be
impossible for any attacker to exploit any pending session
anymore in a significant manner as explained in Section 5.

Obviously the dimension of the bitmask will bound the
number of open authorization sessions, thus the bitmask
field should be big enough to represent a reasonable number
of them.

8. Conclusions

In this paper, we analyzed one of the core components
of the Trusted Computing Platform proposed by the Trusted
Computing Group. In particular, we focused our attention
on the Object-Independent Authorization Protocol, which
is involved whenever a TPM protected resource has to be
used.

Although the TCG specification sensibly tried to protect
this protocol from both replay and MiTM attacks (more pre-
cisely packet mangling actions), our analysis showed that
the protocol is flawed by design and a replay attack is in-
deed possible.

We proposed a solution to solve the problem, based on
the idea of recording and sharing the sessions state between

8So far, they are, however, indistinguishable.

the communicating parties. It is our opinion that the pro-
posed solution can be improved in order to also allow for
further misuse detection by allowing a party to detect MiTM
presence. To this end, work is in progress for investigating
such issues.

9. Acknowledgments

We would like to thank the anonymous referees for their
useful suggestions and comments on this paper.

References

[1] IBM Watson Research Center, Global Security Analysis Lab:
TCPA Resources. http://www.research.ibm.com/
gsal/tcpa/TPM-2.0.tar.gz.

[2] Trusted Computing Group. http://www.
trustedcomputinggroup.org.

[3] TCG PC Specific Implementation Specification. http://
www.trustedcomputinggroup.org, August 2003.

[4] TCG Software Stack (TSS) Specification. http://www.
trustedcomputinggroup.org, August 2003.

[5] Trusted Platform Module Main Specification, Part 1: De-
sign Principles, Part 2: TPM Structures, Part 3: TPM Com-
mands. http://www.trustedcomputinggroup.
org, October 2003.

[6] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and
reliable bootstrap architecture. In SP ’97: Proceedings of
the 1997 IEEE Symposium on Security and Privacy, pages
65–71. IEEE Computer Society, 1997.

[7] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and
G. Proudler. Trusted Computing Platforms, tcpa technology
in context. Prentice Hall PTR, 2003.

[8] E. M. Clarke, S. Jha, and W. Marrero. Verifying Security
Protocols with Brutus. ACM Transactions on Software En-
gineering and Methodology, 9(4):443–487, Oct. 2000.

[9] D. Dolev and A. C. Yao. On the Security of Public
Key Protocols. IEEE Transaction on Information Theory,
29(2):198–208, 1983.

[10] P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman. A Trusted Open Platform. Computer, 36(7):55–
62, 2003.

[11] C. Hoare. Communicating Sequential Processes. Elettronic
version available at http://www.usingcsp.com, first
published in 1985 by Prentice Hall International, 2004.

[12] G. J. Holzmann. A theory for protocol validation. IEEE
Transactions on Computers, C-31(8):730–738, Aug. 1982.

[13] G. J. Holzmann. The model checker spin. IEEE Trans.
Softw. Eng., 23(5):279–295, 1997.

[14] T. Kwon and J. Song. Clarifying straight replays and forced
delays. SIGOPS Oper. Syst. Rev., 33(1):47–52, 1999.

[15] G. Lowe. Breaking and fixing the needham-schroeder
public-key protocol using fdr. In TACAs ’96: Proceedings of
the Second International Workshop on Tools and Algorithms
for Construction and Analysis of Systems, pages 147–166.
Springer-Verlag, 1996.

[16] C. Meadows. Analyzing the Needham-Schroeder Public-
Key Protocol: A Comparison of Two Approaches. In ES-
ORICS ’96: Proceedings of the 4th European Symposium on
Research in Computer Security, pages 351–364. Springer-
Verlag, 1996.

[17] Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin
Lowe, and Bill Roscoe. Modelling & Analysis of Security
Protocols. Addison-Wesley, 2000.

