
Less harm, less worry or how to improve network security by bounding system
offensiveness

D. Bruschi, L. Cavallaro, E. Rosti
Dipartimento di Scienze dell’Informazione

Università degli Studi di Milano
Via Comelico 39, 20135 Milano – Italy�

bruschi@, lc529863@silab., rose@ � dsi.unimi.it

Abstract

In this paper we describe a new class of tools for pro-
tecting computer systems from security attacks. Their dis-
tinguished feature is the principle they are based on. Host
or network protection is not achieved by strengthening their
defenses but by weakening the enemy’s offensive capabili-
ties.

A prototype tool has been implemented that demon-
strates that such an approach is feasible and effective. We
show that some of the most popular DoS attacks are effec-
tively blocked, with limited impact on the sender’s perfor-
mance. Measurements of the implemented prototype show
that controlling the outgoing traffic does not affect perfor-
mance at the sender machine, when traffic is not hostile. If
traffic is hostile, the limited slow down experienced at the
source is the price to pay to make the Internet a safer place
for all its users.

The limited performance impact and the efficacy in at-
tack prevention make tools like the one presented in this
paper a new component of security architectures. Further-
more, such a type of tools represents an effective way to ad-
dress security problems that are still unsolved or for which
only partial solutions are available, such as the liability
problem, intranet security, security tools performance and
the use of distributed tools for intrusion.

1. Introduction

System defense and protection of victim machines have
been among the main goals of computer security since its
origins. A variety of tools and methodologies have been
developed (i.e., firewalls, intrusion detection systems, anti-
virus, access control systems, etc.) that proved to be quite
effective in protecting systems and networks from intrud-
ers [9]. They implement a common philosophy: improving

system protection by stacking a series of barriers between
the system and the outside world. They reflect a local per-
spective on security, where individual protection is the goal,
regardless of what may happen outside on the network.

Such a philosophy and the tools based on it, however, are
no longer sufficient to keep up with the current technologi-
cal and legal trends. Due to the increasing popularity of en-
crypted traffic using IPSec, SSL, or VPN protocols, it is be-
coming harder and harder for nowadays protections, such as
firewalls and IDS’s, to transparently and effectively perform
their tasks. In this case, the only viable solution would be
to perform checks before the payload is encrypted. Further-
more, because of the steady increase in network bandwidth
and speed, such tools cannot process packets fast enough to
keep up with network speed [11].

Protection oriented tools do not help computer owners
avoid liability since they do not prevent the systems they
are applied to from attacking other systems. There are coun-
tries, such as Italy, where according to the local computer
crime law, computer owners are liable for all the actions ex-
ecuted by their systems. In this case, even if a host becomes
the source of an attack as a consequence of an intrusion it
suffered, its owner can be legally prosecuted, although the
owner is not physically responsible for the attack. When
thousands of unaware hosts are exploited by sophisticated
distributed intrusion tools [5, 6, 7] to launch distributed de-
nial of service attacks, like the one of last February against
high profile Web sites [16], the liability case can be serious.

In this paper we present a prototype of a tool or class of
tools that complement the “classical” defensive approach
to computer security as they contribute to realize a global
perspective on security. In this perspective, security of the
global network as an entity improves by restraining the
harmful capabilities of its components, not only by hard-
ening their defenses. The tools we propose provide an in-
novative way to solve security problems and represent a first
answer to the limitations mentioned above.

The ultimate goal of our security tools, like any other
one, is to protect systems from attacks but, unlike and op-
posite to traditional tools, our tools do not build thicker and
stronger barriers around the system to be protected. Our
tools achieve their scope by limiting the harm the “enemy”
can do to the system. Such an approach has been proposed
in [1] and is based on the consideration that a computer may
be a victim and an attacker as well. Thus, in order to worry
less about security, we should not only protect our systems
but prevent them from doing any harm.

The tool we propose in this paper satisfies the following
properties: when installed on a host, it turns off the host at-
tacking capabilities and it requires the host to be re-installed
without the tool, for the host to be exploitable for attacks.
The tool is implemented as a kernel module that monitors
the host activity and blocks it when it does not conform to a
“good” behavior or, vice-versa, when it matches an “anoma-
lous” behavior, depending on the approach followed. As an
example, the prototype described in this paper is shown to
effectively block several well known Denial of Service at-
tacks at the source, thus disarming the hosts with respect to
the considered attacks.

