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ABSTRACT
The acquisition of volatile memory of running systems has
become a prominent and essential procedure in digital foren-
sic analysis and incident responses. In fact, unencrypted
passwords, cryptographic material, text fragments and latest-
generation malware may easily be protected as encrypted
blobs on persistent storage, while living seamlessly in the
volatile memory of a running system. Likewise, systems’
run-time information, such as open network connections,
open files and running processes, are by definition live en-
tities that can only be observed by examining the volatile
memory of a running system. In this context, tampering of
volatile data while an acquisition is in progress or during
transfer to an external trusted entity is an ongoing issue as
it may irremediably invalidate the collected evidence.

To overcome such issues, we present SMMDumper, a novel
technique to perform atomic acquisitions of volatile memory
of running systems. SMMDumper is implemented as an x86
firmware, which leverages the System Management Mode of
Intel CPUs to create a complete and reliable snapshot of the
state of the system that, with a minimal hardware support,
is resilient to malware attacks. To the best of our knowledge,
SMMDumper is the first technique that is able to atomically
acquire the whole volatile memory, overcoming the SMM-
imposed 4GB barrier while providing integrity guarantees
and running on commodity systems.

Experimental results show that the time SMMDumper re-
quires to acquire and transfer 6GB of physical memory of a
running system is reasonable to allow for a real-world adop-
tion in digital forensic analyses and incident responses.

Categories and Subject Descriptors
D.4 [Operating System]: Security and Protection — Sys-
tem Program and Utilities — Invasive software (e.g., viruses,
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worms, Trojan horses)
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1. INTRODUCTION
Memory acquisition and analysis are well-known and long-

term studied digital investigation activities. Although his-
torically focused on information stored and likely hidden on
persistent media (e.g., hard disks), digital investigation ef-
forts have nowadays embraced the realm of volatile storage
too. For instance, unencrypted passwords, cryptographic
material, text fragments and latest-generation malware may
easily be protected as encrypted blobs on persistent storage,
while live seamlessly in the volatile memory of a running
system. In addition, systems’ run-time information, such as
open network connections, open files and running processes,
are by definition live entities that can only be observed on
a live, running, system.

Given the importance of the problem and its related chal-
lenges, a number of solutions have been proposed to date.
Overall, such approaches differ mostly by the degree in which
the basic forensic requirements of atomicity (i.e., volatile ac-
quisitions must occur within an uninterrupted time-frame),
reliability (i.e., only trustworthy and consistent acquisitions
must be retained), and availability (i.e., solutions must be
device-agnostic)—informally described in [10]—are satisfied.

Roughly speaking, most solutions are either software- or
hardware-based [19, 10]. The former are typically embedded
into the operating system kernel, offering isolation (and thus
protection) only against typical userspace attacks. Con-
versely, hardware-based solutions seem to be resilient against
kernel-level threats too (for instance, Carrier and Grand rely
on a DMA-based physical copy of the volatile memory built
on top of a specific PCI device [2]).

Although perceived in principle to be more secure than
their software counterparts, hardware-based solutions too
may suffer from serious weaknesses, undermining their over-
all effectiveness. For instance, Rutkowska showed quite re-



cently how the privileges of a kernel-level malware can suc-
cessfully manipulate specific hardware registers to provide
device-dependent (i.e., CPU or DMA) split views of the con-
tents of (volatile) memory [16]. As such, it is currently safe
to assume that pure hardware-based state-of-the-art tech-
niques are as robust (or weak) as their software-based coun-
terparts, leaving memory acquisitions an open challenge.

To address such issues, one of the directions the research
community is exploring revolves around the possibility of
building dependable memory acquisition techniques on top
of system management mode (SMM), a particular execution
state of modern x86 CPUs.

Modern x86 CPUs enter SMM via system management in-
terrupts (SMIs). Switching to SMM causes the CPU to save
the current system execution state in the system manage-
ment RAM (SMRAM), a private address space specifically
set up for the purpose. Afterward, the execution flow passes
to the SMI handler, which is resident in SMRAM. One im-
portant feature of the SMRAM is that it can be made in-
accessible from other CPU operating modes. Therefore, it
can act as a trusted storage, sealed from any device or even
the CPU (while not in SMM). Although powerful, SMM has
a critical issue: according to the Intel specifications, SMM
can only access up to 4GB of physical memory, even on IA-
32 CPUs that support physical address extension (PAE) [7],
limiting the overall memory acquisition capability of such
approaches.

Wang et al. propose an hardware-based approach to pe-
riodically trigger SMIs (and thus entering SMM) to read
the RAM content and send it off to a remote server [21].
Although interesting, that approach has a number of limi-
tations. First, it requires additional hardware (i.e., a PCI
card) to be installed on the system prior to any live ac-
quisition attempt. Second, no attempt to bypass the 4GB
SMM-imposed memory upper bounds is made, greatly lim-
iting the acquisition process, especially on modern hardware
equipped nowadays with more than 4GB of physical mem-
ory. Finally, Wang et al.’s approach does not provide any
integrity guarantee on the overall acquisition procedure.

To overcome such issues, we present SMMDumper, a novel
technique to perform atomic acquisitions of volatile memory
of running systems. SMMDumper is implemented as an x86
firmware, which leverages the SMM of Intel CPUs to create
a complete and reliable snapshot of the state of the system
that, with a minimal hardware support, is resilient to mal-
ware attacks.

