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Abstract

One of the most important processes involved in securing a cryptographic sys-
tem is establishing the keys on which the system will rely. In this article we
review the significant contribution of combinatorial mathematics to the devel-
opment of the theory of cryptographic key establishment. We will describe
relevant applications, review current research and, where appropriate, identify
areas where further research is required.

1 Introduction

Cryptography provides the core information security services that are necessary
to safeguard electronic communications. The sound management of cryptographic
keys is the fundamental supporting activity that underpins the secure implementa-
tion of cryptography. The purpose of this paper is to demonstrate the significant
contribution of combinatorial mathematics to the development of the theory of cryp-
tographic key establishment.

• Scope: This paper surveys areas of key establishment where combinatorial
models or construction techniques have proven of value. Our aim is not to
provide a comprehensive survey of the literature, but rather to provide suf-
ficient coverage that most relevant work will be (to use the terminology of
Section 7.3.3) at most a “two-hop path” from this review. This paper is not
an attempt to survey the vast research on key establishment in general.

• Detail: The primary aim is to bring these applications of combinatorics to
the attention of the mathematical community within a sensible unifying frame-
work. We thus focus on introducing concepts and providing pointers for further
study. This paper contains no proofs. Combinatorial modelling typically in-
volves the establishment of bounds and constructions. For illustrative purposes
we will tend to focus on constructions in this review.

• Novelty: This article largely describes existing research and will contain few
surprises for those already familiar with the field. That said, as far as we are
aware, the full range of applications covered in this review have not previously
all been presented within a common framework and so it is hoped that this
may be of interest in its own right.

• Applicability: While the schemes in this paper are all of potential interest
to a designer of a real cryptographic system, most are proposed under more
rigorous mathematical security requirements than are demanded by the“real
world”, where security is often (validly) traded off against efficiency and prac-
ticality. Most of the key establishment schemes discussed in this paper are
unlikely to be currently employed in commercial applications. This does not,
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however, preclude them from influencing real designs or prevent them from be-
ing used in the future. They are all of interest in their own right as theoretical
models of what is possible.

The remainder of the paper is structured as follows. In Section 2 we provide some
background to cryptography and key management. We present a framework for
key establishment in Section 3, which sets the context for comparison of schemes
presented elsewhere in the paper. Section 4 contains some brief mathematical pre-
liminaries. Our main review is spread over the subsequent three sections, where in
Section 5 we look at key predistribution, in Section 6 we look at key distribution,
and in Section 7 we look at key agreement. In Section 8 we provide some concluding
remarks.

2 Cryptographic key management

We live in a society where electronic communication has become indispensable
and ubiquitous. Electronic networks pervade all aspects of our professional and pri-
vate lives. Many people, however, fail to appreciate that well-established and under-
stood security safeguards that apply to traditional communication media are often
absent in their electronic counterparts. In fact many of the features of electronic
communication that we most value potentially expose information to previously
unimaginable vulnerabilities.

The simple act of writing a letter suffices to illustrate this well. A traditional
hand-written letter is normally posted in a sealed envelope and delivered to the
specified address by a postal service. Interception of the contents requires physical
access to the letter during the delivery service and breaking of the protective seal.
The recipient can inspect the envelope for damage and may well gain assurance of the
integrity of the contents through physical means, such as inspection of the postmark
and recognition of handwriting. In contrast, an email is normally unprotected. In
order to reach the specified address it is sent over a series of computer networks,
passing through numerous computer servers and network routers on its journey. At
any point its contents could be inspected, copied, forwarded, changed, and even
the name of its sender could be forged. The recipient gains only cosmetic levels
of assurance that the content is genuine and unaltered. Security in this electronic
environment relies more on luck and lack of motivation for attack. If someone really
wants to learn the content of an email then with very little technological expertise
they probably can. With just a few clicks of their mouse button they can also share
it with a significant percentage of the world’s population.

There are of course solutions to most of these electronic security problems, as it
is inconceivable that some of the earliest adopters of commercial electronic networks,
such as the banking industry, could have developed electronic business without suit-
able security mechanisms in place. The science of cryptography underpins the bulk
of these solutions. Cryptography is essentially a toolkit of mathematical techniques,
algorithms and protocols that provide the core security services that are required
in electronic communications. These services include confidentiality (restricting ac-
cess to the contents of communicated data), data integrity (protecting data from
manipulation), data origin authentication (correctly attributing the originator of
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some data) and non-repudiation (providing evidence of the occurrence of a data
exchange that cannot later be denied). We have all used cryptography, even if we
are not always aware that we are doing so, as cryptographic mechanisms are used
to protect banking transactions (for example ATM transactions, Internet banking,
SWIFT transfers), mobile telephone communications, secure web transactions (by
means of the SSL protocol), password storage on computer operating systems, etc.
Most modern computers have the facility to encrypt email (even if we tend not to
use it) and almost everyone carries around at least one plastic card with a chip on
it, whose purpose is primarily to allow cryptographic computations to be performed
when that card is placed in contact with a reader.

Regardless of their purpose or application, most cryptographic mechanisms crit-
ically rely on the use of keys, which are essentially numbers selected at random from
a large space. As the majority of cryptographic mechanisms are published processes
that can be analysed by anyone, the entire security of a cryptographic mechanism
typically relies on the protection of the relevant keys. The nature of these keys
provides a natural broad classification of cryptographic mechanisms into symmetric
mechanisms, where the secret keys employed by the sender and the receiver of data
must be identical, and public-key mechanisms, where only one of the keys needs to
be secret, and the other key can be made public. While for many applications both
symmetric and public-key mechanisms are used in tandem, the fact that symmetric
mechanisms tend to be faster and require shorter keys means that for a range of
applications, symmetric key mechanisms are favoured. We will encounter several
such applications during this paper.

Assuming that strong cryptographic mechanisms are employed and implemented
correctly, it is fair to say that the security of cryptographic mechanisms relies almost
entirely on the secure management of the relevant keys. The phrase key management
tends to be associated with the entire lifecycle of a cryptographic key, including its
creation (key generation), the methods by which it is sent to the relevant users of
the system (key establishment), the techniques that are used to change or refresh it
(key update) and ultimately the means by which it is deleted at the end of its usage
period (key destruction).

The purpose of this paper is to review a number of interesting areas where com-
binatorics has found application in aspects of key management, and in particular key
establishment. We will generally not need to concern ourselves with the purpose, or
indeed even the algorithms, for which these keys are needed. The key establishment
problems that we will look at in detail are mostly intended to support applications
of symmetric cryptography. The reason for this is quite simple. The fundamental
key management challenge in symmetric cryptography is one of key establishment.
We need to arrange for every group of users who wish to engage in a secure commu-
nication exchange to have a common key. It should already be self-evident that this
lends itself to a combinatorial setting. This fundamental problem does not always
exist for public-key cryptography since one of the keys is public. Key management of
public-key cryptography involves quite different challenges, which are mainly beyond
our scope.

There are many introductory texts that provide a basic primer in cryptography.
For a short mathematics-free background read, we recommend [63]. For a more
comprehensive coverage of techniques and methodology we highly recommend [73].
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A good survey of some of the topics considered in this paper is [72]. More generally,
[10] provides an excellent survey on key establishment that goes beyond areas of
combinatorial interest and [18] is probably the definitive work on cryptographic
protocols relating to key establishment. Finally we note that both [7] and [26] include
good reviews of other combinatorial applications to problems arising in information
security.

3 Key establishment framework

In this section we will propose a framework within which the various schemes
that we study can be meaningfully compared. In the remainder of the paper we
will review schemes that have been proposed for a range of applications within this
framework.