By characterizing attacks at the originator, we can then
implement modules that recognize and block them. In our
perspective such modules should be collected to form an
“attack inhibition system.” They behave like network intru-
sion detection systems (NIDS) applied to outgoing traffic on
the attacking host, rather than to the incoming traffic on the
potential victim host. The philosophy is similar in the sense
that both our tool and NIDS apply a set of rules on the pack-
ets that allow to identify known attacks. Although similar
in principle, the two systems cannot simply exchange their
set of rules defining attacks as in our case the tool requires
the characterization from the source point of view. The in-
tegration of the signature set, i.e., the set of rules defining
the attacks, of our tool with that of NIDS such as Snort [12]
is currently under analysis.

Solutions like egress traffic filtering [13], where filter-
ing rules can be applied to the outgoing traffic on boundary
routers, have been proposed in order to prevent malicious
traffic to leave well defined boundaries such as corporate
intranets. What we propose here is an operating system ex-
tension that locally stops offensive activities, thus prevent-
ing any host to easily turn into an attacker.

In a short period of timethe approach proposed in this pa-
per could be effectively deployed in local environments, i.e.,
networks such as intranet or corporate LAN’s where hosts
may be centrally managed. In this case disarming technol-
ogy can provide an effective solution to problems such as
liability and intranet security. From a legal point of view, a
computer adopting such a technology could be considered
adequately configured to comply with the law that prohibits
hosts to be attack sources, thus relieving the owner from li-

ability. In case of an intranet, the disarming technology can
protect it from insiders’ attacks and help prevent insiders
from using the internal hosts to attack computers outside the
intranet perimeter. In the long term, the large scale deploy-
ment of disarming technologies would represent a signifi-
cant step towards an improvement of the global security as
fewer attacks would be possible, especially from unaware
systems. Disarmed hosts would block a fair share of at-
tacks at the source. A trusted list of disarmed hosts could
be compiled and used by tools such as firewalls and IDS’s
to improve their operational speed. Furthermore, with our
approach, intruders would have difficulties in finding hosts
where their agents for distributed attacks could be installed
and successfully activated. The proposed approach is not a
silver bullet and limitations to its applicability exist. How-
ever, we believe that they can be overcome. The first lim-
itation is the difficulty to impose our approach and have it
work on a geographic scale. This would not longer be an
issue if the proposed extensions became part of the distri-
butions of the most popular operating systems as a static
kernel module. The second limitation we see is that the pro-
posed extensions could be circumvented by sophisticated
users, like any other software protection. Yet, they would
still protect a system from “script kiddies” that use ready
made exploit programs downloaded from the network. So-
phisticated users that tried to bypass the proposed exten-
sions would have to remotely install a stripped version of
the operating system, which may not go easily unnoticed
nor be successful in all cases. In this case, a hardware im-
plementation based on ASIC technology could be adopted.

This paper is organized as follows. Section 2 describes
the architecture of the proposed tool. Section 3 illustrates
the details of the prototype implementation. Results of the
impact of the proposed module on system performance are
given in Section 4. Section 5 summarizes the contributions
of the paper and outlines directions of future research.

2. System architecture

In this section we describe the architecture of the pro-
posed tool with respect to the TCP/IP protocol stack archi-
tecture. Details of the implementation on a Linux system
are given in the next section.

We briefly recall that the path followed by an outgoing
packet, generated at the application level (i.e., with the stan-
dard socket interface), on its way to the network traverses
four layers. In a Unix system the data to be transmitted is
first converted into a linked list of mbuf data structures (the
internal memory allocation units of the TCP/IP protocols).
The TCP/UDP module is then called to construct the corre-
sponding header and checksum. The IP header and routing
information are added to the packet by the IP layer and fi-
nally the data link layer, generally the Ethernet layer, maps

the destination IP address to an Ethernet address, constructs
the Ethernet header and transmits the packet over the net-
work. Stream and datagram sockets interface the TCP/UDP
module, while raw sockets interface the IP layer directly.
Direct data link access is provided as well that allows to
bypass all of the above layers, either by specifying an ad-
dress family such as AF DLI, or by opening a BPF device,
depending upon the Unix flavor.