Our solution is based on a collector and a triggering mod-
ules. The former is resident in SMRAM and is responsi-
ble for transmitting to a trusted host the entire proces-
sor state and the memory content, overcoming the SMM-
imposed 4GB barrier when PAE is enabled, while providing
integrity guarantees and running on commodity systems.
Conversely, the triggering module takes care of activating
the collector via SMIs. Ideally, a sound and bulletproof
implementation of the triggering component should rely on
hardware-based activation mechanisms (for instance, a com-
mon scenario may see a specific keystroke directly connected
to the SMI CPU pin). These artifacts would isolate the pro-
tected software component, making it inaccessible from user-
or kernel-space. Although such mechanisms have already
been proposed in the literature (e.g., [9]), we have opted
for a software-only proof-of-concept implementation of the
triggering module, for simplicity (a software-emulated hard-

ware triggering mechanism does not affect the effectiveness
of SMMDumper).

Roughly speaking, our software-based SMI triggering so-
lution works as follows. We modify the Redirection Table
of the I/O APIC to trigger an SMI upon the pressure of an
appropriate keystroke combination. Once the SMI is trig-
gered, the CPU switches to SMM, the current system state
is saved and our SMI handler (i.e., the collector module) is
executed. Although as outlined above our current SMI trig-
gering implementation is vulnerable to kernel-level threats
(e.g., SMI invocation avoidance via Redirection Table recon-
figuration to reroute keyboard interrupts), SMMDumper’s
underlining idea remains sound and, moreover, its trigger-
ing module implementation can easily be extended to rely
on hardware-based mechanisms (e.g., [9]).

In summary, we make the following contributions:

1. We devise a novel firmware-based technique to create a
complete and reliable snapshot of the state of the sys-
tem that, with a minimal hardware support, is resilient
to any malware attack.

2. We devise an SMM-based mechanism that enables us
to access any physical memory extending over 4GB.

3. We devise a mechanism to digitally sign, while in SMM,
the entire RAM contents (extension over 4GB included).

4. We implement a QEMU-based [1] prototype, which en-
ables us to show the usefulness and correctness of our
solution as well as perform a performance evaluation.

2. RELATED WORK
Live memory acquisition is an interesting and challeng-

ing computer forensics topic, which has largely gained the
attention of the research and industry community. In the
following, we provide a brief overview of the state-of-the-
art, pointing out its main characteristics and limitations.

2.1 Hardware-based Approaches
In principle, every PC hardware bus can be leveraged to

gain access to the host physical memory via direct memory
access (DMA). For instance, solutions relying on PCI [2],
PCMCIA and FireWire [12] buses have been proposed in
literature. Such techniques have the advantages of not caus-
ing any change in the state of a running OS and being unaf-
fected by most of attacks-hiding techniques. Unfortunately,
PCI devices require a prior installation on the system and
this greatly reduces their usability. FireWire-based solutions
address this issue by allowing analysts to hot-plug them in
the target system; thus they can be carried in the toolkit
of an incident response team to be installed just after an
incident occurred.

Both techniques have limitations. First, they cannot ac-
cess the processor state (i.e., registers). Second, a knowl-
edgeable attacker, or an advanced malware, can perform a
scan of the PCI bus and detect the presence of such ad-hoc
devices and consequently decide to stop any malicious ac-
tivity and wipe every fingerprinting left behind. Lastly, as
shown by Rutkowska in [16], DMA devices can be tricked
to provide split views of memory contents, thus making the
output of such devices unreliable.



2.2 Software-based Approaches
Software-based approaches vary greatly both in complex-

ity and reliability. Such solutions often rely on the OS in-
ternals of the host whose memory must be collected. As an
example, the simplest way to dump the memory via software
is to rely on special virtual devices, if present, like /dev/mem

on Linux or \Device\PhysicalMemory on different Windows
systems. Such devices, in fact, allow user space programs to
read the whole physical memory of the running system. This
possibility leads to trivial memory collection operations, for
example through simple Unix utilities such as dd and net-

cat. The main drawback of all these solutions is that they
need to be loaded into memory in order to run, thus mod-
ifying the original state of the target machine. This causes
the captured data to be inconsistent and not reliable. An
alternative software solution, even if not always viable, is to
crash the system that needs to be analyzed. Indeed, Win-
dows automatically trigger a dump of the physical memory
on the hard disk whenever a crash occurs.

Other software memory collection solutions can be used
when dealing with virtualized environments. Indeed, virtu-
alization opened up many new possibilities for forensic anal-
yses. The execution of the virtualized system, commonly
referred to as the “guest” operating system, can be com-
pletely frozen for an arbitrary amount of time, allowing for
easy atomic collection operations.

One of the most advanced solutions in such a case has been
proposed in HyperSleuth [11], where the authors describe a
framework that leverages standard hardware support for vir-
tualization to gather memory contents without interrupting
the target services. The only drawbacks of this approach
are that some small changes in the memory of the target are
induced by the installation procedure and that a powerful
attacker in the same network of the target could interfere
with the packets containing the memory dump.

As previously mentioned, in the last years some authors
proposed solutions which exploit the characteristics of Sys-
tem Management Mode. Among them, the closest to our ap-
proach is that presented in [21], where a mechanism for RAM
collection leveraging SMM is presented. Such a mechanism
however has been mainly devised for malware detection and
thus does not address some critical issues required by digital
investigations. More precisely, these includes the following
problems: the integrity of the copy obtained, its adherence
to the original content and the possibility of dumping the
Physical Address Extension (if present). Furthermore, it
requires the installation of a dedicated PCI network card.
Our approach, as we will see, also requires a network card
to operate, but it leverages the one already installed on the
system and not a custom piece of hardware installed ad-hoc
on the target.

In a subsequent paper [23], an extension of Hypercheck to
comply with digital investigations has been proposed. How-
ever, no proof of concept has been provided and most of the
limitations mentioned above have not been addressed.

3. SYSTEM MANAGEMENT MODE
SMM is a special mode of operation of Intel CPUs, intro-

duced in the i386 processors, designed to handle system-wide
functionalities, such as power management and hardware
control.