We use the term key establishment to indicate that this framework primarily
covers the key management processes directly related to ensuring that the right
keys are established in the right places within the network. We normally assume
the existence of a trusted authority (or TA), which is an entity that is regarded
as trustworthy and secure by all users in the network and that is relied on for
various security critical operations, in particular during initialisation. We will not
be particularly concerned with operations such as key generation, which in most
case we leave to the TA, and key destruction, which in most cases we need to leave
to individual users.

We represent the set of users of our network by U = {U1, . . . , Un} and the TA by
T . It is probably most intuitive if we assume that we are establishing keys in this
network for confidentiality purposes (in other words our keys are encryption keys),
however this need not be the case.

Let C be a collection of subsets of U , which we refer to as a communication
structure, that consists of the collection of subsets of users for whom we wish to
establish common keys. Note that many treatments of key management assume that
cryptographic keys only need to be established between pairs of users. We make no
such restriction here and will often refer to group keys in order to emphasise that we
are establishing keys for general subsets. A group key kA for a set A ∈ C is a value
that all members of A can compute and use to secure joint communication within
the group.

Definition 3.1 Informally, a key establishment scheme for communication struc-
ture C is a set of protocols that allow any set A ∈ C to establish a group key kA. It
consists of the following operational phases:

1. Initialisation. In this phase T generates all the data required to initialise
the scheme. More precisely, this comprises:

• Secret data specific to each user. We denote the secret data specific to
user Ui by ui. This value is only known to T and Ui and we assume
that there exists some secure channel by which ui can be transported
from T to Ui (this channel is regarded as something outside of the key
establishment scheme and could include, for example, physical delivery).
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On receiving ui, user Ui is responsible for ensuring that ui is suitably
protected.

• Public system-wide data, which we denote by Pub. This is made available
by T to all users in U by means of an authenticated channel, the details
of which do not concern us here.

2. Key establishment. In this phase a group of users A ∈ C establish their com-
mon key kA. Whether this process involves the TA, communication between
users, or no communication between scheme entities, is a major distinguisher
between schemes in this paper. We return to this issue shortly (Section 3.1).

3. Update. In this optional phase, the secret and public data are modified. This
may be because the communication structure has changed (for example users
have left the scheme or new users have joined) or because the original keys have
expired (all cryptographic keys have a finite lifetime and eventually need to be
renewed). The simplest update operation is key refreshment, where existing
group keys are simply replaced by new keys.

In the following subsections we specify our framework by identifying issues that
can be used to define specific types of key establishment scheme.

3.1 Broad classification of key establishment schemes

A major distinguisher between different key establishment schemes is the extent
to which communication between entities occurs during the key establishment phase.
Note that the costly secure channels between the TA and users that were employed
during the initialisation phase are not normally regarded as being readily available
throughout the scheme lifetime (if they were available then one easy way to establish
a common key would simply be for the TA to generate one at the time of request
and distribute it over these same secure channels). We identify three potential
operational environments during the key establishment phase:

1. Users have no communication channels available to support key establishment
and thus must be able to do so on their own. We refer to such schemes as
group key predistribution schemes.

2. The TA has some ability to communicate with users during the key establish-
ment phase. We refer to such schemes as group key distribution schemes.

3. Users have some ability to communicate with one another during the key es-
tablishment phase. We refer to such schemes as group key agreement schemes.

Note that these environments apply strictly to the key establishment phase. Most
group key predistribution schemes, for example, require involvement of an online
TA during any update phase.

3.2 Secondary distinguishers

The next set of issues are secondary distinguishers in the sense that they subdi-
vide schemes within the broad categories of Section 3.1.
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3.2.1 Security The security model within which a key establishment scheme op-
erates is a secondary distinguisher. The main threat to the security of a key estab-
lishment scheme that we consider is the ability of users (or outside parties) to obtain
a key that they are not entitled to. There are two different aspects to this security
issue that need to be identified for any given solution:

1. Type of security: The most common two types of security that we will
encounter are:

• Unconditional security : where the security of the scheme is independent
of the resources available to an attacker.

• Computational security; where the scheme can only be broken by an
attacker with sufficient computational resources.

2. Resilience: This specifies the degree of resilience of the scheme to collusion
between users. We will refer to the collection X of subsets of U who, even if
they collude and share all their secret data, are unable to obtain any group
keys to which they are not entitled, as the exclusion structure. This is always
a monotone decreasing set (if B1 ∈ X and B2 ⊆ B1 then B2 ∈ X ). While
general exclusion structures will be considered, the two most common degrees
of resilience we will encounter are:

• Full collusion security : X consists of all subsets of U , meaning that no
collusion of users should be able to determine a key that they are not
entitled to.

• w-security : X consists of all subsets of U of at most size w, meaning that
no collusion of up to w users should be able to determine a key that they
are not entitled to.

3.2.2 Deterministic v probabilistic An important secondary distinguisher be-
tween key establishment schemes is whether they are:

• Deterministic: we can guarantee that a group A ∈ C is able to establish a
common key.

• Probabilistic: we can only guarantee that a group A ∈ C is able to establish a
common key with a certain probability.

3.2.3 Communication channels Schemes also differ in the types of communica-
tion channel that exists between entities involved in the scheme. Two particular
types of channel that we will regularly encounter are:

• Secure: we assume that any information exchanged on such a channel is totally
protected, both in terms of being kept confidential and authentic (unchanged
and from an identified originator).

• Broadcast : we assume that any information exchanged on such a channel is
authentic, but not confidential.

Broadcast channels are much less costly and easier to maintain than secure channels.
For example, publishing some data on an authenticated public noticeboard would
realise a broadcast channel.
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3.2.4 Properties of keys A number of subtle secondary distinguishers concern
the nature and structure of the the group keys. The following definitions will be
useful in this regard. A group key kA established by a group of users A ∈ C is:

• Predistributed : if kA is a function only of the values {ui |Ui ∈ A} and Pub.
In other words, kA is computed only from data made available to the group
members during the initialisation phase (this is necessarily the case for group
key predistribution schemes).

• Independent : if knowledge of other group keys provides no information about
the value of kA.

• Combinatorial : if kA can be represented as a subset of the collective secret
user data of users belonging to A.

3.2.5 Extended capabilities Further secondary distinguishers arise from addi-
tional properties that may be required by specific applications. Examples include:

• Flexibility: the extent to which a key establishment scheme is able to effi-
ciently accommodate an update phase.

• Computational capability: the extent to which entities (particularly users)
have the ability to perform computations.

• Decentralisation: whether roles normally conducted by the TA are required
to be distributed amongst a number of separate entities. This can be for
reasons of scalability, security or reliability.

• Collaboration: the degree of collaboration that is required (or permitted) to
take place between users in order to establish a group key.

• Robustness: a stronger security model might be required for applications
where either the TA or users are not trusted to perform their operations hon-
estly.

• Temporal restrictions: whether key establishment for certain groups is re-
stricted to specific time intervals or limited to a finite number of key estab-
lishment events.

• Traceability: whether it is possible to identify fraudulent users who abuse
the key establishment scheme.

3.3 Evaluation criteria

The previous criteria that we have discussed are largely distinguishers based
on scheme functionality. The following are the most common evaluation criteria
that allow comparisons to be made between functionally similar key establishment
schemes.

• Secret storage: the amount of information that a user needs to keep secure.
As secure storage is expensive, this is an important quantity to minimise.
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• Public storage: the amount of public information that needs to be main-
tained in order to operate the scheme. While it not so important to reduce
this as it is to reduce secret storage, maintaining authenticated public data
induces a cost and keeping this as small as possible is desirable.

• Communication costs: the quantity of data that needs to be exchanged
(whether by expensive secure channels or less expensive broadcast channels)
between entities in the key establishment scheme is something we would like
to minimise.