The ideal position where to place our tool is the data link
layer, as it works as a choke, the single point all packets
have to go through. Such a layer, however, has strict per-
formance constraints since it is the interface to the network
device. Burdening it with additional operations besides the
packet data link encapsulation would significantly hurt net-
work performance. For this reason, we prefer to check the
packets earlier on, at the IP level, in order to spare the lower
level modules from potentially useless work.

The tool we propose in this paper operates at the IP layer.
It is comprised of a static kernel module that applies packet
filtering rules to the outgoing packets when they are ready
to be passed on to the data link layer. The Hostile Outgoing
Traffic Interceptor (HOT-I) is added to the native IP stack as
a routine that manipulates a packet in the output chain, be-
fore the device driver receives it, as illustrated in Figure 1.
This way the module monitors the outgoing traffic, without
modifying the existing system. A data link layer module
that can block hostile Ethernet frames could be developed
in a similar way. Such a module would be useful to prevent
attacks such as ARP cache poisoning that require the gener-
ation of malicious packets at the data link layer in order to
bypass the legitimate ARP process [15]. We concentrate on
the IP layer because attacks at this level are more popular.
However, we successfully verified the applicability of our
approach to the lower level so that a data link layer module
is the next step in this project.

HOT-I modules can be executed on host computers as
well as network components such as routers. In this case
performance considerations are critical. The packet flow
is checked against attack signatures of known attacks and
blocked when an attack attempt is detected, similarly to
what an IDS does on the incoming traffic. The intercep-
tor requires attack characterizations, i.e., the behavioral pat-
terns typical of the various attacks. The more unique the
attack pattern behavior, the more precise the action of the
interceptor, i.e., the less false negative and false positive
signals the module will send. In case a hostile packet is
detected, the default action is to drop it. However, alterna-
tive and/or additional actions could be considered, such as
logging all the intercepted traffic or letting the packet out
anyway but signaling the superuser for further actions to
be taken. A separate module handles such a signaling part,
e.g., by raising alarms, suspending the allegedly offending
program, or logging the detected hostile activity.

input forward
output

HOT-I

stream
datagram
sockets

IP layer

network interface

network

TCP/UDP layer

alert
module

raw
sockets

Figure 1. The modified TCP/IP architecture
comprising the Hostile Outgoing Traffic Inter-
ceptor.

As the number of attack signatures grows, additional
rules must be specified unless the new attacks share some
general characteristics, e.g., source address spoofing, that
already force packet drop. Because the module is compiled
as a kernel static patch in order to prevent its easy removal,
the kernel must be recompiled and the system rebooted for
newly added rules to become active.

3. HOT-I prototype

In this section we describe the implementation of the
HOT Interceptor prototype. We then illustrate the attacks
it blocks.

3.1. The prototype

The prototype is implemented on a Linux based system
whose source code is available under the GNU copyleft li-
cense. The kernel version we use, release 2.2.14, provides
the firewalling extension, which has become a standard fea-
ture of later kernel releases. Such an extension is optional,
as it can be switched off at kernel compile time. It allows to
specify IP packet filtering rules for the input, forward, and
output packet chains, to add user-defined chains and to reg-
ister user-defined firewalls. The input, forward, and output
packet chains are managed by the call in firewall,
call fw firewall, call out firewall routines,
respectively, which scan the list of registered firewalls and

...

...

...

...

data link layer

call_out_firewall

network interface

IP packet
construction

network

fw_F

fw_0
HOT-I

check

ck_IP_ruleK

ck_IP_rule1

ck_UPD_ruleM

ck_UDP_rule1

ck_TCP_ruleN

ck_TCP_rule1

if IP_packet

if UDP_packet

if TCP_packet

Figure 2. The Linux firewalling extension and
the HOT-I module.

apply them to one packet at a time for the chain of inter-
est. The register firewall routine adds the firewalls
defined by the user to the list at a priority level specified
by the user and greater than 0, which is the system firewall
priority level. Such a priority scheme allows to design an in-
depth security architecture, as firewalls are checked in order
of decreasing priority values. A packet is accepted and can
proceed along its chain, skipping the next firewalls, when
the current firewall returns the value FW ACCEPT. A packet
is passed on to the next firewall in the stack when the cur-
rent one returns the value FW SKIP. A packet is blocked
and the next firewalls skipped when the returned value is
FW BLOCK.