The processors enters SMM in response to a System Man-

agement Interrupt (SMI), which has a higher priority com-
pared with other interrupts, and it is signaled through the
SMI# pin on the processor or through the APIC bus. When
SMM is invoked, the CPU saves the current state of the pro-
cessor, switches the System Management RAM (SMRAM)
address space and begins to execute the code present in it
(i.e., the SMI handler).

SMM code is not intended for general purpose applica-
tions, but it is limited to system firmware only. Indeed, the
main benefit provided by SMM is the execution of the code
in an isolated processor environment that operates transpar-
ently to the operating system. SMM is defined to be a real-
mode environment with 32-bits data access when operand-
and address-size override prefixes1 are used. Otherwise,
operand’s and address’s size is restricted to 16-bits.

The only way to exit from the SMM operation mode is
by means of the rsm instruction that is available only in the
SMM. The rsm instruction takes care of restoring the saved
state of the processor, and returns the control to the inter-
rupted program. When the processor is in SMM all hard-
ware interrupts, but software-invoked interrupts and excep-
tions, are disabled.

During boot time, it is a duty of the BIOS firmware to in-
tialize SMRAM, copy the SMI handlers to it, and, as a form
of protection, lock SMRAM to disallow any further writing
accesses to this area. In fact, SMM is the mode of opera-
tion with the greatest level of privilege, informally named
ring −2, and has to be as safe as possible from malicious
users. The solution presented in this paper works properly
only if the SMRAM has been locked at boot time.

3.1 Threat Model
Before describing the technique we devised, we must de-

lineate the threat model in which we expect SMMDumper to
be used. Our model assumes the availability of an hardware
method to trigger an SMI and trasfer control to SMMDumper,
such as the one briefly depicted in Section 1. At the end of
the section, however, we discuss what are the consequences
of being unable to adopt an hardware solution.

The machine, which memory we must acquire, has al-
legedly been compromised and these conditions may hold:

• The attacker (or malware) has root access to the com-
promised system.

• The attacker has compromised other machines in the
same network of the target.

• The attacker can perform network attacks (e.g., inter-
cepting and modifying packets).

On the other hand, SMMDumper is not able to deal with the
following situations:

• The attacker has access to the smartcard containing
the private key used to sign collected memory.

• The attacker exploits vulnerabilities that allow write
access to SMM memory of the target system [25].

• The attacker has physical access to the target system
and is able to power it down or mount a DMA attack
that wipes the memory before it is collected [24].

1Intel and AT&T syntaxes, respectively provide A32, O32
and addr32, data32 as explict address- (0x67) and operand-
size (0x66) override prefixes.



We are well-aware that an attacker could write a mal-
ware able to thwart the execution of the memory dump,
whether we use our fallback software-based solution to trig-
ger an SMI. Specifically, the malware must have adminis-
tration privileges in order to launch the attack, tamper our
SMI triggering solution and subsequently prevent the launch
of the dump of the system memory. To achieve its goal, the
malware modifies I/O APIC Redirection Table by setting
the delivery mode of the IRQ1 to Fixed and the Interrupt

Vector field to the malicious interrupt vector in the IDT. By
doing so, the malware disables the ability of an user to trig-
ger an SMI by pressing a specific keystroke that launches
the memory dump. With respect to others techniques to
trigger an SMI [22], the technique that we adopt, presented
in Section 4.1, is more challenging to be silently disabled by
a malware. This is due to the fact that it requires the mod-
ification of an offset of the well-known address of the I/O
APIC Redirection Table. This behavior can be considered
“suspicious” at least and may ring an alarm bell for com-
mon anti-virus software. This, of course, is far from being
an optimal solution: as we already stated, the best solution
would be a dedicated hardware method. Furthermore, to the
best of our knowledge, every technique proposed so far that
leverages SMM and needs to trigger an SMI on an allegedly
compromised system, suffers from the same problem [22].

4. SMM-BASED MEMORY DUMP
This section describes in detail the design and implemen-

tation of SMMDumper, the SMM-based infrastructure we
have devised to perform a consistent and unforgeable dump
of the volatile memory of a running operating system.

As briefly outlined in Section 1, SMMDumper can be logi-
cally divided in two components: a triggering module and a
memory collector module. The former component is respon-
sible for invoking SMIs and thus entering SMM. Ideally, this
component should be implemented in hardware to provide
strong guarantees and resiliency against malware threats.
Instead, we have opted for a software-based implementation
to allow our solutions to be used on commodity hardware.
The memory collector module represents the main compo-
nent of SMMDumper. It is in charge of reading the physical
memory of the target host and transmit it over the network.
It is a BIOS extension loaded in SMRAM at boot time and
unauthorized modifications of its content are prevented by
having the BIOS locking write access to that specific region.

A global overview of SMMDumper architecture can be
observed in Figure 1. Intuitively, a forensic analyst in-
vokes SMMDumper by initiating a predefined keystroke se-
quence (1). This sequence is immediately intercepted by the
triggering module, which switches the system CPU to SMM.
The memory collector module (2) starts subsequently, initi-
ating the host physical memory dump over the network (3).
As we will see shortly, before the acquisition process actu-
ally starts, SMMDumper waits for detecting the presence of
a commodity cryptographic device, which must be plugged
into the system after entering SMM. This device is respon-
sible for creating on-chip digital signatures and to provide
strong integrity guarantees of the transmitted data (4).

Running code at system management mode privilege opens
a number of challenges that need to be properly addressed to
achieve the goals mentioned at the beginning of this section.
In particular, we must (i) trigger system management inter-
rupts to switch to SMM, (ii) be able to access all the physical

SMM

[0x00... - 0xff...]