• Computational costs: we would like to minimise the computational require-
ments for users in the scheme. Efficient computation is particularly important
for applications where users are represented by low-memory devices with lim-
ited computational capabilities.

4 Preliminaries

In this section we briefly review some definitions and notation that we will employ
later. We refer the reader to the combinatorial literature for further details.

4.1 Designs

A set system (I,B) consists of a set I of v elements (points) and a collection B
of subsets (blocks) of I. The degree of x ∈ I is the number of blocks of B containing
x and (I,B) is regular if all points have the same degree r. The rank k of (I,B) is
the size of the largest block in B and we say that (I,B) is uniform if all blocks have
size k.

A regular, uniform set system with |I| = v, |B| = b, and with every t points
occurring on precisely λ blocks is known as a t-(v, b, r, k, λ)-design (we often just
refer to a t-(v, k, λ)-design since b and r can then be uniquely derived). The following
special cases are of particular interest:

• A 2-(s2 + s + 1, s2 + s + 1, s + 1, s + 1, 1)-design is known as a projective plane.

• A 1-(v, b, r, k, λ)-design (which by definition has λ = r) with the further prop-
erty that any pair of points occur in at most one block is called a (v, b, r, k)-
configuration.

• A t-(v, k, λ)-design whose blocks can be partitioned into parallel classes is said
to be resolvable.

A set system is a group-divisible design GD(nu, k) if v = nu and there exists a
partition H of I into u groups of size n such that:

1. Every H ∈ H intersects a block B ∈ B in at most one point;

2. Every pair of points from different groups occur together in precisely one block.

A transversal design TD(k, n) is a GD(nk, k).
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4.2 Arrays

An orthogonal array OAλ(t, k, v) is a λvt×k array with entries from a set of size
v such that for any tuple (x1, . . . , xt) and any columns C1, . . . , Ct there are precisely
λ rows of the array in which the entry xi occurs in column Ci (for all 1 ≤ i ≤ t).

4.3 Graphs

A graph G = (I, E) consists of a set of of vertices (or nodes) I joined by edges
in E , where E ⊆ I × I. We say that a pair of vertices U and V are adjacent if
{U, V } ∈ E (we will also say that V is a neighbour of U). The degree of a vertex U
is the number of vertices adjacent to U . A graph is regular of degree r if all vertices
have degree r. If the order of adjacent vertices {U, V } matters then we write (U, V )
(if an edge connects U to V ) and we say that G is a directed graph.

A path of length L from U0 to UL is a sequence of edges and vertices of the form
U0, e1, U1, e2, . . . , UL−1, eL, UL, where the vertices Ui and the edges ej are all distinct
and Ui−1 and Ui are adjacent and connected by ei. A cycle is a path from a vertex
to itself of length more than one (a cycle of length one is called a loop). A graph is
connected is every pair of vertices are joined by at least one path.

A complete t-partite graph is a graph whose vertices can be partitioned into t
disjoint subsets such that two vertices are adjacent if and only if they belong to
distinct subsets.

An (n, r, λ, µ)-strongly regular graph is a regular graph on n vertices with degree
r and any two distinct vertices have λ common neighbours if they are adjacent and
µ common neighbours if they are not adjacent.

A tree is a connected graph with no cycles, loops or multiple edges. There thus
exists a unique path between any two vertices. Any vertex of a tree can be chosen
to be the root of the tree, with all edges and vertices descending from this root.
We call this a rooted tree and can interpret it is a directed graph with a natural
ordering induced from the root. Every vertex U in a rooted tree (except the root)
has a unique parent and any other vertex adjacent to U is said to be a child of U .
Any vertex of degree one with no children is called a leaf. A binary tree is a tree
where every vertex has at most two child nodes (in general an a-ary tree is one
where every vertex has at most a child nodes). A chain is a tree consisting of a
single path, where each intermediate vertex has precisely one parent and one child.
A starlike subgraph is a tree in which every path has length at most two.

4.4 Posets

A partially ordered set (poset) is a pair (L,6), where 6 is a reflexive, anti-
symmetric, transitive binary relation on L. We say that x covers y , denoted yl x,
if y < x and there does not exist z ∈ L such that y < z < x (in this case we also
refer to y as a child of x and x as a parent of y). The Hasse diagram (L,l) of a
poset is the directed graph (L, E) where (x, y) ∈ E if and only if x l y. Note that
every rooted tree is a Hasse diagram for the poset defined by U l V if and only if
U is a parent of V in the rooted tree.
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4.5 Cryptographic primitives

We will use a number of cryptographic primitives as building blocks in some of
the schemes in this paper. We briefly mention three that will see repeated use.

A symmetric encryption algorithm E is a function that converts binary strings
of plaintext into binary strings of ciphertext. More precisely, the ciphertext is a
function of the plaintext and a symmetric key K, which is shared between sender and
receiver. The receiver of the ciphertext is able to use a related decryption algorithm
to recover the plaintext from the ciphertext using the same key K. Symmetric
encryption algorithms, applied directly as described, provide data confidentiality.
They can be applied in other ways to establish other security services.

A hash function is a function that converts an arbitrary long input into a fixed
length compressed output. A hash function should have the properties that it is
one-way (it is hard to recover an input from a given output) and collision-free (it
is hard to find two inputs with the same output, even though there will be many
such pairs). Hash functions are extremely versatile cryptographic primitives and are
employed widely in cryptographic protocols.

A secret sharing scheme, which is a method of sharing a secret value amongst a
group of participants by distributing related information (shares) in such a way that
only certain specified subsets of the participants (defined by the access structure Γ)
can reconstruct the secret from their shares. If subsets of participants not in the
access structure learn nothing about the secret from their shares then the scheme
is referred to as being perfect. We make the natural restriction that Γ is monotone
(in other words, if X ∈ Γ and X ⊆ Y then Y ∈ Γ). If Γ consist of all subsets of at
least t out of n participants then we refer to a secret sharing scheme for Γ as being
a (t, n)-threshold scheme.

Secret sharing schemes were first proposed in [8, 69] and are of significant com-
binatorial interest in their own right (see [71] for a review). It can be shown that
in perfect secret sharing schemes each participant’s share must be at least as large
as the secret it is protecting. Secret sharing schemes in which each share has this
minimal size are called ideal. Ideal secret sharing schemes are closely related to
matroids [19] and ideal threshold schemes correspond to orthogonal arrays [39].

5 Key predistribution schemes

The first class of key establishment schemes that we will look at are group key
predistribution schemes. Applications suitable for group key predistribution are
those where during key establishment the TA cannot be accessed in any capacity (it
may have ceased to exist, or be impractical or too costly to communicate with it)
and users cannot employ secure communication channels amongst themselves (they
may not be able to afford the computational costs of establishing such channels).

Definition 5.1 A (C,X )-key predistribution scheme (KPS) is a key establishment
scheme with communication structure C and exclusion structure X such that:

1. Given A ∈ C, any Ui ∈ A can compute the group key kA from knowledge of ui

and Pub.
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2. Given disjoint sets B ∈ X and A ∈ C, it is not possible to compute the group
key kA from knowledge of uB and Pub (where uB = {ui |Ui ∈ B}).

Note that the precise meaning of property (2) in Definition 5.1 depends on the
security model within which we are operating. If a KPS is unconditionally secure
then these conditions can be stated information theoretically (see, for example [10]).

The literature contains a wide variety of key predistribution schemes. We will
begin this section by identifying a number of (generic) fundamental KPSs, most of
which have manifested themselves on numerous occasions as published schemes. We
then discuss several different types of KPS that are of combinatorial interest.

5.1 Fundamental schemes

In this section we identify seven fundamental key predistribution schemes, di-
vided into two different classes. These fundamental schemes are a combination of
generic schemes that help to illustrate some of our definitions as well as extremal
schemes that provide useful performance benchmarks for comparison.