In order to take advantage of the in-depth security archi-
tecture provided by the firewalling extension, we register
our module at level 1, so that the call out firewall
calls it before the system level firewall, as illustrated in Fig-
ure 2. Hostile packets are blocked by returning FW BLOCK.
Our module returns FW SKIP if a packet is “acceptable”
according to the rules implemented in it, so that the packet
is passed on to the system firewall. This way, after the
packet has passed the HOT-I checks, it has to go through
the system firewall controls, if any are specified for the out-
put chain. The host could be part of an intranet where a
corporate level policy is specified and implemented using
the system firewall. Such a policy could, for instance, pre-
vent the use of telnet and ftp sessions. HOT-I would not
block either type of packets as long as they are properly
constructed. Because the purpose of the HOT-I module is
to intercept hostile outgoing traffic, correctly constructed
ftp or telnet packets should be blocked at a different level.

Note that HOT-I can operate independently of the Linux
firewalling extension and can be ported to other Unix-based
platforms that do not provide it. Furthermore, HOT-I rules
can be disabled only when the system runs in single user
mode. As systems usually run in multiuser mode, this
means that the system must be rebooted in single user mode
in order to disable the rules, which will also disable remote
access and cut off the attacker.

As Figure 2 shows, HOT-I consists of a set of if’s that
test various conditions, depending upon the type of protocol
specified in the packet. Specific sets of rules are defined for
each of the protocols TCP, UDP, and IP, that characterize
known attacks from the point of view of the attack origi-
nator. The order in which such conditions are verified is
critical from a performance perspective, as it can impact the
module execution time.

3.2. The attacks

The HOT Interceptor is currently programmed to block a
set of attacks comprising the most (in)famous and disruptive
Denial of Service network attacks, namely SYN flood [2,
14], Smurf [10], Ping of Death [3], Land [4], and port scan.
Blocking this type of attacks at the target is expensive and
resource consuming, both in terms of network bandwidth
and CPU time.

The common feature of all these attacks is the lack of
strong authentication of the source address in IP packets
that allows forged source addresses to be used. It allows
attackers to protect their identity and often also damage an
unaware indirect victim. Each of these attacks has a distinc-
tive behavior.

� The TCP SYN flood attack is possible because of the
limited backlog of uncompleted connections allowed
during the establishment of a TCP connection when
the three way handshake protocol is executed [14].
The attacker keeps sending TCP packets with the SYN
flag on, at a sufficiently high rate so as to saturate the
destination TCP server. Connections are never estab-
lished as the SYN-ACK replies to the victim’s ACK
responses to the received SYN requests are never sent.

� The SMURF attack is possible because of the unre-
strained use of the broadcast address. A conspicuous
traffic of ICMP ECHO REQUEST packets is sent to
the IP broadcast address of a large network (the ampli-
fier) with spoofed source addresses of another network
(the victim). If the ECHO REQUEST packets are de-
livered, most receiving hosts in the amplifier network
will reply to the victim, i.e., the apparent source net-
work, thus flooding it with ICMP ECHO REPLY mes-
sages.

� The PING of DEATH attack is possible because of the
lack of control on the size of control packets sent. Ar-
tificially crafted ping requests exceeding 64 KB in size
are sent to the victim host. Because they exceed the
MTU, oversized ICMP packets are fragmented at the
source and then recombined at the destination. Reac-
tions including crashing, hanging, and rebooting, may
occur when systems receive oversized IP packets.

� The LAND attack is possible because packets with
spoofed ���������
	��
������� source address equal to the���������
	��
������� destination address are generally ac-
cepted although they lead the destination host to a
lethal loop.

� The PORT SCAN attack is possible because any site
can be freely contacted to see if a given service is avail-
able. With a port scan, such a control is performed
systematically on all privileged ports and on some non-
privileged ones where well known services run. This
attack exists in two versions: the vanilla version uses
stream sockets, the stealth version uses raw sockets
and sends only the initial SYN packet. Although ap-
parently innocuous, a port scan is usually the first step
to collect information about the prospective victim site,
as the identification active services is followed by the
search for known vulnerabilities of those services.