C = md5(mem)

sign(C)

[md5 (pkt) | pkt]

(1)

(2)

(3)

(4)

Figure 1: Overview of the system

memory of the target system, even when more than 4GB of
physical memory is installed on 32-bit hosts, (iii) guaran-
tee the integrity of the collected data on the host as well as
while in transit to a generic—but trusted—device. Meeting
such challenges clearly guarantees the atomicity (i and ii),
reliability (iii), and availability (iii) forensic requirements
illustrated in Section 1.

4.1 System Management Interrupts
Intel CPUs enter SMM by invoking a System Manage-

ment Interrupt (SMI). SMIs can be triggered through either
an external SMM interrupt pin (SMI#) or the Advanced Pro-
grammable Interrupt Controller (APIC). Even though only
one SMI pin is physically hard-wired to the CPU, differ-
ent events—generally specified by the I/O Controller Hub
(ICH)—can trigger SMIs. Modern chipsets, such as the Intel
ICH10 [5], have approximately 40 different ways to trigger an
SMI, such as power management, USB, Total Cost Of Own-
ership (TCO), writing to the Advanced Power Management
Control port register, periodic timer expiration and SMBus
events. In addition, some motherboards are equipped with
dedicated hardware that can be legitimately exploited to
raise SMIs. For example, an SMM interrupt switch installed
on the motherboard to allow users to suspend the system
when turned on (power-save mode). Nonetheless, triggering
an SMI requires a proper software register configuration.

Switching to SMM to start a whole-system memory dump
requires raising an SMI whenever a specific keystroke se-
quence is detected. To this end, our approach builds on [3] to
implement a fully-functional SMM-based keylogger. In par-
ticular, everything revolves around the Intel Advanced Pro-
grammable Interrupt Controller (APIC), which overlooks
the communication between the CPU and external devices.
The APIC is divided into I/O and Local APIC. They are
located on the chipset and integrated onto the CPU, respec-
tively, and communicate over a dedicated APIC bus. The
I/O APIC receives external interrupt events from the sys-
tem hardware and its associated I/O devices and, depending
on the configuration of its Redirection Table, routes them to
the Local APIC as interrupt messages. The Local APIC de-
livers the interrupts received from the I/O APIC to the CPU



1 data32
2 movl $0xdeadbeef , %eax
3 start:
4 data32
5 addr32
6 movl (%eax), %ebx
7 ;; Do something with %ebx
8 data32
9 addl $0x4 , %eax

10 data32
11 cmpl $0xdeadceef , %eax
12 jl start

Figure 2: Accessing physical memory from SMM

it belongs to (after consulting the Local Vector Table, which
specifies how interrupts are delivered to the CPU and their
priorities). Finally, the Interrupt Descriptor Table (IDT) is
indexed with the vector number by the CPU to select the
proper Interrupt Service Routine (ISR) handler to invoke.

Overall, the Redirection Table plays a crucial role in the
above-sketched process, as it specifies the interrupt vector
and delivery mode of each interrupt pin. In particular, the
delivery mode is fundamental to accomplish the goal of trig-
gering an SMI when an arbitrary, custom and predefined,
keystroke sequence is observed. To this end, we set the de-
livery mode of the IRQ12 to SMI and the vector information
to 0s to properly forward that IRQ line to our SMI handler.

Our SMM ISR handler extracts the keyboard scancode
from the keyboard controller buffer, reading from the I/O
port 0x60. Any scancode mismatching the predefined key-
stroke sequence is properly re-injected to the keyboard con-
troller buffer by writing the keyboard controller command
0xd2 to the I/O port 0x64 [18].

Modifying the I/O APIC Redirection Table to deliver an
SMI when the IRQ1 IRQ line is asserted requires to forward
the interrupt to the CPU. This is achieved by sending Inter-
processor Interrupts (IPIs) from software by properly config-
uring the Local APIC Interrupt Command Register (ICR).
To this end, we set the ICR Destination Field to self and
the Delivery Mode to fixed. Writing to the least-significant
doubleword of the ICR causes an IPI message to be sent out
and the interrupt to effectively be delivered to the CPU as
soon as the rsm instruction is executed.

4.2 Accessing Physical Memory
As noted elsewhere, SMM is similar to real mode. There-

fore, the size of operands and addresses of the instructions
executed in SMM are limited to 16 bits, restricting the ad-
dressable memory to 1MB. However, override prefixes are
generally used to access up to 4GB of the addressable mem-
ory space [8], as briefly sketched in Figure 2. In particular,
the snippet of code iteratively reads 4KB of memory starting
from the address 0xdeadbeef. It is worth noting that run-
ning code in SMM disables paging, allowing for a direct ac-
cess to physical—rather than virtual—memory. While this
has the clear benefit of allowing a straightforward memory
access without worrying about virtual-to-physical address
translations (and viceversa), it has drawbacks too. Accord-
ing to the Intel specifications [8], SMM can only access up

2We intercept PS/2 and USB keyboard when its state is set
as legacy mode.

Checksum(pkt[x:n])

phy addr

chunk

0

x

n

Figure 3: Packet format

to 4GB of physical memory, even on CPUs that support
Physical Address Extension (PAE) or long mode with IA-
32e. To overcome such a limitation, one may think about
enabling paging in SMM to populate a custom Page Table
to map physical-to-virtual pages and access them through
virtual addresses. Unfortunately, enabling paging requires
to switch the CPU to protected mode (the de-facto default
mode of operation of Intel-like CPUs nowadays). Within
SMM, this can only be achieved by executing the rsm as-
sembly instruction, which causes an exit from SMM too [7].
We defer the solution SMMDumper adopts to Section 4.4.

4.3 Data Integrity and Transmission
Direct physical memory access alone does not meet all

the forensics requirements sketched in Section 1. Ideally,
SMMDumper could just read memory one byte at a time and
send it off over the network. However, this would hardly
represent a reliable solution. Running SMM code is also
similar to running in hypervisor mode: there is no operating
system service we can rely on and it is like being executed
directly on the bare metal. Therefore, transmission errors
may just occur and there are no in-place mechanisms to
address such issues (e.g., data loss or integrity corruptions).