5.1.1 Fundamental edge-based KPSs We identify four fundamental schemes in
this class. All four schemes are deterministic, have independent keys, offer full
collusion security and can be established for arbitrary communication structures.

Scheme 5.2 A trivial key predistribution scheme (TKPS) has the following prop-
erties:

• ui = {kA |Ui ∈ A,A ∈ C};

• Pub = ∅;

• kA ∈ ui if and only if Ui ∈ A.

A TKPS offers unconditional security. The most obvious problem with a TKPS is
that the secret information ui that each user has to store is potentially very large. A
further problem with this type of scheme is that if group keys have to be refreshed
during a key update phase then this requires the initialisation phase to be rerun.

This motivates our next fundamental scheme, where E is a secure symmetric
encryption algorithm with key size l and Ek(m) denotes the encryption of plaintext
m using key k.

Scheme 5.3 A trivial key encrypting key predistribution scheme (TKEKPS) has
the following properties:

• ui = {KA |Ui ∈ A,A ∈ C}, where each KA is randomly chosen from {0, 1}l;

• Pub = {EKA
(kA) |A ∈ C};

• KA ∈ ui if and only if Ui ∈ A, with kA obtained by decrypting EKA
(kA).
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A TKEKPS offers computational security, since any attacker with the computational
resources to break the encryption algorithm can obtain group keys. Users have to
store as much secret information as in a TKPS, but refreshing group keys can now
easily be done by the TA updating Pub (more precisely, by replacing EKA

(kA) by
EKA

(k′A), where k′A is the refreshed version of kA).
Our next fundamental scheme offers the minimum possible secret storage and is,

in some sense, the opposite “extreme” to a TKPS.

Scheme 5.4 A direct key encrypting key predistribution scheme (DKEKPS) has
the following properties:

• ui = ki, where each ki is randomly chosen from {0, 1}l;

• Pub = {Eki(kA) |Ui ∈ A,A ∈ C};
• Eki

(kA) ∈ Pub if and only if Ui ∈ A, with kA obtained by decrypting Eki
(kA).

A TKEKPS also offers computational security. The secret storage is as small as pos-
sible, but this comes at the expense of potentially large public storage requirements
(as large as the secret storage in a TKPS and TKEKPS).

Our fourth fundamental scheme is essentially a refinement of a TKEKPS that
reduces the public storage at the expense of an iterated key derivation process. Let
(C, 6) be the poset induced by set containment, where for A,B ∈ C, A 6 B if and
only if B ⊆ A. For any Ui let rootsi = {C ∈ C |Ui ∈ C and Ui /∈ B for any B mC}.

Scheme 5.5 An iterative key encrypting key predistribution scheme (IKEKPS) has
the following properties:

• ui = ki, where each ki is randomly chosen from {0, 1}l;

• Pub = Pub1 ∪ Pub2, where Pub1 = {Eki(kC) |C ∈ rootsi} and Pub2 =
{EkB

(kC) |B, C ∈ C, B m C};
• Ui ∈ A if and only if there exists a path (in the Hasse diagram of (C, 6))

(Z0, Z1), . . . , (Zm−1, Zm), where Z0 ∈ rootsi and Zm = A. In this case Ui

obtains kZ0 from Pub1 by decrypting Eki(kZ0) and then iteratively obtains kZi

from Pub2 by decrypting EkZi−1
(kZi).

Thus an IKEKPS offers computational security, has minimal secret storage and
reduced public storage compared to a TKEKPS. This reduction comes at the expense
of greater computational effort to iteratively derive a group key.

We refer to these four schemes as edge-based key predistribution schemes because
they all make use, either in the public or secret data, of the set of edges in the Hasse
diagram of the poset (C,6).

5.1.2 Fundamental node-based KPSs Our next fundamental schemes encode
the structure of the poset (C, 6) into the public information by assigning an item
of public data Pubi to each user. For this reason we refer to them as node-based.
Unlike for the edge-based schemes, which were all distinct, the three fundamental
node-based schemes are “nested”, with the first being the most generic and each
subsequent scheme being a special case of the previous scheme.
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Scheme 5.6 A node-based key predistribution scheme (NBKPS) has the following
properties:

• Pub = ∪1≤i≤nPubi, where Pubi is associated with user Ui;

• ui = f(Pubi) for some secret function f known only to the TA, which is chosen
in such a way that there exists a public function g such that for any A ∈ C
and any pair Ui, Uj ∈ A we have that g(ui, PubA) = g(uj , PubA) = kA (where
PubA = ∪Ui∈APubi).

• By choice of f and g it follows that any Ui ∈ A can compute kA.

Scheme 5.6 is clearly only the blueprint of a concept and precise properties of actual
NBKPSs will depend on specific instances. It should be clear however that NBKPSs
demand careful choice of functions and internal structure and are clearly ripe for
combinatorial application.

Our next fundamental scheme represents one particular type of NBKPS. Let
I = {xi | 1 ≤ i ≤ v} be a set of v identifiers, each of which is associated by means of
a secret function f with a randomly chosen key ki = f(xi) from a set K. Let B be a
collection of subsets of I. We will let R = (I,B) collectively be referred to as a key
ring.

Scheme 5.7 A key ring predistribution scheme (KRPS) based on key ring R =
(I,B) is a node-based key predistribution scheme with the following properties:

1. Pubi = Bi is randomly chosen from B (such that ui 6= uj if i 6= j);

2. ui = {kj |xj ∈ Bi};
3. C ⊆ {A ⊆ U | ∩Ui∈A ui 6= ∅};
4. For A ∈ C, group key kA = g(∩Ui∈Aui) for some public combining function

g. In other words, a group A = {U1, . . . , Ut} ∈ C of users check their public
identifier sets Pub1, . . . , Pubt to see which common identifiers they share. They
then establish a group key kA by applying g to the keys ki that correspond the
identifiers in ∩t

j=1Pubj.

KRPSs are examples of group key establishment schemes with combinatorial
keys (see Section 3.2.4). Whether they offer unconditional or computational security
depends on the combining function g. For example, an unconditionally secure scheme
can be obtained if kA = ⊕ki∈Xki, where X = ∩Ui∈Aui.

Our final fundamental node-based scheme is a particular type of KRPS.

Scheme 5.8 A random key predistribution scheme (RKPS) is a key ring predis-
tribution scheme based on key ring R = (I,B), where B = 2I (the collection of all
subsets of I).
In other words, an RKPS involves issuing each user with a set of random keys from
K. An RKPS is thus an example of a probabilistic key establishment scheme. This
may seem like a very strange way of constructing a KPS for a specific communi-
cation structure C, since it involves “getting lucky” with regard to the intersection
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properties of the resulting blocks. However the idea behind a KRPS can be useful
in situations where certain properties of a KPS (such as user storage) have higher
priority than establishing a desired communication structure precisely (we will see
examples of such applications in Section 7.3).

5.2 The BDVHKY scheme

In this section we present an important benchmark NBKPS. If C = {A ⊆
U | |A| = t} and X = {A ⊆ U | |A| ≤ w} then we will also refer to a (C,X )-KPS as a
(t, w)-KPS. We will also refer to communication structures C of this type as thresh-
old communication structures. The following (t, w)-KPS was proposed by Blundo,
De Santis, Vaccaro et al in [17] and is a generalisation of a much earlier (2, w)-KPS
proposed in [9].