While verifying the authenticity of a packet source ad-
dress at the destination is quite difficult, it is an easy con-
trol to apply at the source itself. Our module checks all the
system interfaces and their IP address and compares them
to the source address of the packet � . This is the most ex-
pensive test to perform, as the host may have several inter-
faces. Such a rule is also recommended in the RFC 2267
as a proper router set up [8]. Although expensive to imple-
ment, simply blocking spoofed packets may be too strict a
constraint and limit network management activities. There-
fore, we always associate it to other conditions that charac-
terize specific attacks.

In order to detect a SYN flood attack, the module checks
for packets with the SYN flag on and a spoofed source ad-
dress, as legitimate connections do not have spoofed source
address. However, because an attacker may use a compro-
mised machine and thus not care for the attack being traced
back to it, we also consider SYN flood attacks with a le-
gitimate source address. In order to block this type of at-
tack, we also implement a control based on the frequency
at which SYN packets are sent out. The threshold value
of such a frequency that identifies an attack can be com-
puted based on the number of half-open connections times
�
A statistical approach of the observed source addresses can be adopted

to defeat possible changes of the computer IP address aimed at hiding the
forged network traffic with spoofed source address.

the largest timeout defined in the TCP/IP specifications. In
case of legitimate connections the ACK packet would be
sent timely, thus we believe that the chances to hurt reg-
ular users are minimum, although false positives are still
possible. For optimization reasons, spoofed SYN flood at-
tacks are checked first. When the attack is detected, ei-
ther spoofed or regular, the packet with the SYN flag on
is dropped and the half-open connections, if any, completed
with an RST packet.

The Smurf attack also could not be performed if spoofed
addresses were not allowed, or the attackers would hang
their network. A Smurf attack is recognized when source
address spoofing is combined with the broadcast address of
a network, as destination address, in order to flood both the
destination network and the spoofed one. Similarly to the
SYN flood attack, when an ICMP packet with the broadcast
address in the destination field and a spoofed source address
is seen, the packet is dropped.

The Ping of Death attack is blocked when oversized
ICMP packets with (possibly) spoofed source address are
identified in the outgoing traffic. Like with Smurf packets,
Ping of Death packets are dropped.

The simple but dangerous Land attack can crash or hang
the victim machine by sending to it packets with the same���������
	���������� pair in the source and destination address
fields. The ad hoc rule in this case checks for packets with
the same destination and source address pairs.

In the case of port scan, the module recognizes the vari-
ous stealth versions when it sees a TCP packet coming from
a raw socket possibly with flags on. A check on the series
of consecutive packets to the same destination with vary-
ing port numbers could be easily fooled by an attacker that
separates the packet far enough in time.

4. Performance analysis

4.1. Preliminary considerations

When a tool or a set of tools like HOT-I is adopted, the
performance impact of its operation cannot be overlooked,
although system and global security is the main concern. In
this section we present the results of a set of measurements
of the prototype we implemented, in order to give an esti-
mation of its impact on system performance.

The module we described in this paper affects the host
network performance, in particular it can limit the host ca-
pability to sustain a given network traffic in terms of band-
width. The peak traffic generation rate of a host with a given
hardware architecture is a function of the latency, i.e., the
execution time, of the network software components that
complete the packet by adding all the control information
in the packet header, such as address, checksum, flags, etc.,
to the payload. Note that the peak rate is not sustainable

in general because a host does not just generate packets but
usually performs other activities. If a new routine is added
to those components, the overall latency will increase, thus
reducing the peak rate. The sustainable rate may not be
significantly affected, however, because when real traffic is
generated, the longest time might be spent processing the
payload. In this case, the maximum throughput is limited
by the time to process the payload rather than by the time to
generate packets.

In the presence of HOT-I, outgoing packets are forced
to flow through it, in order to perform a series of tests that
verify their “harmlessness.” Strategies have been adopted
to minimize its impact when the host operates legitimately.
If at some point the outgoing traffic becomes hostile, the
impact of our module becomes non-negligible and network
performance degrades. On the other hand, degrading the
network performance of a system that is generating hostile
traffic, although negative for the honest users of the system,
has a positive effect on global security, as it slows down
the rate at which the host might succeed to send out hostile
packets. Another important consideration is that, except for
servers, the outgoing traffic of a host connected on the Inter-
net is a significantly small part of its overall network traffic,
the large majority being input or at most forward traffic.
This does not apply to servers, however, as they provide the
information available on the network, thus their bandwidth
usage is due to output traffic mostly. The size of a http re-
quest is typically few hundreds bytes while the average size
of a page is few thousands bytes. If all the outgoing traffic
of a server were to be checked by a tool like ours, server
performance would degrade. In this case, the most efficient
way to implement a filter like HOT-I that could sustain the
heavy traffic of a server or a network components, e.g., a
router, is to hardwire the controls in a chip.

