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Abstract

The key predistribution scheme (KPS) of Blackburn
et al. for grid-based wireless sensor networks makes
use of distinct-difference configurations (DDCs) to
achieve a lightweight and resilient distribution of
symmetric keys. Significant theoretical progress on
DDCs has been made recently. This paper examines
the implications of this research for the construction
of KPSs for grid-based wireless sensor networks. We
explore the connectivity and resilience requirements
of such schemes and give explicit algorithms for effi-
ciently constructing DDCs that lead to schemes with
the desired properties for a large range of parameters.
Keywords: Key predistribution, wireless sensor
networks, symmetric key management, distinct-
difference configurations

1 Introduction

A wireless sensor network (WSN) is an ad hoc net-
work formed from a large collection of low-powered
sensor nodes that gather data and use wireless com-
munication to transmit the information they collect.
Due to the wireless nature of the communication and
the potential commercial sensitivity of the data they
measure, there is a requirement for cryptographic
techniques to provide authentication, data integrity
and/or confidentiality. The limited processing power
and memory of the sensors means that in many cir-
cumstances the use of symmetric cryptographic prim-
itives may be preferred to more computationally in-
tensive public-key operations1. This creates a re-

1Recent progress in efficient implementation of public-key
techniques indicate it is possible for a sensor node to perform
the necessary computations. However, such techniques still re-
quire a substantial amount of memory to store the necessary
code, and the operations are costly in terms of the time and
energy required to perform them. Additionally, the practical
advantages of public-key schemes are less substantial in the
case of a grid-based network where the location knowledge can
be exploited to achieve particularly effective key predistribu-

quirement for the sensors to share keys. One effective
method of distributing keys to the sensors is a key pre-
distribution scheme (KPS), which allocates keys to be
stored in the sensors’ memories prior to deployment.
The design of a KPS involves a trade-off between the
number of keys each node must store (storage), the
number of secure links between nodes in the resulting
network (connectivity), and the vulnerability of the
scheme to adversaries that capture nodes and extract
the keys they contain (resilience). Many KPSs have
been proposed in the literature, but most of them
have been designed for networks in which the loca-
tion of the sensors is not known before deployment
(see [9, 14, 18] for surveys of this field). However, in
many instances the demands of the application lead
directly to networks in which there is prior knowledge
of sensor locations [14, 17]. When this occurs, this
location knowledge may be exploited for the develop-
ment of KPSs that provide a more efficient trade-off
between storage, connectivity and resilience.

One natural scenario in which there is complete
knowledge of the sensors’ locations is that in which
the sensors are located in a grid formation. The use
of a grid-based network is generally motivated by ap-
plications that require measurements to be taken at
regularly-spaced intervals. In some cases, the use of a
hexagonal grid (as opposed to a square grid) may be
desirable, as it permits a particularly efficient packing
of sensors into a target region. Grid-based networks
can arise in many applications, with recent instanti-
ations including soil moisture sensing [2], monitoring
conditions in a nectarine orchard [1], and measuring
the efficiency of water use during irrigation [15]).

Blackburn et al. showed that effective KPSs for net-
works based on square grids can be achieved through
the use of combinatorial objects known as distinct-
difference configurations (DDCs): sets of points in
a square grid such that the vectors joining any two
pairs of points differ in either length or direction [4].
This scheme makes use of the knowledge of the nodes’

tion.
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locations to ensure that keys are only shared by
nodes that are within communication range. For a
network with a given communication range and dis-
tance between neighbouring nodes, this permits the
total number of nodes in the network to be made
arbitrarily large without affecting either connectiv-
ity or resilience. This is not the case for KPSs such
as [10] that do not exploit location knowledge: in such
schemes, the storage/connectivity/resilience trade-off
becomes worse as the number of nodes is increased,
as maintaining connectivity with a given amount of
storage inevitably leads to decreased resilience as the
network size increases. The trade-off provided by the
scheme of [4] is particularly efficient, as it ensures that
any two nodes share at most one key, thus maximis-
ing the number of communication links secured by a
given number of shared keys. Additionally, the fact
that this scheme is deterministic implies that no com-
munication is required for pairs of nodes to determine
which keys they share (the shared-key discovery pro-
cess represents a substantial overhead for networks in
which the keys are allocated randomly).