To overcome such limitations and meet the reliability foren-
sic requirement outlined in Section 1, we have designed a
simple, yet effective, communication protocol. Intuitively,
SMMDumper divides the physical memory into chunks of
fixed size (1KB in our current implementation). Each chunk
is then embedded in a packet structured as shown in Fig-
ure 3. The base address of the memory chunk contained
in the packet (i.e., phy addr) is metadata and represents a
unique label that is used by the receiver to correctly handle
out-of-order or missing chunks. Checksum over the whole
packet payload (metadata and the physical memory chunk),
instead, offers the opportunity to detect integrity violations.

4.3.1 Data Signing
Clearly, the simple checksum-based scheme outlined above

protects only against transient network transmission errors
(similar to what a TCP segment checksum does), but it eas-
ily fails against an attacker that purposely modifies data on-
the-fly and recomputes the checksum to reflect such changes.
To address this threat, SMMDumper computes an incremen-
tal checksum C of the whole physical memory, as individual
packets are sent off3. Subsequently, when the transfer of the
whole physical memory is completed, SMMDumper signs C

3While details of the actual network transmission and re-
transmission due to loss or incorrect data are described next,
let us just assume here that all the packets have been cor-
rectly transmitted to the receiver and that the whole system
physical memory has thus been dumped.



and sends the resulting ciphertext blob to the receiver, which
verifies the signature and compares C against a freshly com-
puted checksum over all the received packets. A valid signa-
ture guarantees the integrity of the received signed checksum
and matching checksums guarantee the integrity of all the
received packets. To be able to incrementally compute C,
an appropriate algorithm needs to be chosen. As we will see
in Section 5, SMMDumper uses the MD5 cryptographic hash
function.

The question of where to store the private key used for
signing C still remains. Any attempt to embed the key
into SMMDumper may be threatened by sophisticated at-
tacks aimed at reading its code or data. To overcome such
threats, we have decided to offload all the cryptographic op-
erations (key management and signing) to an external hot-
pluggable smart card device D. In particular, as soon as
SMMDumper starts executing (that is, as soon as the sys-
tem enters into SMM), it waits for D to be plugged into the
system to carry out the tasks outlined above. Not only this
procedure guarantees the integrity of the collected memory,
but it also provides validity as the signing key can only be
accessed by whoever has access to D and can start the live
forensic memory dump.

It is worth noting that hot-pluggable memory collection
devices may induce tangible side-effects in the target mem-
ory as a result of their installation or initialization in the sys-
tem, as pointed out in Section 2.1. However, SMMDumper
requires the analyst to plug the smart card device once the
system has entered SMM, where no operating system service
is in execution and any potential side-effect is under the con-
trol of SMMDumper. In addition, different smart cards allow
for the use of different signing identities, which can be easily
produced and distributed to forensic analysts. By using a
personal smart card, the forensic analyst implicitly certifies
that a given live memory acquisition is associated to that
specific, personal, smart card.

Assuming that errors do not generally occur, the schema
just outlined is both effective and efficient as it generally re-
quires only one encryption operation (signing) per a whole
memory dump. In fact, signatures of individual packets
would negatively impact on the overall overhead. On the
other hand, if an individual packet is corrupted, the whole
dump must be taken again. Although the errors-are-seldom-
events assumption seems reasonable, SMMDumper can be
easily extended to suite the analysts needs. For instance,
signed checksums could be sent out for every 500MB of data,
trading-off packet retransmissions and overall overhead.

4.3.2 Network Transmission
Once packets are ready, SMMDumper needs to transfer

them from the target machine to an external trusted host or
device, for future analyses. We have opted for the former so-
lution. Conversely, the latter would, for instance, require to
store packets on an USB storage plugged on the target ma-
chine and this raises two main concerns. First, interacting
with USB devices from SMM is everything but simple and
the code needed to interact with the USB controller would
likely be bloated and prone to errors. Second, the destina-
tion USB device needs to be physically plugged on a port on
the target system while, leveraging a network connection,
the collected data can be sent to a remote host, tipically on
the same local network but, potentially, even elsewhere on
the Internet.

SMMDumper implements a basic network driver that is
able to communicate through I/O operations with the Net-
work Interface Card of the target machine. As noted else-
where, operating in SMM does not allow to rely on any op-
erating system-provided service, such as networking. There-
fore, SMMDumper is also equipped with the code responsible
to forge UDP packets sketched in Figure 3. Once again, the
choice of the UDP protocol rather than the more reliable
TCP is driven by the willingness of keeping the code as sim-
ple as possible and ease the burden of a fully-functional (and
complex) implementation. As described next, this is not a
limitation per-se as we do have enough metadata to recover
from arbitrary transmission errors.

One could argue that transferring data over the network
is less secure than using a removable device as the attack
surface increases. Indeed, an attacker that compromises a
machine in the same network of the target could use dif-
ferent techniques (e.g., ARP spoofing [20]) to intercept or
prevent the reception of the packets sent by SMMDumper.
However, it is impossible for an attacker to arbitrarily mod-
ify the content of a packet without being detected as the
overall checksum sent at the end of the transfer is signed
with a private key that, in our threat model, is inaccessible
to the attacker. An attacker could still perform a Denial
of Service attack, by dropping or damaging packets, but we
argue that it is easy to identify this kind of attacks and its
source inside a local area network and, consequentially, to
exclude it from the network and then request a retransmis-
sion of the blocked packets through the protocol explained
in the next paragraph.