On the other hand, because of their importance, servers
are generally well protected and managed systems, which
makes them unlikely to become sources of attacks with-
out their administrators realizing it. Our module, on the
contrary, is targeted to the protection of the global network
from the potential misuse of individual machines that may
be compromised without their owners realizing it and used
to launch attacks.

4.2. Experimental results

We now describe the system used as experimental plat-
form and then present the set of experiments we ran to col-
lect the measurements we present in this section. The ex-
perimental platform we used is an Intel Pentium I processor
with 120MHz clock, 48 MB RAM memory, running De-
bian GNU/Linux operating system with 2.2.14 kernel with
firewalling support.

We measured the impact of the module on the time a

packet spends in the IP stack by instrumenting the native IP
routines ip queue xmit and ip build xmit that pro-
cess packets generated via stream/datagram and raw sock-
ets, respectively. We focus on these routines as individ-
ual servers and measure how much their execution time in-
creases because of the module. This is not, however, the
total time a packet spends within the TCP/IP stack. Our
measurements do not take into account possible queueing
delays a packet may suffer once it is enqueued by an appli-
cation at the network protocols interface. Such a delay is
caused by the possible congestion at network protocol level
caused by the outgoing traffic generated by all the appli-
cations running on the system. The presence of the mod-
ule might contribute to increase the congestion by slowing
down the network level protocols.

We ran two sets of tests, with and without the module,
with no other load on the system but the packet traffic gen-
erator. The first set of tests is the base case. It consists
of legitimate traffic only, without the module. The mea-
sured execution times for the two instrumented routines are
compared against the execution times when the module is
installed and running on the system. For each run, we gen-
erate 1000 packets and compute the average measured ex-
ecution time. The standard deviation computed on the col-
lected data is not reported in the following tables because it
is negligible. The second set of tests is run with a mix of
hostile and legitimate traffic. In this case too the observed
measurements are quite stable, so we do not report the stan-
dard deviation of the observed averages. We separate the
measured execution times for legitimate traffic, which are
the same as in the case above, and those for the hostile traf-
fic. In the table below only the latter are reported.

As the upper table in Table 1 shows, in case of legitimate
traffic only, i.e., all packets have been properly generated
according to some known protocol, the delay introduced by
HOT-I in case of stream/datagram sockets is in the order of
5%. If raw sockets are used, i.e., a user defined protocol is
running, the range of execution time inflation is wider, as it
depends on the number of conditions to test for each packet.

When a flow of hostile and legitimate traffic is generated,
the execution times in the native system, i.e., with no mod-
ule, are the same as no filtering rules are applied against it.
In the presence of the module, the delay it introduces is a
function of the type of packet, i.e., the type of attack, ana-
lyzed. In our implementation, the most expensive condition
to test is the one for source address spoofing, as the module
cycles through all the system interfaces and checks their IP
addresses against the one in the packet. The lightest condi-
tion to test is the presence of the SYN flag on. Depending
on how many cases must be tested, either fully or partially,
before finding a matching one, execution times may vary on
the given range.

The results provided in this section are just an indica-

with legal traffic only
NATIVE W HOT-I

stream/dgram socket 30 31.4
raw socket 50 55-81.7

with mixed (hostile and legal) traffic
NATIVE W HOT-I

stream/dgram socket 30 31.4
raw socket 50 60-100

Table 1. Execution times in � s of the packet
construction routines at IP level with and
without the HOT-I module in case of regular
and raw sockets.

tion that the HOT-I approach is feasible and not disruptive
of system performance, especially from the client point of
view. Clients usually have heavier input traffic, from ftp
downloads, http get requests, etc., than output traffic. The
same is not true for servers. However, servers are usually
more protected and better guarded against attacks than end
users’ clients, which are the typical targets of attackers’
searches for victim machines to be exploited as the actual
sources of Denial of Service attacks.