A suitable choice of DDC in the scheme of Black-
burn et al. leads to KPSs that perform favourably
compared with other schemes in the literature, as
demonstrated in [4]. However, in [4] a computer
search was required in order to find DDCs with good
properties for use in key predistribution; this quickly
becomes infeasible if large DDCs are required.

Certain combinatorial properties of DDCs have re-
cently been explored in [3,5]. The authors give upper
bounds on the number of points possible in a config-
uration with bounded radius, and provide construc-
tions of periodic configurations that can be used to
obtain DDCs whose number of points is close to op-
timal (asymptotically) in both the square and hexag-
onal grid [5]. Inspired by the scheme of [4] they con-
sider bounds on the possible two-hop coverage of a
DDC, and give constructions of DDCs that attain the
maximum possible two-hop coverage given the num-
ber of points they contain, as well as others that have
provably complete two-hop connectivity over a spe-
cific region [3]. However, the papers [3, 5] focus pri-
marily on the combinatorics of DDCs, and the specific
implications of their results for the design of practical
KPSs are not explored.

In order to design explicit KPSs using these tech-
niques for a given network environment, two further
questions must be addressed:

1. What is the best way to choose a DDC on which
to base a grid-based KPS?

2. How should the chosen DDC be instantiated by
an explicit construction?

We extend the previous research by providing answers
to these questions.

1.1 Our Contributions

The previous work on DDCs in the literature is very
mathematical, and does not directly consider practi-
calities that are of key importance in the design of
an effective KPS [3, 5]. As we shall see, the selection
of appropriate parameters turns out to be delicate,
involving a three-way trade-off between storage, con-
nectivity and resilience. This paper addresses these
issues in order to provide practical key distribution
solutions for a grid based environment.

• We provide an explicit algorithmic description
of the the scheme presented in [4]. We extend
this scheme to hexagonal grids, and we indicate
that it can be combined with Blom’s scheme to
increase its resilience.

• We give a further analysis of the connectivity and
resilience requirements of KPSs for a grid-based
environment, and we discuss how this influences
the selection of appropriate DDCs for use in the
scheme of [4].

• We discuss how the bounds given in [3, 5] affect
the possible ranges of parameters of DDCs for
use in such schemes.

• We demonstrate how various constructions from
[3, 5] can be combined to yield DDCs with the
properties we desire for use in the scheme of [4].
We give explicit algorithms describing how these
DDCs can be efficiently constructed.

After preliminaries in Section 2, we provide an al-
gorithmic description of the KPS proposed in [4] in
Section 3, extending this KPS to suit networks based
on hexagonal grids, as well as square grids. In Sec-
tion 4 we observe that connectivity provides a good
criterion for choosing a DDC for use in a KPS, and in
Section 5 we discuss connectivity properties that can
be used for this purpose, namely the one-hop cover-
age and two-hop coverage. Efficient constructions for
DDCs with good one-hop coverage in both the square
and hexagonal grids are given in Section 5.1. Finally,
in Section 5.2 we provide an algorithm for the con-
struction of a DDC that gives complete 2-hop cover-
age over specified regions in the square or hexagonal
grid.

2



(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)

Figure 1: Coordinates for nodes in the square and
hexagonal grids

2 Grid-Based Networks and
Key Predistribution

2.1 Assumptions

In this paper we consider sensor networks in which
the nodes are located at the centres of the squares in
a square grid, or the hexagons in a hexagonal grid.
Individual nodes in the network may be identified
through the use of coordinates, which we assign as
shown in Fig. 1.

We suppose that any node is able to communicate
with all nodes that lie within distance r of it, and we
refer to r as the communication range of the nodes.
Two nodes are considered to be able to communicate
securely if they are within range of each other and
share a key; we refer to this as a one-hop path between
the nodes. Nodes that do not share a key may be able
to communicate with the aid of an intermediate node
with which they can both form one-hop paths: this
is referred to as a two-hop path.