Scheme 5.9 The BDVHKY key predistribution scheme (BDVHKY-KPS) is de-
fined as follows, where q ≥ n:

• Pubi = si, where si ∈ GF (q) and Pubi 6= Pubj if i 6= j;

• The TA (randomly) constructs a secret t-variate polynomial f with coefficients
from GF (q),

f(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

ai1...itx
i1
1 . . . xit

t ,

where ai1...it = aj1...jt for any permutation (j1 . . . jt) of the indices {i1, . . . , it}.
• ui = f(Pubi, x2, . . . , xt) = f(si, x2, . . . , xt), a (t − 1)-variate polynomial with

coefficients from GF (q);

• For any A = {Uz1 , . . . , Uzt} ∈ C, the user Uzi computes

kA = uzi(sz1 , . . . , szi−1 , szi+1 , . . . , szt) = f(sz1 , . . . , szt).

The BDVHKY-KPS is an example of a deterministic NBKPS that is not a KRPS.
It offers unconditional w-security. We note that in the BDVHKY-KPS, each user
needs to store a secret t − 1 variate polynomial of degree w of a special form. It
can be shown that this involves the equivalent of storing

(
t+w−1

t−1

)
elements of GF (q).

The BDVHKY-KPS is of particular interest because it is shown in [17] that this is
the optimally small user storage for any unconditionally secure (t, w)-KPS.

The following variant of Scheme 5.9 is a generalisation of a scheme proposed in
[52], which uses the random key predistribution scheme (Scheme 5.8) to obtain some
interesting tradeoffs.

Scheme 5.10 The randomised BDVHKY-KPS is similar to Scheme 5.9 except that:

• The TA (randomly) constructs r secret t-variate polynomials f1, . . . , fr with
coefficients from GF (q), each with the property required for Scheme 5.9;

• For each Ui, the TA generates a random subset U [i] = {i1, . . . , ir′} of the set
{1, . . . , r}, which is made public;
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• ui = {fi1(si, x2, . . . , xt), . . . , fir′ (si, x2, . . . , xt)};
• For any A = {Uz1 , . . . , Uzt} ∈ C, if ∩t

j=1U [zj ] 6= ∅ then for some l ∈ ∩t
j=1U [zj ]

user Uzi computes kA = fl(sz1 , . . . , szt). (Note that since the sets U [i] are
public, the choice of l can be publicly predetermined.)

Scheme 5.10 is an example of a probabilistic NBKPS, since there is no guarantee
that ∩t

j=1U [zj ] 6= ∅. Compared to the BDVHKY-KPS, the scheme also involves
an increased user storage by a magnitude of r′. However the significant gain is in
resilience. The BDVHKY-KPS is only w-secure, whereas in [52] it is shown that
careful selection of the parameters r and r′ in Scheme 5.10 can result in very good
resilience.

We will discuss a further variant of the BDVHKY-KPS in Section 7.3.4. We note
that in [62] it was shown that a number of key predistribution schemes, including
Scheme 5.9 (under certain constraints on the combining function used to determine
the final key), are examples of a wider family of linear key predistribution schemes,
which can be described in linear algebraic terms and permit an inherent duality.

5.3 Key distribution patterns

In this section we look at an interesting family of key ring predistribution schemes
that have arisen in the literature in a number of different guises.

Definition 5.11 Let (C,X ) be a communication and exclusion structure defined
on n users. A (C,X )-key distribution pattern (KDP) is a set system (I,B) with
|B| = n, where each user Ui is associated with a block Bi, such that for any disjoint
pair A ∈ C and B ∈ X we have:

⋂

Ui∈A

Bi 6⊆
⋃

Uj∈B

Bj .

When C consists of all t-subsets of users and X consists of all subsets of at most
w users, we will refer to a (t, w)-KDP. In [76], (t, w)-KDPs were noted to correspond
to the following more granularly defined family of set systems:

Definition 5.12 A (t, w, d)-cover-free family (CFF) is a set system (I,B) such that
for any disjoint sets of t blocks A and w blocks B we have:

|
⋂

Bi∈A

Bi \
⋃

Bj∈B

Bj | ≥ d.

The motivation for Definition 5.11 is that a KDP can be used as a key ring to form
a KRPS.

Scheme 5.13 A (C,X )-key distribution pattern predistribution scheme (KDPPS)
is a (C,X )-KRPS that arises by applying Scheme 5.7 with a (C,X )-KDP as the key
ring.

KDPs were first introduced in [56, 57], where (t, w)-KDPs were proposed and
analysed. These structures have subsequently been investigated by a number of
authors who have investigated bounds and constructions for efficient KDPs, partic-
ularly of uniform (t, w)-KDPs of rank k. We now briefly mention some of the work
that has been undertaken on KDP constructions and KDP efficiency.
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5.3.1 KDP constructions We first define two fundamental KDPs.

Scheme 5.14 Given a communication structure C defined on a user set U , a (C, 2U )-
trivial inclusion KDP (TIKDP) is defined as follows.

• For each A ∈ C, associate a point xA ∈ I;

• For each user Ui ∈ U , define a block Bi = {xA |Ui ∈ A}.

Given any A ∈ C, the blocks Bj such that Uj ∈ A have the unique point xA in
common. As no B disjoint from A contains xA, we see that (I,B) is a (C, 2U )-
KDP.

Note that the KDPPS arising from applying a TIKDP in Scheme 5.13 is essentially
Scheme 5.2, the trivial KPS.

Scheme 5.15 Given an exclusion structure X defined on a user set U , a (2U ,X )-
trivial exclusion KDP (TEKDP) is defined as follows.

• For each B ∈ X , associate a point xB ∈ I;

• For each user Ui ∈ U , define a block Bi = {xB |Ui /∈ B}.

Given any subset B ∈ X , none of the blocks Bj such that Uj ∈ B contain point
xU\B, and thus (I,B) is a (2U ,X )-KDP.

The TEKDP for the case where X consists of all subsets of users of size at most w
was first defined in [35].

Both Scheme 5.14 and Scheme 5.15 result in users potentially having to store a
large amount of secret data. A number of combinatorial objects have been used to
construct (t, w)-KDPs that perform much better than these fundamental KDPs.

• In [72] it is shown that a (t+1)-(n, k, λ) design with w < (n− t)/(k− t) is the
dual of a (t, w)-KDP.

• In [60], [61] and [67] special finite geometrical structures have been used to
construct KDPs.

• In [64] KDPs were constructed from conics arising from finite projective planes
and affine planes.

• In [74], KDPs are defined from orthogonal and perpendicular arrays.

We note that in [32] a non-constructive existence result for very efficient (t, w)-
KDPs was proven which, when applied to Scheme 5.13, generates a KDPPS that is
essentially a manifestation of the RKPS.



The combinatorics of cryptographic key establishment 17

5.3.2 Efficiency of KDPs Given a fixed number of users n we are particularly
interested in trying to find KDPs of low rank (small block size), since the resulting
KDPPS produced using Scheme 5.13 will have relatively low user storage. A different
(but related) optimisation problem is to minimise v, which corresponds to the num-
ber of different keys in the system. In [65] several lower bounds on the information
storage of KDPs were determined. Subsequently several bounds on (t, w, d)-cover
free families have been proven in [76]. These all indicate that, in general, KDPPSs
are not particularly efficient. However there are several generic techniques in which
KDPPSs can be made more efficient. One such technique was proposed in [72],
based on the following concept:

Definition 5.16 An (n,m, t, q)-resilient function is a function f : [GF (q)]n →
GF (q) such that if t input bits are fixed and the remaining n − t chosen inde-
pendently at random, then every possible element of GF (q) occurs as output with
equal probability.

Let (I,B) be a (C,X )-KDP. For any A ∈ C let IA = ∩Ui∈ABi. Denote cA = |IA|
and dA = max{|IA ∩B| |B ∈ X and A ∩B = ∅}. In other words, each set A in the
communication structure is associated with at least cA − dA identifiers (keys) that
are unknown to any disjoint set in the exclusion structure. The following refinement
to Scheme 5.13 was observed in [72].

Scheme 5.17 Let (I,B) be a (C,X )-KDP and m = min{cA − dA |A ∈ C}.