5. Conclusions and future developments

In this paper we have presented a complementary ap-
proach to computer and network defense from security
threats. It consists in applying a set of protection rules that
restrain hostile activities of hosts that could otherwise be
easily exploited. Such an approach can be seen as an in-
direct form of defense as, by limiting the harm a host can
do, it contributes to make the network a safer place for all
the nodes that are connected to it. Its applicability to the
analysis of possibly hostile outgoing traffic has been shown
by the implementation of a prototype. Measurements of the
impact on system performance have been presented for a
limited set of attacks.

The directions of future research cover two main lines,
namely performance optimization and the extension of the
recognizable attack set. As for the latter, we are currently
working on the characterization of the set of attacks that can
be blocked more effectively at the source. The attack signa-
tures as perceived at the victim site, e.g., the signatures used
by NIDS, are also under analysis in order to adapt them
to the originator’s perspective. Furthermore, the possibil-
ity to cope with the distribution of malicious code, such as
viruses, is being considered as one of the extensions to full

or partial packet inspection.

References

[1] Bruschi D., Rosti E., “Disarming offense to facilitate
defense,” Computer Science Department TR 251-00,
Università degli Studi di Milano, April 2000, to ap-
pear at “New Security Paradigms Workshop,” Cork,
Ireland, Sept 2000.

[2] CERT-CC, “TCP SYN flooding attacks
and IP Spoofing attacks,” CERT Advisory CA-96.21,
http://www.cert.org, 1996-98.

[3] CERT-CC, “Denial of service attack via ping,” CERT
Advisory CA-96.26,
http://www.cert.org, 1996-97.

[4] CERT-CC, “IP Denial of service attacks,” CERT Ad-
visory CA-97.28, http://www.cert.org, 1997-98.

[5] Dittrich D., “The DoS Project’s ”trinoo” distributed
denial of service attack tool,”
http://staff.washington.edu/dittrich/misc/trinoo.analysis,
1999.

[6] Dittrich D., “The ”Tribe Flood Network” distributed
denial of service attack tool,”
http://staff.washington.edu/dittrich/misc/tfn.analysis,
1999.

[7] Dittrich D., “The ”stacheldraht” distributed denial
of service attack tool,” http://staff.washington.edu/-
dittrich/misc/stacheldraht.analysis, 1999.

[8] Ferguson P., Senie D., “Network ingress filtering: de-
feating denial of service attacks which employ IP
source address spoofing,” Network Working Group
RFC 2267, http://www.rfc-editor.org/rfc/rfc2267.txt,
January 1998.

[9] S. Garfinkel, E. Spafford, Practical UNIX and Inter-
net Security, O’Reilly, 1996.

[10] Huegen C., “The latest in denial of service attacks:
smurf-
ing. Description and information to minimize effects,”
http://users.quadrunner.com/chuegen/smurf.cgi, last
update Feb. 2000.

[11] J. Kleinwaechter, “The limitations of intrusion de-
tection systems on high speed networks,” pre-
sented at the “First International Workshop on
Recent Advances in Intrusion Detection (RAID),”
http://www.zurich.ibm.com/˜dac/RAID98, Louvain
La Neuve, Belgium, Sept. 1998.

[12] M. Roesch, “Snort - Lightweight Intrusion Detection
for Networks,” Proc. of the 13th System Administra-
tion Conference – LISA ’99, Seattle, WA, Nov. 1999.

[13] SANS Institute, “Egress Filtering v 0.2,”
http://www.sans.org/y2k/egress.htm.

[14] Schuba C.L., Krsul I.V., Kuhn M.G., Spafford E.H.,
Sundaram A., Zamboni D., “Analysis of a denial of
service attack on TCP,” Proc. of the 1997 IEEE Sym-
posium on Security and Privacy, pp 208-223, Oak-
land, May 1997.

[15] Tripunitara M.V., Dutta P., “A middleware approach to
asynchronous and backward compatible detection and
prevention of ARP cache poisoning,” Proc. of the 15th
Annual Computer Security Applications Conference,
pp 303-309, Dec. 1999.

[16] Wired.com, “A frenzy of hacking attacks,”
http://www.wired.com/news/business/0,1367,34234,00.html,
Feb. 2000.