The goal of a KPS is to facilitate secure commu-
nication between neighbouring nodes. As communi-
cation between nodes is costly in terms of the energy
expenditure that is required, it is desirable for nearby
nodes to be able to communicate as directly as pos-
sible. Useful parameters for measuring the perfor-
mance of a KPS are the one-hop coverage, which we
define to be the expected number of neighbours that
share keys with a node, and the two-hop coverage,
which we define to be the expected number of neigh-
bours with which a node can communicate securely
via either a one-hop or a two-hop path.

Finally, we assume there is an upper bound m on
the number of keys each node can feasibly store.

2.2 Adversary Model

We assume the presence of an adversary that can
eavesdrop on all unencrypted traffic in the network.

In addition, we suppose the adversary has the ability
to physically compromise nodes and extract any keys
that they store.

2.3 Design Requirements

Ideally we would like a KPS to provide good connec-
tivity with strong resilience, without requiring nodes
to store too many keys. As these properties are in op-
position to each other, the design of a KPS involves
finding an appropriate trade-off between them. Cer-
tain trivial schemes may seem obvious candidates for
KPSs in grid based networks. However, they have
inherent limitations that affect their applicability:

single key scheme Perhaps the simplest KPS is
that in which a single key is stored by all nodes
in the nextwork. This provides perfect connec-
tivity with extremely low storage overheads. Un-
fortunately, it has very poor resilience, since the
capture of even a single node by the adversary
leads to the compromise of all communication
links within the network.

immediate neighbours scheme A second possi-
bility would be for a node in a square (hexago-
nal) grid to share keys with its four (six) closest
neighbours. This leads to very low storage and
ensures the network is connected. However, the
one-hop coverage is just four (six), and the two-
hop coverage is only twelve (eighteen), which can
lead to communication bottlenecks in the net-
work, and would result in nodes becoming iso-
lated from the rest of the network if their imme-
diate neighbours were to fail or be compromised.

locally-complete pairwise scheme The fragility
of the previous scheme could be overcome by al-
lowing each pair of nodes that are within com-
munication range to store a distinct key. This
scheme has excellent one-hop coverage (since any
pair of nodes that is within range can communi-
cate securely) and resilience (since the compro-
mise of a node does not affect the security of any
keys shared by uncompromised nodes). How-
ever, the number of nodes within range of any
given node grows quadratically with the com-
munication range, which quickly results in nodes
being required to devote unfeasible amounts of
memory to the storage of keys.

The inflexibility of these schemes makes it impossible
to vary the trade-off between storage, connectivity
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and resilience to suit application requirements. In
Section 3 we describe an example of a scheme de-
signed specifically for a grid-based environment that
can provide a flexible and efficient trade-off between
these three properties.

3 A Practical KPS for Grid-
Based Networks

In [4], Blackburn et al. describe a KPS for a grid-
based network in which any pair of nodes shares at
most one key, and only nodes that are within commu-
nication range share keys. This first property leads
to schemes with high connectivity given a particu-
lar amount of storage: since there is no duplication
of shared keys, each shared key secures a new link.
The second property ensures that no shared key is
wasted on a pair of nodes who are too far apart to
be able to communicate, and also has the advantage
that if an adversary extracts keys from a node then
the only links affected will be local, with the rest
of the network remaining unaffected. These proper-
ties are achieved by basing the scheme on a distinct-
difference configuration DD(m, r): a set of points in
the square grid such that the difference between any
two points is at most r, and the vectors connecting
any two pairs of points differ either in length or di-
rection. It is demonstrated in [4] that for networks
based on square grids, this scheme outperforms other
schemes from the literature [10,11,13], achieving good
two-hop coverage and resilience with comparatively
low storage requirements.