[18] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and Implementation of a TCG-based Integrity Measurement
Architecture. In Proceedings of the 13th USENIX Security
Symposium, pages 223–238, 2004.

[19] P. Syverson. A taxonomy of replay attacks. In Proceedings
of the 7th IEEE Computer Security Foundations Workshop,
1994.

[20] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: a virtual machine-based platform
for trusted computing. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems princi-
ples, pages 193–206. ACM Press, 2003.

A. PROMELA source code

Global data, property and system initialization
mtype = {TPM_OIAP, ACK, CMD, ANS, FINISH}

typedef payload {
bit session; /* only 2 sessions permitted */
short ne;
short no;
bool cont;
/* int hmac; */

}

chan caller_mitm_wire = [0] of { mtype, payload };
chan mitm_tpm_wire = [0] of { mtype, payload };
byte no[2];
byte ne[2];

#define CONSISTENT(s) (no[s] == r_no && ne[s] == r_ne)

#define FAIL 2
#define SUCCESS 1
#define UNKNOWN 0

byte tpm_session_understanding[2];
byte caller_session_understanding[2];

#define MAX_CALLER_ACTIVITY 100

#define PROPERTY ((tpm_session_understanding[0] == FAIL \
&& caller_session_understanding[0] == SUCCESS) || \
(tpm_session_understanding[1] == FAIL \
&& caller_session_understanding[1] == SUCCESS) || \
(tpm_session_understanding[0] == SUCCESS \
&& caller_session_understanding[0] == FAIL) || \
(tpm_session_understanding[1] == SUCCESS \
&& caller_session_understanding[1] == FAIL))

active proctype monitor(){

atomic{
PROPERTY -> assert(!PROPERTY);

}

}

init{

atomic {

no[0] = 1; no[1] = 1; ne[0]=0; ne[1]=0;

caller_session_understanding[0] = UNKNOWN;
caller_session_understanding[1] = UNKNOWN;
tpm_session_understanding[0] = UNKNOWN;
tpm_session_understanding[1] = UNKNOWN;

run tpm(0); /* run tpm(1); */
run mitm();
run caller(0); /* run caller(0); */

timeout ->
mitm_tpm_wire!FINISH(0,0,0,0);
caller_mitm_wire!FINISH(0,0,0,0);

}
}

Caller code
proctype caller(bool cont){

byte r_no, r_ne; /* received even nonce and odd nonce */
bit r_session; /* received session */

do
:: no[0] + no[1] > MAX_CALLER_ACTIVITY -> break
:: else ->

caller_mitm_wire!TPM_OIAP(0,0,0,0);
caller_mitm_wire?ACK(r_session,r_ne,_,_);

do
:: no[0] + no[1] > MAX_CALLER_ACTIVITY -> goto END
:: else ->

atomic {
no[r_session] = no[r_session] + 2;

caller_session_understanding[r_session] = UNKNOWN;
caller_mitm_wire!CMD(r_session, r_ne, no[r_session], cont);

}
atomic {

caller_mitm_wire?ANS(eval(r_session), r_ne, r_no, _);

if
:: !CONSISTENT(r_session) ->

/* Exit without retrying */
caller_session_understanding[r_session] = FAIL; break

:: !CONSISTENT(r_session) ->
caller_session_understanding[r_session] = FAIL;

:: CONSISTENT(r_session) && cont ->
caller_session_understanding[r_session] = SUCCESS;

:: CONSISTENT(r_session) && !cont ->
caller_session_understanding[r_session] = SUCCESS;
break /* Exit without retrying */

fi;
}

od;
od;

END:
printf("End Caller")

}

TPM code
proctype tpm(bit session){

byte r_ne, r_no; /* received even and odd nonce */
bool r_cont; /* session continued */
bool consistent;

do
:: mitm_tpm_wire?FINISH(_,_,_,_) -> break
:: mitm_tpm_wire?TPM_OIAP(_,_,_,_) ->

atomic {
ne[session] = ne[session] + 2;
tpm_session_understanding[session] = UNKNOWN;
mitm_tpm_wire!ACK(session, ne[session], 0, 0);

