A Replay Attack in the TCG Specification and a Solution

Danilo Bruschi Lorenzo Cavallaro Andrea Lanzi Mattia Monga

Università degli Studi di Milano Dipartimento di Informatica e Comunicazione {bruschi, sullivan, andrew, monga}@security.dico.unimi.it

Annual Computer Security Applications Conference 2005

Table of Contents

- Trusted Computing Platforms
 - Authorization Protocols
- 2 Replay Attack
 - Attack Schema
- Model Checking
- Proposed Solution
- Conclusion and Future Works

Trusted Computing Platforms What are they?

According to the Trusted Computing Group (TCG) Specification, a Trusted Computing Platform (TP) is

 a Computing Platforms with built-in trusted hardware components endorsed by trusted third parties

These components, called *Roots of Trust*, provide secure services such as

- secure boot
- software integrity checking
- digital signatures
-

TCG-based Trusted Computing Platforms Roots of Trust Components

A TP is composed by two main trusted hardware components

Core Root of Trust for Measurement (CRTM)

It starts the initial integrity check of every hardware and software components

Trusted Platform Module (TPM)

It provides cryptographic and protected storage facilities

TCG-based Trusted Computing Platforms Main Functionalities

- Identity: any TP has an identity that cannot be forged
- **Measurement**: a TP can compute a *complete* integrity check of its software and hardware components
- **Protected Storage**: a TP can provide protection to *sensitive* data (i.e., passwords, cryptographic keys, passphrases, . . .)

Authorization Protocols General Concepts

Every time Alice wants to use a TPM-protected resource, she needs to use an *Authorization Protocol*. Thus, she *must*

- know the secret bound to the resource
- provide a proof of this knowledge to the TPM, during an existing authorization session
- ⇒ Authorization Protocols manage *authorization sessions* and verify subject's clearances for this purpose

Authorization Protocols Existing Authorization Protocols

The TCG Specification defines two main Authorization Protocols

Object-Independent Authorization Protocol (OIAP)

A command can potentially be issued several times, in a single authorization session, acting on different protected resources

Object-Specific Authorization Protocol (OSAP)

Different commands can potentially be issued several times, in a single authorization session, acting on the same protected resource

Authorization Protocols Protocol Threats and Countermeasures

According to the TCG Specification, Authorization Protocols have been designed in order to prevent the following threats

Replay Attack

⇒ use of pseudo-random numbers, *nonces*, to provide a *freshness* property

Packet Mangling Attack

 \Rightarrow use of HMAC to provide authentication and integrity

Replay Attack OIAP Feature Leveraged by the Attack

According to the TCG Specification, an authorization session is *kept open* indefinitely by a TPM, unless

• an erroneous message is received on an existing authorization session, i.e., wrong command arguments or invalid HMAC.

Message Resending Phase

Message Resending Phase

Message Resending Phase

Replay Attack Phase

Replay Attack Phase

Model Checker and Attack Property What is wrong with the TCG Specification?

Model Checking techniques have been used to better understand the attack properties

- We modeled Alice, Mallory and the TPM using the SPIN model checker
- We noticed that a coherent and consistent session knowledge shared between the parties is missing from the TCG Specification
- ⇒ Hints about a solution just came up. . . :-)

Proposed Solution

We propose to patch the hardware component TPM, by introducing a HMAC-protected **bitmask** in any authorized exchanged message, where

- the **i-th** bit is 0 if the **i-th** authorization session is considered either **open** or in an **unknown** state;
- the i-th bit is 1 if the i-th authorization session is considered failed
- ⇒ coherent and consistent shared session knowledge

Conclusion and Future Works

- We recall TCG-based Trusted Computing Platforms
- Focus on TCG-based TPs Authorization Protocols
- We show a Straight Replay Attack against the Open-Independent Authorization Protocol, formally proved with the SPIN Model Checker
- We propose a solution based on the concept of shared session knowledge
- We are investigating a formal proof of the proposed solution

Thanks!

THANK YOU! :-)