Algorithm 1 is a description of the scheme of [4],
which works by selecting a DD(m, r), then allocat-
ing the keys so that the pattern of nodes in the grid
that share any given key coincides with the pattern
of points in the DD(m, r). We assume the nodes of
the network lie in a rectangle of size l1 × l2 (if this is
not the case, l1 and l2 can be taken to be the dimen-
sions of a rectangle in the square grid that contains
all the nodes of the network). Each node is identified
by the pair of integers (i, j), representing the column
and row of the rectangle in which it is located (see
Fig. 1). The distinct-difference configuration is rep-
resented by a set DDC := {P1,P2, . . . ,Pm}, where
Pi = (P i

0, P
i
1) represents the coordinates of the ith

dot in the configuration, and we assume 0 ≤ P i
0 ≤ r

and 0 ≤ P i
1 ≤ r for i = 1, 2, . . . ,m. The keyrings

of the nodes are represented as sets of key identi-
fiers, integers that each represent a specific key that is

drawn pseudorandomly from a larger keypool. Note
that while the distribution of key identifiers is entirely
deterministic, the correspondence between the iden-
tifiers and specific keys is necessarily probabilistic.

Algorithm 1: Grid-based KPS
Input: a distinct-difference configuration

DDC := {P1,P2, . . . ,Pm} ⊂
[0, r]× [0, r], positive integers l1, l2
representing the dimensions of the target
rectangle

Output: an l1 × l2 array S whose entries are
sets S[i][j] of m key identifiers

keycounter:=0;
for i from −r to l1 − 1 do

for j from −r to l2 − 1 do
for P ∈ DDC do

if 0 ≤ i+ P0 < l1, 0 ≤ j + P1 < l2
then

S[i+ P0][j + P1] :=
S[i+ P0][j + P1] ∪ {keycounter};

end
end
keycounter := keycounter + 1;

end
end
return S;

Example 1. We now illustrate the behaviour of
Algorithm 1 by considering some small parameters.
Suppose l1 = 8, l2 = 6, r = 2 and we wish to
distribute keys using the DD(3, 2) whose points are
{(0, 0), (1, 1), (2, 0)}. This DDC can be depicted as
follows:

.

The following table illustrates the key identifiers al-

4



located to each node in the grid by Algorithm 1.

18
9

2

19
10

3

20
11

4

21
12

5

22
13

6

23
14

7

26
17

10

27
18

11

28
19

12

29
20

13

30
21

14

31
22

15

34
25

18

35
26

19

36
27

20

37
28

21

38
29

22

39
30

23

42
33

26

43
34

27

44
35

28

45
36

29

46
37

30

47
38

31

50
41

34

51
42

35

52
43

36

53
44

37

54
45

38

55
46

39

58
49

42

59
50

43

60
51

44

61
52

45

62
53

46

63
54

47

66
57

50

67
58

51

68
59

52

69
60

53

70
61

54

71
62

55

74
65

58

75
66

59

76
67

60

77
68

61

78
69

62

79
80

63

We see that each square contains three integers, cor-
responding to the three keys stored by each node.
Similarly, each of these integers occurs in precisely
three squares (except for those occurring too close to
the edge of the network). Two squares that contain
the same integer correspond to two nodes that share
a key; any two nodes in the grid share at most one
key, and any two nodes that share a key occur at a
distance of at most 2 (where the width of each grid
square is taken to be 1).

The scheme in [4] was designed for a network based
on a square grid, but can also be adapted for the
hexagonal grid, through the use of the coordinates
shown in Fig. 1. We denote by DD∗(m, r) a set of
points in the hexagonal grid such that the difference
between any two points is at most r, and the vec-
tors connecting any two pairs of points differ either
in length or direction. Algorithm 1 can then be used
directly for key predistribution on the hexagonal grid
by replacing the DD(m, r) by a DD∗(m, r). Rather
than considering a network of nodes that lie in a rect-
angle, in this case we consider nodes lying in a paral-
lelogram of sidelengths l1 and l2, with angles of π/3
and 2π/3 between the sides (Fig. 1 shows such a par-
allelogram with l1 = 5 and l2 = 4.)