4.3.3 Retransmission of Lost Data
As soon as SMMDumper finishes sending the memory to

the remote host, it switches from send mode to listen mode,
where it accepts requests to retransmit certain chunks of
memory. The remote hosts uses metadata contained in the
packets to check if everything was transmitted correctly,
identifying in the process missing or corrupted chunks. Ev-
ery lost packet is then asked back to the SMMDumper that
recreates the packet and tries again to transfer it. An at-
tacker, of course, could try to mangle with this mechanism,
for example by modifying sent requests or forging fake ones.
These are not really problematic attacks as the remote host
knows which packets it has requested and can simply discard
fake ones.

4.4 Accessing more than 4GB of Memory
There may be some situations in which SMMDumper is

required to access more than 4GB of physical memory: if
the CPU on the target machine supports Physical Address
Extension (PAE), Page Size Extension (PSE-36) or IA-32e
mode (namely 64bit support). PSE-36 is very similar to
PAE, it just changes some internal structure of the page ta-
bles. Thus, in this paper we address only PAE among these
two alternatives, as we believe that modifications needed by
SMMDumper to handle PSE-36 would be trivial. Unfortu-
nately, handling IA-32e mode is not straightforward and it
is part of our ongoing research effort.

4.4.1 Handling PAE on IA-32
Physical Address Extension is a paging mechanism that

is supported by an extension of physical addresses from 32
bits to MAXPHYADDR bits, where MAXPHYADDR is 36 bits on IA-
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32 CPUs. Since our approach deals with IA-32 CPUs, from
now on we will consider MAXPHYADDR to be limited to 36 bits.
Theorically, this allows to use up to 64GB of memory. Un-
fortunately, as we said before, when we are in System Man-
agement Mode, we are limited to 32 bit addressing and, thus,
we cannot use 36 bit addresses and registers. Furthermore,
we cannot enable paging and switch to virtual addressing as
this is also forbidden when in SMM. Some authors [25, 4]
state that, surprisingly, it is instead possible to switch from
SMM to protected mode, or even IA-32e. However, we did
not find any specification that explicitly allows this switch
and our experiments confirmed that it is not possible indeed.
To the best of our knowledge, some CPUs may allow it but
as we aim to reach a good degree of compatibility we do not
rely anyhow on this possibility.

The rationale behind our solution is simple: once we finish
dumping the first 4GB of physical memory, with the method
explained in the previous Sections, we change the paging
structure used by the target system so that we can control
the mapping between virtual and physical memory, both
from SMM and protected mode. Then, we inject some code
in the mapped pages and we modify EIP field in the State
Save Map so that it points to the code that we inject. Once
everything is set up, we issue a rsm instruction and go back
to protected mode. During the switch, EIP is restored from
the State Save Map and thus the execution of the system
resumes from the custom code we injected before the switch.

Setting-up Paging.
To better understand how we setup page tables before

returning in protected mode, we reported the address trans-
lation mechanism with PAE enabled in Figure 4 as explained
in [7]. For the sake of simplicity, we only analyze (and use)
paging with 2MB pages. When PAE is enabled on a IA-32
CPU, the size of virtual addresses remains 32 bit while the
size of physical addresses is extended to 36 bit. When trans-
lating a Virtual Address (VA) into a physical one, the MMU
uses the structures depicted in Figure 4. The first two bits
of the virtual address points to an entry of the Page Direc-
tory Pointer Table (whose physical address is stored in the
register CR3). The MMU then checks this entry (PDPTE) to

see if it is actually mapped (present bit) and if the required
access is allowed; then, it follows the physical address con-
tained in the entry, that points to the second structure: the
Page Directory. Bits 21:29 of VA determine the Page Direc-
tory Entry (PDE) the MMU must use. The MMU performs
the same check on the PDE and then it uses the base ad-
dress contained in the PDE and bits 0:20 of VA to calculate
the physical address corresponding to VA.

As can be observed, the whole address translation mecha-
nism depends on the CR3 register. When in SMM, however,
we cannot modify the CR3 register value stored in the State
Saved Map. However, even if PAE is enabled, this register is
not extended to 36 bits so we can access the memory pointed
by the register, thus modifying the paging structure at our
likings, even if we are restricted to 32-bit addressing. As
can be seen in Figure 4, the CR3 register points to the first
Page Directory Pointer Table Entry (PDPTE). Part of the
bits are used to control the Page Directory mapped by this
PDPTE (e.g., if it is present, if caching is enabled) while the
remaining part contains its physical address. Every PDPTE
is 64 bit long, thus, to set it up correctly, we have to access
it in two “rounds”, using CR3 for the lower 32 bits and CR3+4

for 32 higher bits. SMMDumper edits the first PDPTE so
that it points to a Page Directory located at physical address
0x0. This implies that now the first Page Directory Entry
(PDE) is located at 0x0. SMMDumper configures this entry
to be present, writable, accessible from every control priv-
ilege level and large (2MB instead of 4KB). The page base
address of the first PDE is then set to 0x0. This may seem
wrong at a first glance, since we already use 0x0 as base ad-
dress of the Page Directory. On the contrary, this is not only
correct but also very convenient. Indeed, it means that we
will be able to use virtual address 0x0 to access a 2MB phys-
ical page whose first 4KB correspond exactly to the Page
Directory itself. This is possible because we edited the first
PDPTE and the first PDE of the system, thus the MMU,
when translating virtual address 0x0, will walk these two en-
tries, as we explained before, and will translate the virtual
address into the physical address 0x0. Furthermore, being
able to access the Page Directory once switched to protected
mode, by using virtual range [0x00000000-0x00001000],
will allow us to directly edit paging structures (i.e., map



new physical pages into virtual ones) without having to ref-
erence physical addresses.