1. For each A ∈ C choose a public (cA,m, dA, q)-resilient function fA. (Such a
function always exists for suitable large q [72].)

2. Now construct a (C,X )-KDPPS by applying Scheme 5.13 with the (C,X )-KDP
as the key ring and fA as the public combining function for group key kA. (In
other words, using the notation of Scheme 5.7, kA = fA(∩Ui∈Aui).)

A KPS arising from a KDP is likely to benefit from the refinement proposed in
Scheme 5.17 if the KDP has a relatively high value of m (or, in the case of (t, w)-
KDPs, if the KDP is a (t, w, d)-CFF for a high value of d). In [74] some (t, w)-KDPs
were constructed from orthogonal and perpendicular arrays that lend themselves to
this improvement and result in KPSs with good user storage. In [65] an alternative
technique for improving the efficiency of a KDP was proposed, based on the idea of
using an information map to reduce the information content of the keys ki held by
each user.

5.4 Hash-tree key predistribution schemes

We now describe a family of key predistribution schemes whose security is based
on repeated iterations of a cryptographic hash function (see Section 4.5). In a
similar manner to the construction of KDPPSs from KDPs, we first define a com-
binatorial object (in this case an array) from which KPSs can be generated. Recall
from Section 4.4 that a rooted tree T has a natural partial ordering 6 defined by
parenthood.
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Definition 5.18 Let (C,X ) be a communication and exclusion structure defined on
n users. Let T be a rooted tree with vertices labelled by {0, 1, . . . , d − 1} and let
b be a positive integer. A (C,X , T )-hash-tree key predistribution pattern (HTKDP)
is a b × n matrix M = (αij), where each column is associated with a unique user,
with entries from {0, 1, . . . , d−1}, such that for any disjoint A ∈ C and B ∈ X there
exists indices (iAB, jAB) such that jAB ∈ A and:

1. α(iAB)j 6 α(iAB)(jAB) for all j ∈ A;

2. α(iAB)j 
 α(iAB)(jAB) for all j ∈ B.

In [49] it was shown how a KPS can be constructed from a (C,X , T )-HTKDP.

Scheme 5.19 Let the b × n matrix M = (αij) with entries from {0, 1, . . . , d − 1}
be a (C,X , T )-HTKDP. A (C,X , T )-hash-tree key predistribution scheme (HTKPS)
can be constructed from M and a suitable hash function h as follows:

1. The TA publishes M , T and h as public system parameters.

2. For each 1 ≤ i ≤ b the TA chooses a secret random seed value s0
i . For each

1 ≤ j ≤ d− 1 a hash value can then be iteratively computed such that if j is a
child of l in T then sj

i = h(sl
i, j).

3. The TA securely delivers uj = {sα1j

1 , . . . , s
αbj

b } to user Uj.

4. For A ∈ C, define

IA = {1 ≤ i ≤ b | there exists mj ∈ A such that αij 6 αimj for all j ∈ A}.

Then kA =
∑

i∈IA
s
αimj

i .

Thus we see that in an HTKPS, any user Ul belonging to A can compute kA since
for each i ∈ IA they can iteratively compute s

αimj

i from their component sαil
i of

ul. On the other hand, for any B ∈ X , Definition 5.18 guarantees that α(iAB)mj



α(iAB)(jAB). Thus s
α

(iAB)mj

i , and hence kA, cannot be computed by any user in B.
Scheme 5.19 is thus a deterministic KPS that offers computational security, since

the security of group keys kA depends on the security of the underlying hash function.
Following the convention of previous sections, we will refer to a (t, w, T )-HTKDP

and (t, w, T )-HTKPS respectively when C consists of all t-subsets of users and X
consists of all subsets of at most w users.

Example 5.20 Let T be a starlike tree with 7 leaves (where the centre is labelled
0 and the leaves labelled 1, . . . , 7). The following (2, 2, T )-HTKDP on 7 users was
given in [49]:

M =

0 0 3 0 5 6 7
1 0 0 4 0 6 7
0 2 0 4 5 0 7
1 2 3 0 0 0 7
0 2 3 4 0 6 0
1 0 3 4 5 0 0
1 2 0 0 5 6 0

.
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To construct a (2, 2, T )-HTKPS, the TA first generates secret seeds s0
1, . . . , s

0
7. Seven

copies of T are then labeled with iterations of h as indicated in Figure 1. User U1
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· · · · · ·

Figure 1: Hash iterations based on the starlike tree with 7 leaves

then receives:

u1 = {sα11
1 , sα21

2 , sα31
3 , sα41

4 , sα51
5 , sα61

6 , sα71
7 }

= {s0
1, s

1
2, s

0
3, s

1
4, s

0
5, s

1
6, s

1
7}

= {s0
1, h(s0

2, 1), s0
3, h(s0

4, 1), s0
5, h(s0

6, 1), h(s0
7, 1)}.

Similarly, U2 receives:

u2 = {s0
1, s

0
2, h(s0

3, 2), h(s0
4, 2), h(s0

5, 2), s0
6, h(s0

7, 2)}.

The group key k{U1,U2} is constructed by first noting that I{U1,U2} = {1, 2, 3, 5, 6}
and thus that k{U1,U2} = s0

1 + h(s0
2, 1) + h(s0

3, 2) + h(s0
5, 2) + h(s0

6, 1).

There are three special cases worth mentioning.

1. If T degenerately consists of just one vertex then a (C,X , T )-HTKDP is a
(C,X )-KDP, as defined in Section 5.3.

2. Scheme 5.19 was motivated by an earlier scheme in [50] that constructed a
(2, w, T )-HTKDP, where T was a chain and the underlying matrix M was
generated randomly, resulting only in a probabilistic scheme.

3. In [66] a further variant (called HARPS) was proposed for use in wireless
sensor networks (see Section 7.3). This combines the scheme of [50] and the
idea behind the RKPS (Scheme 5.8) by only allocating to each user a value on
a random subset of the b hash chains (instead of all the chains). This reduces
user storage at the expense of a poorer probability that a group will be able
to construct a group key.

5.5 Key assignment schemes

A very interesting class of key predistribution schemes arise from what are known
as information flow policies. These have largely been investigated by researchers in
computer security since they define a type of access control mechanism, but they
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can be considered as a class of group key predistribution schemes. The technique of
key predistribution is particularly appropriate for this type of application because
it allows an information flow policy to be applied “seamlessly”, without users even
necessarily being aware that their actions are being controlled using this type of
scheme. Of particular theoretical interest is that these schemes provide naturally
arising examples of non-threshold communication structures.

Definition 5.21 An information flow policy is a tuple (L, E ,S,O, λ), where:

• (L, E) is a directed graph of security labels (see Figure 2);

• S is a set of subjects (perhaps users of a computer system);

• O is a set of objects (perhaps computer files);

• λ : S ∪O → L is a security function that associates subjects and objects with
security labels.

Top Secret

Confidential

Restricted Admin Restricted Sales

General Admin General Sales

All Staff

Figure 2: Directed graph of security labels

An information flow policy is used to model the access of subjects in S to a set
of objects in O in a hierarchical system, where the directed graph indicates when a
subject can read an object. More precisely, subject S can read object O if and only
if (λ(S), λ(O)) ∈ E . One way of implementing this policy is to use what is known
as a key assignment scheme.

Scheme 5.22 A key assignment scheme for information flow policy (L, E ,S,O, λ)
is a scheme initialised by a TA as follows:

• The TA identifies each label x ∈ L with a cryptographic key kx.

• For each label x ∈ L the TA generates secret information σ(x) and securely
distributes it to all subjects with security label x.

• The TA generates some system-wide public data Pub that is made available to
all subjects using an authenticated channel.