4 Finding an Appropriate
Trade-Off Between Storage,
Connectivity and Resilience

The behaviour of the KPS described by Algorithm 1
is determined by the choice of distinct-difference con-
figuration used to construct the scheme. Therefore,

in order to adapt this scheme for a particular applica-
tion, it is necessary to appreciate how the properties
of the scheme are influenced by the properties of the
distinct-difference configuration.

storage Perhaps the most well-defined constraint on
the selection of parameters for a KPS is the
amount of memory available for storing keys. In
a scheme based on a DD(m, r) or DD∗(m, r) each
node is required to store m keys, thus the ap-
propriate number of dots in the DDC chosen to
instantiate the scheme is determined directly by
available storage.

one-hop coverage The connectivity of the scheme
is directly related to m, since each node shares
keys with m(m − 1) other nodes (we refer to
this as the one-hop coverage of the schemes) [4].
Thus there is a direct tradeoff between the stor-
age requirements, and the one-hop coverage of
the scheme. The value of the communication
range r places constraints on the one-hop cover-
age that can be achieved: it is shown in [5] that if
a DD(m, r) exists, then m ≤ 0.88623r+O(r2/3)
and if a DD∗(m, r) exists then m ≤ 0.95231r +
O(r2/3), which in turn leads to upper bounds on
the one-hop coverage.

two-hop coverage The two hop coverage of a KPS
based on a DD(m, r) is the number of nodes that
can communicate securely with a given node by
a two-hop path. Whereas the one-hop cover-
age of a DD(m, r) is entirely determined by m,
the two-hop coverage depends on the particu-
lar configuration that is chosen. In [3] it was
shown that it can vary between 2m(m − 1) and
1
4m(m−1)(m2−m+ 6). This indicates that the
particular choice of DDC has a substantial effect
on the connectivity of the resulting KPS.

resilience The value of m has a certain influence on
the resilience of the KPS: for a network with n
nodes, the number of pairs of nodes that share
a key is approximately n

(
m
2

)
, whereas the num-

ber of links between uncompromised nodes that
are compromised when an adversary captures a
single node is m

(
m−1

2

)
. Thus the proportion of

secure links that are affected is approximately
m−2

n , which increases with m. The resilience of
the scheme can be increased at the cost of greater
storage and a small amount of computation by
the standard technique of replacing each indi-
vidual key with an instance of Blom’s KPS [6,7]
(see [12], for example.)
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Thus we see that both the connectivity and the re-
silience of the KPS can be traded against increased
storage, hence we effectively have a three-way trade-
off between these properties. This suggests that
one appropriate method for choosing a DD(m, r) or
DD∗(m, r) as an input to Algorithm 1 is therefore to
pick a DDC with the smallest value of m that still
gives the desired level of connectivity, as this min-
imises the storage and increases the resilience. It can
then be combined with Blom’s KPS based on polyno-
mials whose degree is as high as is permitted by the
storage constraints, in order to boost the resilience.
In order to do this, we require efficient techniques for
generating DDCs with desired levels of connectivity;
we address this issue in Section 5.

5 Construction of DDCs with
Good Connectivity

We saw in Section 4 that the connectivity of a
DD(m, r) or DD∗(m, r) is a good basis for deciding
whether to use it in the KPS of [4]. In this section,
we consider how to construct DDCs that have good
connectivity properties.

In order to control the one-hop coverage of our
KPS, is it desirable to be able to construct DDCs for
as wide a range of m as possible given the value of
r. In Section 5.1 we give algorithms that efficiently
generate DD(m, r) with m = 0.80795r − o(r) and
DD∗(m, r) with m = 0.86819r − o(r), based on con-
structions from [5]. The resulting DDCs thus have
one-hop coverage that is (asymptotically) close to op-
timal relative to the communication range, and there-
fore represent a good choice for applications in which
the one-hop coverage of the KPS is of paramount im-
portance. In other words, these DDCs can be re-
garded as having ‘close’ to the maximum number of
dots possible for the given value of r; if configurations
with fewer dots are desired, they can be obtained by
simply deleting dots from these configurations.