Returning to Protected Mode.
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Figure 5: Layout of physical/virtual page 0x0

Before returning the execution control to the system, fur-
ther setup is required. First of all, we must insert the code
that will be executed in protected mode. Obviously, it must
be carefully tailored to avoid overlapping the memory ar-
eas we reserved for PDEs. This code is stored in the SM-
RAM along with the code needed to perform the dump of
the first 4GB and then copied into a section of the first
mapped page. This page has been mapped as explained in
the previous paragraph, and its layout can be observed in
Figure 5. As we can see, the first 16 bytes are reserved
for PDEs: the first PDE maps physical page 0 (i.e., itself)
on virtual page 0, thus allowing access to paging structure
and to injected code even when SMMDumper will go back to
protected mode. The PDE at address 0x00000008, on the
other hand, is prepared but still unused: SMMDumper will
modify it to map physical memory pages that still need to
be sent out (i.e., above 4GB). The injected code, depicted
in Figure 6, performs the following tasks:

1 va = 0x00200000
2 p_pde = 0x00000008
3 phy_addr = 0x100000000 /* 36-bit */
4 while phy_addr < MAX_MEMORY :
5 /* Setup PDE */
6 p_pde->page_base_addr = phy_addr
7 p_pde->p = 1 /* Present */
8 p_pre->us = 1 /* User/Super */
9 /* Now 0x00200000 points to phy_addr */

10 offset = 0
11 while offset < PAGE_SIZE:
12 packet = str(phy_addr+offset)
13 packet += va[offset:offset+CHUNK_SIZE]
14 packet += MD5(packet[0:len(packet)])
15 /* Send pkt */
16 /* Update overall checksum */
17 offset += CHUNK_SIZE
18 phy_addr += PAGE_SIZE

Figure 6: Dump of the upper physical memory

• modify PDE at virtual address 0x00000008, so that
it will map a physical 2MB page that needs to be
dumped. Since this PDE is the second one contained
in the Page Directory under our control, this physical
page will be mapped at virtual address 0x00200000

(lines 6 - 8);

• read a chunk of memory from virtual page starting at
0x00200000, create a packet with checksum and send
it over the network (lines 12 - 15). Alternatively, if we
want to avoid code duplication, it is possible to just
store memory chunks at an address that is readable
from SMM (e.g., any area tagged as Available in Fig-
ure 5) and trigger a SMI. The code executed in SMM
will then take care of signing and sending operations
just like it did for the first 4GB;

• loop through the inner loop (lines 11-17) until a full
2MB page has been dumped, then repeat the proce-
dure (lines 4-18) until the whole memory higher than
4GB has been dumped.

Before finally returning back to protected mode we have
to make sure that (i) the execution flow will not go out of our
code and that (ii) our code has enough privileges to operate
without triggering faults. To avoid (i) we clear the Inter-
rupt Flag in the EFLAGS register stored in the Save System
Map so that interrupts will not cause a transfer of the exe-
cution flow to the system interrupt handlers. Non-Maskable
Interrupts (NMI), can still happen even if EFLAGS.IF is 0,
so we disable them by interacting directly with the APIC.
Disabling NMI is not a problem as the code that we will
execute in protected mode does not rely on them anyhow.
Problem (ii) is mainly due to the fact that, from SMM, we
cannot modify the CPL that will be set upon a resume. For-
tunately, the only operations for which our code will need
some custom privileges are I/O operations (both for inter-
acting with the NIC or to trigger a SMI and get control back
to code in SMM). This privileges can be granted by altering
the Input Output Privilege Level (IOPL) bits in EFLAGS just
like we do for IF.

4.5 Portability
The approach adopted by SMMDumper is completely OS-

independent and can be easily applied as a patch to already
existing BIOS or installed in new ones. The most restricting
requisites of SMMDumper are mainly hardware:

1. The presence on the target system of a port (USB,
serial) to interact with the smartcard hardware.

2. A network interface card to send out packets.

Developing drivers for many different network interface cards
may be painful, as every piece of hardware has its specifica-
tions and peculiarities. However, most BIOS already include
primitives to interact with on-board NICs (e.g., PXE [6]
functionality required to interact with the network). BIOS
manufacturers willing to support SMMDumper can easily
modify it to include additional drivers of well-known on-
board NICs.

5. EXPERIMENTAL EVALUATION
To verify the soundness of the proposed approach, we im-

plemented a prototype based on coreboot [13], so that it can
be easily installed on many production systems as a BIOS
update. The collector module of SMMDumper has been en-
tirely coded in Assembly and it counts slightly less than 500
LoC, of which ≈ 47% is for the MD5 implementation. To
perform tests, we employ QEMU 1.0.1 [1], equipped with
a single Intel 3GHz processor, 6GB of RAM and a Realtek
RTL8139 100Mbps network card.



To interact with the NIC, we implemented a small driver
that is able to run in SMM to send and receive UDP packets.
The code required to interact with this piece of hardware is
quite simple: to transmit a packet, the driver writes the
physical address and the size of the packet to the appropri-
ate control registers of the device. Then, it polls the status
register of the device until the transmission is completed. We
use polling instead of interrupts because interrupts are dis-
abled as soon as we switch to SMM. Packets reception, that
is needed for the retransmission protocol, is implemented
in the same way. It is worth noting that we allocate the
packet transmission buffer in a region of memory outside
the SMRAM because devices cannot access SMRAM due
to hardware restrictions [17]. Before using this region, we
backup it into the SMRAM and restore it later, in order to
send it.

As a checksum algorithm to grant both packet and overall
memory integrity we use MD5. As we briefly outlined in Sec-
tion 4.3.1, our choice of MD5 is convenient, as it allows us to
incrementally calculate the overall checksum of the memory
as we read it to create packets. To univocally sign the over-
all checksum, SMMDumper leverages an external hardware
device that is able to read a private key from a smart card
and use it to encrypt data. To perform experiments, we cre-
ated a simulated smart card reader that can be hotplugged
into our development environment by means of a Serial Port
(RS232). According to our threat model, since the commu-
nication channel is established once SMMDumper is already
executing, no attacks can interfere with this channel.