• There exists a function that takes as input labels x, y ∈ L, σ(x) and Pub and
outputs ky if and only if (x, y) ∈ E.



The combinatorics of cryptographic key establishment 21

A key assignment scheme implements the information flow policy since ky can be
used to encrypt objects with security label y, and only subjects with label x, where
(x, y) ∈ E can compute ky and hence decrypt the encrypted object.

It is worth observing at this stage that the vast majority of information flow
policies, and hence key assignment schemes, are defined for hierarchies where the
security labels in L form a poset. Not only are such poset-based schemes easier to
design, but they are also by far the most natural policies to implement in real appli-
cations. In this case we can represent the policy by (L, 6,S,O, λ) (more commonly
just denoted by (L, 6) when the context is obvious). In this case subject S can read
object O if and only if λ(S) > λ(O).

For any y ∈ L, let ↑ y = {x ∈ L | (x, y) ∈ E} and ↓ y = {z ∈ L | (y, z) ∈ E}. The
following result is immediate from the relevant definitions.

Theorem 5.23 A key assignment scheme for information flow policy (L, E ,S,O, λ)
is a (C,X )-key predistribution scheme where:

• U = L;

• C = {↑ y | y ∈ L};
• X is inherited from the degree of collusion security of the underlying key as-

signment scheme.

• ux = σ(x);

• Pub is the same as for the key assignment scheme;

• For A =↑ y ∈ C, kA = ky.

A key assignment scheme can thus be thought of as a special type of deterministic
computationally secure KPS, where there are as many groups in the communication
structure as there are users, and where the groups can be derived from the vertices of
a directed graph defined on the set of users. Note that it is perhaps more appropriate
to consider a key assignment scheme as a KPS defined on the set S of subjects. In
this case each subject S with security label λ(S) = x is given the same piece of
secret information σ(x) in the resulting KPS. A subject S is thus able to compute
all the group keys k↑y for each y ∈↓ x.

A review of key assignment schemes can be found in [27]. In the remaining
sections we provide examples of some of the techniques used to construct them.

5.5.1 Unconditionally secure key assignment We first observe that uncondition-
ally secure key assignment schemes are not very interesting from either a theoretical
or a practical perspective. One obvious example is the trivial key assignment scheme
(TKAS) based on letting σ(x) = {ky | (x, y) ∈ E}, which gives rise to Scheme 5.2
when interpreted as a KPS. We have already observed in Section 5.1 that such a
scheme has unacceptably high secret storage. The unconditional secure setting was
modelled formally in [34] and it was shown that the TKAS is essentially the best
possible (more precisely it was shown that it can only be slightly improved by first
compressing the representation of the information flow policy and then generating a
TKAS for this slightly simpler policy). As a result, the only key assignment schemes
of real interest are necessarily computationally secure.
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5.5.2 Key assignment for poset policies An extraordinary variety of key assign-
ment schemes for poset policies have been proposed in the literature. In [28] it was
shown that they all fall into five broad classes. When interpreted as KPSs, these
five classes coincide with five of the fundamental KPSs identified in Section 5.1. As
the majority are either IKEKPSs (Scheme 5.5) or NBKPSs (Scheme 5.6) we will
present one example from each of these classes here. While these schemes are not
strictly combinatorial, the fact that they implement communication structures with
interesting combinatorial structure merits their inclusion in this review.

The following key assignment scheme was first proposed in [1] (our version is
based on an observation in [28]) and gives rise to a NBKPS.

Scheme 5.24 The Akl-Taylor key assignment scheme (ATKAS) for a poset-based
policy (L, 6) is defined as follows:

• Let n = pq be the product of two large primes and m ∈ Z∗n (all subsequent
calculations are modulo n). The value n is public, but p, q and m are kept
secret by the TA.

• For each x ∈ L, let Pubx = px, where px is a small prime and Pubx 6= Puby if
x 6= y (it suffices for {px |x ∈ L} to be chosen to be the first |L| primes). Let
Pub = ∪x∈LPubx.

• For each x ∈ L, let e(x) =
∏

y
x px and σ(x) = kx = me(x).

• If y 6 x then given x, y, σ(x) = kx and Pub, we can calculate ky as follows:

ky = kp(x,y)
x , where p(x, y) =

∏

z∈(L\↓y)\(L\↓x)

pz.

Thus the ATKAS uses a public labeling of the nodes of the poset (L, 6) to generate
a set of exponents e(x) that have the property that e(x)|e(y) if and only if y 6 x.
This allows keys kx associated with a higher level in the poset to compute keys ky at
lower levels. If y 
 x then it is impossible to compute ky from kx without knowledge
of m. Calculating m from any kx is believed to be a hard computational problem
known as the RSA problem (see, for example [73], for more information about the
RSA cryptosystem on which this is based). In fact it is possible to show that any
collusion of nodes cannot determine a key that they are not entitled to, assuming
that the RSA problem is hard, and so the ATKAS (and thus its resulting KPS) is
computationally secure with full collusion security.

There have been many variants of the ATKAS proposed (for example [37, 53])
and [27] contains a comprehensive list. Most of these either attempt to optimise the
poset labelling in some way or change its performance with respect to an update
phase. The principle behind all these schemes remain the same.

The next key assignment scheme was proposed by [4] and gives rise to an
IKEKPS.

Scheme 5.25 The AFB key assignment scheme (AFBKAS) for a poset-based policy
(L, 6) is defined as follows:
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• Let h be a one-way hash function such that h : {0, 1}∗ → {0, 1}l for some
integer l.

• For each x ∈ L, let σ(x) = kx be randomly selected from {0, 1}l.

• For each x ∈ L, let Pub = {kz − h(kx, z) | z l x}.
• If y 6 x then given x, y, σ(x) = kx and Pub, we can calculate ky since there

exists a path (z0, z1), . . . , (zm−1, zm), where z0 = x and zm = y. The key kzi

can be iteratively obtained from kzi−1 and Pub by computing h(kzi−1 , zi), from
which kzi = (kzi − h(kzi−1 , zi)) + h(kzi−1 , zi).

To see that the KPS arising from Scheme 5.25 is an IKEKPS (Scheme 5.5), we
observe that there exists an isomorphism between the poset (L, 6) and the poset
(C, 6∗) associated with the resulting KPS, resulting in the following correspondences
between Scheme 5.5 and Scheme 5.25:

• ↑ x ∈ C corresponds to x ∈ L;

• rootsx for security label x correspond to {x};
• ux in Scheme 5.5 corresponds to kx;

• k↑x in Scheme 5.5 also corresponds to kx;

• If (↑ z)l∗ (↑ x) then Ek↑z
(k↑x) in Scheme 5.5 is defined by kz − h(kx, z).

Note that Pub1 in Scheme 5.5 corresponds to {kx − h(kx, x) |x ∈ L}. This serves
no purpose, as it is essentially an encryption of key kx using key kx and therefore
has been omitted from the description of Scheme 5.25. (In fact Pub1 is redundant
in any KPS arising from a poset-based key assignment scheme.)

There have been many proposals for key assignment schemes that give rise to
IKEKPs, for example [51, 80, 81].

5.5.3 Key assignment for directed graphs We have already observed that most
key assignment schemes are designed for information flow policies based on posets.
It is at least of theoretical interest to investigate schemes for general information
flow policies (general directed graphs).

One method of constructing a key assignment scheme for a general information
flow policy is to embed the policy into a poset and then use a poset-based key
assignment scheme. In [68] such an embedding was exhibited that enables the poset-
based scheme of Akl-Taylor [1] to be extended to a general information flow policy.
The majority of poset-based key assignment schemes are simple, which means that
for any x ∈ L we have σ(x) = kx. The embedding of [68] works by embedding (L, E)
in a poset (L∗, 6), creating a simple Akl-Taylor poset-based key assignment scheme
for (L∗, 6), and interpreting this as a non-simple scheme for (L, E). In [27] it is
shown that this De Santis decoupling, presented as Scheme 5.26, can be applied to
any simple poset-based key assignment scheme.