To achieve schemes with high connectivity, we
would like to be able to generate DDCs with high
two-hop coverage. In [3], Blackburn et al. show
that for any m there exists a DDC with m dots
that attains the maximum possible two-hop cover-
age of 1

4m(m − 1)(m2 −m + 6). The proof given is
constructive, but in practice the DD(m, r) thus ob-
tained require r to be so large as to render them
unsuitable for use with a KPS. However, the over-
all value of the two-hop coverage is perhaps not even

the most useful measure of connectivity, since it mea-
sures only the number of secure two-hop paths and
not their physical distribution. In the interests of fa-
cilitating efficient communication, we would like to
guarantee that a nodes can communicate securely
with its closest neighbours by either a one-hop or
two-hop path. A construction is given in [3] for a
DD(p + 2,

√
2p2 + 2p+ 1), where p ≥ 5 is prime,

which leads to a KPS in which each node can commu-
nicate securely via a one-hop or two-hop path with all
the nodes in a surrounding (2p−1)× (2p−3) rectan-
gle. We refer to this as complete two-hop connectivity
within such a rectangle. This is a useful property, as
it ensures nodes can communicate securely with their
nearest neighbours. We describe this construction in
Section 5.2, and extend it to give a construction for
a DD∗(p+ 2,

√
3p2 − 3p+ 1) with complete two-hop

coverage on a parallelogram.

5.1 KPSs with Good One-Hop Cover-
age

In this section we give an explicit description of
how to instantiate constructions from [5] of distinct-
difference configurations with large numbers of dots
for both the square and hexagonal grid. These con-
structions each make use of a B2-sequence in Zn: a set
D = {d1, d2, . . . , di} ⊂ Zn with the property that the
differences between any two pairs of numbers in the
set are distinct (mod n). In [8], Bose describes a con-
struction of a B2-sequence in Zq2−1 containing q el-
ements. Algorithm 2 describes an explicit method of
generating the elements of a Bose B2-sequence. This
algorithm requires the use of a quadratic primitive
polynomial over the finite field GF(q); information
on generating such polynomials can be found in [16].
We use the notation M i

1,1 to denote the top left entry
of the ith power of the matrix M .

Example 2. Suppose we wish to construct a Bose
B2 sequence in Z24. The polynomial x2 + 4x + 2 is
a primitive polynomial over GF(5); we use it to con-

struct the matrix M =
(
−4 1
−2 0

)
. Taking successive

powers of M , we find that the top left entries of M0,
M1, M14, M16 and M21 are 1, hence the desired
B2-sequence consists of the set {0, 1, 14, 16, 21}. It is
easy to check that no two of the 20 possible differ-
ences between distinct pairs of elements of this set
coincide (mod 24).

We now describe the conversion of a Bose B2-
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Algorithm 2: Construction of a Bose B2-
sequence
Input: elements a, b ∈ GF(q) such that

x2 − ax− b ∈ GF(q)[x] is a primitive
polynomial

Output: a B2-sequence
D = {d1, d2, . . . , dq} ⊂ Zq2−1

M :=
(
a 1
b 0

)
;

D := {0};
for i from 1 to q2 − 2 do

if M i
1,1 = 1 then
D := D ∪ {i};

end
end
return D;

sequence into a DD(m, r) or DD∗(m, r).

5.1.1 DD(m, r) with Good One-Hop Coverage

Algorithm 3 is based on the techniques of [5] and can
be used to construct a DD(m, r) with m = 0.80795r−
o(r) from a Bose B2-sequence.

Let R =
⌊

r
2

⌋
. We will construct a distinct-

difference configuration whose dots are contained in a
circle of radius R, which implies that the distance be-
tween any two dots is at most r. Let n = b0.914769rc
(the constant was chosen in [5] to obtain an optimal
construction), and let q be the smallest prime power
with q2−1 ≥ n2. Algorithm 3 converts a B2-sequence
in Zq2−1 into a distinct difference configuration whose
dots are contained in an n × n square2, then takes
the intersection of the square with a circle of radius
R centred at the centre of the square, in order to
produce a DD(m, r) for some m ≤ q.