}
do
:: mitm_tpm_wire?FINISH(_,_,_,_) -> goto END
:: atomic {

mitm_tpm_wire?CMD(eval(session), r_ne, r_no, r_cont);
consistent = CONSISTENT(session) };

if
:: atomic { consistent ->

tpm_session_understanding[session] = SUCCESS;
ne[session] = ne[session] + 2;
mitm_tpm_wire!ANS(session, ne[session], r_no, r_cont);

if
:: r_cont -> skip

:: else -> break
fi;

}
:: else -> atomic {

/*
* tpm_session_understanding[session] = FAIL;
*
* The command sent on this session was not successful due to
* nonce mismatch but we’re gonna to serve another session,
* giving a wrong ans back to the caller.
*
* There’s no need for a FAIL tpm session since we’re gonna try
* to serve another one (setting its state to UNKNOWN)

*/

mitm_tpm_wire!ANS(session, 0,0,0);
break;

}
fi;

od;
od;

END:
printf("End TPM")

}

MiTM code
proctype mitm(){

payload r_oiap, r_ack, r_cmd, r_ans;

bit r_oiap_session, r_ack_session, r_cmd_session, r_ans_session;
short r_oiap_ne, r_ack_ne, r_cmd_ne, r_ans_ne;
short r_oiap_no, r_ack_no, r_cmd_no, r_ans_no;
bool r_oiap_cont, r_ack_cont, r_cmd_cont, r_ans_cont;
bool sent_oiap;

do
:: caller_mitm_wire?FINISH(_,_,_,_);
:: caller_mitm_wire?TPM_OIAP(r_oiap_session,r_oiap_ne,r_oiap_no,r_oiap_cont);
:: caller_mitm_wire?ACK(r_ack_session,r_ack_ne,r_ack_no,r_ack_cont);
:: caller_mitm_wire?CMD(r_cmd_session,r_cmd_ne,r_cmd_no,r_cmd_cont);
:: caller_mitm_wire?ANS(r_ans_session,r_ans_ne,r_ans_no,r_ans_cont);

:: caller_mitm_wire!TPM_OIAP(r_oiap_session,r_oiap_ne,r_oiap_no,r_oiap_cont);
:: caller_mitm_wire!ACK(r_ack_session,r_ack_ne,r_ack_no,r_ack_cont);
:: caller_mitm_wire!CMD(r_cmd_session,r_cmd_ne,r_cmd_no,r_cmd_cont);
:: caller_mitm_wire!ANS(r_ans_session,r_ans_ne,r_ans_no,r_ans_cont);
:: caller_mitm_wire!ANS(0,0,0,0);

:: mitm_tpm_wire?TPM_OIAP(r_oiap_session,r_oiap_ne,r_oiap_no,r_oiap_cont);
:: mitm_tpm_wire?ACK(r_ack_session,r_ack_ne,r_ack_no,r_ack_cont);
:: mitm_tpm_wire?CMD(r_cmd_session,r_cmd_ne,r_cmd_no,r_cmd_cont);
:: mitm_tpm_wire?ANS(r_ans_session,r_ans_ne,r_ans_no,r_ans_cont);

:: mitm_tpm_wire!TPM_OIAP(r_oiap_session,r_oiap_ne,r_oiap_no,r_oiap_cont);
:: mitm_tpm_wire!ACK(r_ack_session,r_ack_ne,r_ack_no,r_ack_cont);
:: mitm_tpm_wire!CMD(r_cmd_session,r_cmd_ne,r_cmd_no,r_cmd_cont);
:: mitm_tpm_wire!ANS(r_ans_session,r_ans_ne,r_ans_no,r_ans_cont);
:: mitm_tpm_wire!ANS(0,0,0,0);
od

}