To evaluate the performance of SMMDumper and the av-
erage time needed to transfer the acquired volatile data
over the local network, we performed a number of trans-
mission tests (all the results are averages with negligible
standard deviation). With a chunk size of 1024B of mem-
ory, each transmitted UDP packet carries a total payload
size of 1024(chunk) + 16(MD5) + 8(phy addr) bytes. Us-
ing that value as our reference payload size, we measured
the time needed to transfer 6GB of memory to be ≈ 820′′,
≈ 10% of which is overhead due to the calculation of the
MD5 checksum over a single packet. The overall overhead
caused by the metadata inserted in every packet is 144MB.
It is worth noting that choosing a chunk size bigger than
1024B would introduce error-prone implementation intrica-
cies in exchange for a relatively small gain. By maximiz-
ing the chunk size up to the MTU, indeed, we would incur
in cross-page readings that, especially when dealing with
PAE, may be tricky to deal with. Assuming a chunk size of
(MTU−TCP header−16−8) = 1436B, the time needed to
dump 6GB and the overhead of metadata would respectively
drop to ≈ 814′′ and ≈ 103MB. This roughly corresponds to
an interesting downgrade of 29% of the overhead caused by
metadata. However, when calculated on the whole traffic,
the overall improvement is only of 0.66%. For this reason,
our current implementation relies on a 1024B chunk size and
trade a negligible performance boost for a more linear algo-
rithm.

Finally, we must verify if SMMDumper is able to guaran-
tee the properties that we illustrated in Section 1. Firstly,
to evaluate if atomicity is satisfied, we instrumented our de-
velopment environment in order to take a snapshot of the
system memory before starting to execute our SMM ISR
handler. Then, we compared such a dump with the one pro-
duced by SMMDumper. Results showed that our technique

allows to gather an accurate and consistent memory dump:
as we expected, no changes occur on the host after we trigger
an SMI by pressing a specific sequence of keystrokes. How-
ever, we are aware that some changes may occur meanwhile
SMMDumper reads memory mapped I/O regions which are
reserved for devices. These changes however do not affect
the consistency of our dump. Indeed, they cannot invalidate
the overall checksum since it is incrementally calculated, i.e.,
we just read these areas once, both for sending them out and
to calculate the hash. However, changes may happen be-
tween the time the user press the keystroke and the time at
which the actual chunk is sent out over the network. More-
over, since we mapped SMRAM [0x000a0000-0x000affff]

in a section of memory that overlaps the area used by video
RAM [0x000a0000-0x000bffff], the memory readings in
that address range result in a dump of the SMI ISR handler
and the SMRAM State Save Map, instead of the original
content of the memory area. We assert that these changes
do not violate consistency and atomicity properties as the
information they contain are strictly related to physical de-
vices and are not relevant for the analysis.

Secondly, we verified if the requirement of reliability is
satisfied. In this part of the evaluation, we performed a
man-in-the-middle attack between the target machine run-
ning SMMDumper and the receiver host [14]. The attack
allowed us to accurately tamper with the packets, modify-
ing the payload and re-calculating the MD5 checksum to hide
evidences of our modifications. The receiving host, at the
end of the procedure, detected our evil modifications lever-
aging the overall encrypted checksum that SMMDumper sent
at the end of the dump.

In summary, our experiments show that SMMDumper is
able to provide an atomic and reliable snapshot of the target
system, in a timely fashion.

5.1 Future Work
The actual SMMDumper implementation does not address

Multi-Processor (MP) systems. Nevertheless, SMMDumper
can be easily extended for handling it. In MP systems, SMI
is propagated to all processors. As described in [15], pro-
cessors enter SMM at slightly different times, because SMI
could be serviced in between of CPU instructions. There-
fore, SMM ISR handler waits for all processors to enter SMM
and then, using a semaphore, only one processor executes
the memory dump while the others wait it to complete.

Our threat model does not implicitly include the presence
of malicious hardware-assisted hypervisors on the target sys-
tem. However, when we do not have to dump more than
4GB of RAM, our solution is resilient to this kind of attacks.
On the other hand, as we explained in Section 4.4, the fall-
back solution to dump higher memory must exit SMM with
an rsm instruction. An hardware-assisted hypervisor could
intercept the rsm [8] and get hold of the execution control
before SMMDumper, thus disabling the acquisition of mem-
ory higher than 4GB.

Furthermore, we are currently working on a solution to
tackle the problem of dumping even more than 64GB of
RAM (i.e., on CPUs that support IA-32e mode). Prelimi-
nary results show that it is indeed possible to dump more
than this amount of RAM. Furthermore, to the best of our
knowledge, we believe that our future solution will be re-
silient to malicious hardware-based hypervisor attacks.



6. CONCLUSION
In this paper, we presented an SMM-based volatile mem-

ory acquisition technique that overcomes many of the limi-
tations affecting state-of-the-art solutions. In particular, we
have shown how SMMDumper is able to atomically perform
a live memory acquisition, while guaranteeing the on-system
and in-transit integrity of the acquired information.

While the firmware-based implementation of our proof-
of-concept may be undermined by sophisticated kernel-level
malware, the design of SMMDumper remains sound, arguing
that the introduction of a naive and inexpensive hardware
modification by vendors, such as an interrupt line directly
connected to the processor SMI pin, would make SMMDumper
completely bulletproof and resilient to any form of attacks.

Our experimental evaluation shows that SMMDumper is
effective and efficient, allowing for its real-world deployment
in digital forensic analyses and incident responses.
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