If D = {d1, d2, . . . , dq} ⊂ Zq2−1 is a B2-sequence,
then so is the set D + i := {d1 + i, d2 + i, . . . , dq + i}
for any i ∈ Zq2−1; we refer to this as a shift of D. We
can apply Algorithm 3 to each of the q2 − 1 possible
shifts of the Bose B2-sequence in Zq2−1 and select the
resulting configuration with the greatest number of
dots. The results of [5] show that configurations with
approximately 0.80795r − o(r) dots can be obtained
by this method.

Example 3. Suppose we wish to construct a
DD(m, 8). Then n = 7, so we take q = 8 in

2i.e. a set of n2 grid points arrange in a square

Algorithm 3: Construction of a DD(m, r) from
a B2-sequence
Input: a positive integer r, a B2-sequence

D = {d1, d2, . . . , dq} ⊂ Zq2−1 where q is
the smallest prime power such that
q2 − 1 ≥ b0.914769rc2

Output: a set DDC := {P1,P2, . . . ,Pm} of
points in Z2 forming a DD(m, r) for
some m ≤ q

R :=
⌊

r
2

⌋
;

n := b0.914769rc;
DDC := {};
for i from 0 to n− 1 do

for j from 0 to n− 1 do
if iq + j (mod q2 − 1) ∈ D then

if (n−1
2 − i)

2 + (n−1
2 − j)

2 ≤ R2 then
DDC := DDC ∪ {(i, j)};

end
end

end
end
return DDC;

Figure 2: A DD(8, 8) contained in a circle of radius 4

Algorithm 3. The Bose B2 sequence in Z63 gener-
ated by Algorithm 2 is {0, 4, 6, 7, 29, 39, 50, 55}.
Taking this B2-sequence as input to Al-
gorithm 3 yields a DD(3, 8). However, if
we shift the original sequence by 37 to ob-
tain the sequence {3, 13, 24, 29, 37, 41, 43, 44}
we obtain the DD(8, 8) whose points are
{(0, 3), (5, 4), (3, 5), (1, 5), (4, 5), (5, 1), (5, 3), (3, 0)},
illustrated in Fig. 2. This is the maximum number
of points that can be obtained from any shift of this
Bose B2-sequence.

5.1.2 DD∗(m, r) with Good One-Hop Cover-
age

The points of the hexagonal grid are packed more
densely than those of the square grid, making it pos-
sible to obtain DD∗(m, r) with 0.86819r − o(r) dots
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by a similar construction to that used in the case of
the square grid [5].

Let R =
⌊

r
2

⌋
, n = b0.914769rc, and let q be the

smallest prime power with q2 − 1 ≥ 2√
3
n2. We take

a Bose B2-sequence in Zq2−1 and apply Algorithm 4,
which is essentially a variant of Algorithm 3 adapted
to suit the different pattern of grid points in the
hexagonal grid. It makes use of the fact that a node
of the hexagonal grid labeled (i, j) as in Fig. 1 has
Cartesian coordinates (i− j

2 ,
√

3j
2 ).

Algorithm 4: Construction of a DD∗(m, r) from
a B2-sequence
Input: a positive integer r, a B2-sequence

D = {d1, d2, . . . , dq} ⊂ Zq2−1 where q is
the smallest prime power such that
q2 − 1 ≥ 2√

3
b0.914769rc2

Output: a set DDC := {P1,P2, . . . ,Pm} of
points in Z2 forming a DD∗(m, r)

R :=
⌊

r
2

⌋
;

n := b0.914769rc;
b :=

⌊
n√
3

⌋
;

DDC := {};
for j from 0 to 2b− 1 do

for i from
⌈

j
2

⌉
to
⌊
n− 1 + j

2

⌋
do

if i(2b− 1) + j(b− 1) (mod q2 − 1) ∈ D
then

if
(

n−1
2 −

(
i− j

2

))2
+(√

3(b−1)
2 −

√
3j
2

)2

≤ R2 then
DDC := DDC ∪ {(i, j)};

end
end

end
end
return DDC;

As before, the number of points in the configura-
tion arising from this construction can be potentially
increased by applying Algorithm 4 to successive shifts
of the original Bose B2-sequence, and selecting the re-
sulting configuration that contains the greatest num-
ber of points.

Example 4. Here we consider the construction of
a DD∗(m, 8). Now n = 7, so we take q = 8, as
82 − 1 = 63 > 2√

3
72 ≈ 56.58. The greatest number

of points we can obtain from this method is 8,
resulting from applying Algorithm 4 to the Bose B2-
sequence shifted by 34. This yields the DD∗(m, 8)

Figure 3: A DD∗(8, 8) contained in a circle of radius
4

whose points (in hexagonal coordinates) are
{(8, 5), (4, 6), (7, 5), (8, 6), (7, 3), (0, 0), (3, 0), (5, 3)},
illustrated in Fig. 3.

5.2 KPSs with Complete 2-Hop Cov-
erage

Algorithm 5 is a construction from [3] based on
the Welch construction for a Costas array. It pro-
duces DDCs with complete two-hop connectivity on
a 2p − 1 × 2p − 3 rectangle. If the points of the

Algorithm 5: Construction of a DD(p +
2,
√

2p2 + 2p+ 1) with complete two-hop cover-
age on a 2p− 1× 2p− 3 rectangle
Input: a prime p ≥ 5, an element α ∈ GF(p)

that is a primitive element (mod p)
Output: a set DDC := {P1,P2, . . . ,Pp+2} of

points in Z2 forming a
DD(p + 2,

√
2p2 + 2p + 1) contained

in a (p+ 1)× (p+ 2) rectangle
DDC := {(0, 0), (p, 0), (1, 1), (0, p− 1), (p+ 1, p)};
jshift:=0;
while αjshift+1 − αjshift 6≡ 1 (mod p) do

jshift := jshift + 1;
end
ishift := αjshift;
for i from 2 to p− 1 do

for j from 2 to p− 2 do
if α(j+jshift) ≡ i+ ishift (mod p) then

DDC := DDC ∪ {(i, j)};
end

end
end
return DDC;

DD(p + 2,
√

2p2 + 2p + 1) resulting from this algo-
rithm are interpreted in hexagonal coordinates, they
yield a DD∗(p+2,

√
3p2 − 3p + 1) with complete two-

hop coverage in a parallelogram of sides 2p − 1 and

8



2p− 3 (see Fig. 4b).

Example 5. When p = 5, Algorithm 5 yields the
following DD(7, 8).

For each node, the pattern of nodes with which it can
communicate via a one-hop or two-hop path is that
shown in Fig. 4a. The results of [3] guarantee that
the nodes within a 9×7 rectangle centred at the node
are included in the pattern; as Fig. 4a indicates, the
coverage achieved in practice is much greater than
this.

When the output of Algorithm 5 is interpreted in
terms of hexagonal coordinates, the following DD(p+
2,
√

3p2 − 3p + 1) results; its two-hop coverage is il-
lustrated in Fig. 4b.

6 Conclusion

The full location knowledge of the grid-based sce-
nario means that key predistribution can be particu-
larly effective, as it is possible to specify the precise
distribution of keys that is desired. It does not ap-
pear to have been considered in the WSN literature
prior to [4], however. In [4], key predistribution based
on DDCs was compared with a representative selec-
tion of schemes from the literature, both location-
based and otherwise, and unsurprisingly was shown
to achieve greater resilience for a given level of con-
nectivity and storage. In this paper we have analysed
how the results of [3, 5] can be applied in practice in
a sensor network context. The result is efficient tech-
niques for constructing instantiations of the scheme
from [4] that lead to KPSs with good connectivity
that are suitable for a range of network parameters.
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