Scheme 5.26 The De Santis decoupling generates a key assignment scheme for the
information flow policy (L, E) as follows:
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• Define a poset (L∗, 6), where

– L∗ = {xl |x ∈ L} ∪ {xu |x ∈ L},
– xl 6 xu,

– (y, x) ∈ E implies yl 6 xu.

• Establish any simple poset-based key assignment scheme for (L∗,6), with key
k∗x for each x ∈ L∗.

• Interpret this as a key assignment scheme for (L, E) where kx = k∗xl
and σ(x) =

k∗xu
.

An illustration of how the De Santis decoupling works is shown in Figure 3. The
upper row of nodes in (L∗,6) represents au, . . . , fu, while the lower row of nodes
represents al, . . . , fl.

a b c

d e f

au bu cu du eu fu

al bl
cl dl el fl

(L, E)

(L∗,≤)

Figure 3: The construction of (L∗, 6) from (L, E)

6 Group key distribution schemes

Our next class of key establishment schemes, group key distribution schemes,
are appropriate for applications where it is possible (and practical) to communicate
in some way with a trusted entity throughout the lifetime of the scheme. This
scenario is desirable for applications where group keys kA are necessarily generated
at the time of request (not during the initialisation phase as is the case for most key
predistribution schemes).

Definition 6.1 A (C,X )-key distribution scheme (KDS) is a key establishment
scheme with communication structure C and exclusion structure X such that:

1. Given A ∈ C, any Ui ∈ A can compute the group key kA from knowledge of ui

and vi,A, where vi,A is some information obtained by Ui from the TA during
the key establishment phase for key kA.
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2. Given disjoint sets B ∈ X and A ∈ C, it is not possible to compute the
group key kA from knowledge of uB and vB (where uB = {ui |Ui ∈ B} and
vB = {vi,A |Ui ∈ B}).

Note that Definition 6.1 includes the case where the secure channels that were used
to distribute the initial user secret data ui are still available and vi,A = kA if Ui ∈ A,
otherwise vi,A = ∅. This “trivial” solution is in fact one that is often adopted in
real applications where such secure channels exist throughout the scheme lifetime,
however it is of little mathematical interest and so we do not consider it further
here.

6.1 Broadcast encryption

We now look at a well-studied family of group key distribution schemes where,
although the TA is online during the key establishment phase, it no longer maintains
secure channels to the users and must rely on broadcast channels to establish group
keys.

Definition 6.2 A (C,X )-broadcast encryption scheme (BES) is a key distribution
scheme with communication structure C and exclusion structure X such that vi,A =
BA for every user Ui ∈ U , where BA is a public message broadcast to all users in U
at the start of the key establishment phase for kA.

Broadcast encryption schemes were first proposed with applications such as ac-
cess to streamed multimedia services in mind. In this type of application some
digital content, such as a film, is encrypted using kA (where A is the group of users
permitted to access the service) and then BA is broadcast as a header that allows
an authorised user Ui in A to determine kA and hence decrypt the service. There
are two slightly different applications of broadcast encryption, which we illustrate
using the above multimedia service scenario:

1. General broadcast encryption: These schemes are usually designed for as
large a communication structure as possible, since this maximises the possible
number of different groups for whom group keys can be generated. These are
suitable for pay-per-view services, where the groups of users receiving content
are highly variable (for example only a small group from the set of all users
may want to pay to watch a particular football match).

2. Long term group management: These schemes are characterised by a
single large group of users that may change gradually over time. These are
suitable for subscription services, where we only ever want to broadcast to the
entire group of subscribed users, but the make-up of this group is dynamic.

Note that these two applications are far from being mutually exclusive. The main
difference is that while schemes designed for the first scenario should be able to effi-
ciently broadcast to user groups of all sizes, schemes designed for the second scenario
initially associate a group key kH with a single group of users H (from the universe
U of possible users) and should be specifically designed to efficiently cope with rel-
atively small changes to H over time. This scenario is often described in terms
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of maintaining a multicast group, where the term “multicast” arises from internet-
related technology for sending a single message to a designated set of recipients
[22].

One significant difference between proposed broadcast encryption schemes relates
to the computational capabilities of users in the scheme. We say that a broadcast
encryption scheme is suitable for:

• stateless receivers if the users cannot retain information from previous broad-
casts (or have ability to write to memory). This might be the case for example
if the user is a set-top decoder. The decoder is preloaded with decryption keys
that cannot be changed over time. Each time a broadcast message is sent, the
decoder can use these keys to decrypt the broadcast, but it will not retain any
memory of the information it receives (if the same group key is used twice,
the decoder will have to decrypt it on each occasion, as it cannot store any
information supplied to it during a key establishment event).

• stateful receivers if the users can retain information from previous broadcasts
(or have the ability to write to memory). The critical difference in this case
is that if new keys are broadcast to them then users can use these to replace
the keys that were distributed to them on initialisation (in other words users
have the ability to update their secret data).

The motivation for considering a stateless receiver model is that this greatly simpli-
fies the software or hardware needed by the users. Almost all the schemes that we
discuss in this paper are suitable for stateless receivers.(Whether real human users
are stateless or stateful will be left as an open problem!)

6.1.1 Benchmark broadcast encryption schemes We now define two benchmark
broadcast encryption schemes against which others need to be compared. Both are
suitable for stateless receivers. These are analogues of Scheme 5.3 and Scheme 5.4
respectively. Throughout the remainder of this section we assume that E is a secure
symmetric encryption algorithm with key size l and Ek(m) denotes the encryption
of plaintext m using key k.

Scheme 6.3 A trivial broadcast encryption scheme (TBES) has the following prop-
erties:

• ui = {KA |Ui ∈ A,A ∈ C}, where each KA is randomly chosen from {0, 1}l;

• BA = EKA
(kA);

• KA ∈ ui if and only if Ui ∈ A, with kA obtained by decrypting EKA
(kA).

Scheme 6.4 A direct broadcast encryption scheme (DBES) has the following prop-
erties:

• ui = ki, where each ki is randomly chosen from {0, 1}l;

• BA = {Eki(kA) |Ui ∈ A};
• Eki(kA) ∈ BA if and only if Ui ∈ A, with kA obtained by decrypting Eki(kA).
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We thus see that Schemes 6.3 and 6.4 offer extreme ends of the tradeoff between
the size of user secret data ui and the size of the broadcast header BA. Both
schemes are deterministic, computationally secure and have independent keys. In
general the hunt for good broadcast encryption schemes is about finding schemes
with reasonable parameter tradeoffs between these two benchmark schemes.

6.1.2 Broadcast encryption schemes from key predistribution schemes One
simple way of establishing a broadcast encryption scheme suitable for stateless re-
ceivers is to build it onto an existing key predistribution scheme.

Scheme 6.5 If we have a (C,X )-KPS then we can realise a (C,X )-BES as follows:

• ui is the same for both the KPS and the BES;

• BA = Ek∗A(kA), where k∗A is the group key for A ∈ C in the KPS and kA is a
freshly generated group key for A in the BES;

• Only a user Ui in A can establish k∗A from ui and hence decrypt the new group
key kA.

While Scheme 6.5 is attractively simplistic, the main problem with it is that for
broadcast encryption we generally want C to be large, and a KPS for a large C
typically has high user storage requirements.

In [15] a broadcast encryption scheme was suggested that employs a KPS that
establishes keys for groups of l users in order to construct a BES that establishes
keys for groups of t = λl users. This scheme uses a resolvable design defined on t
points to partition the t users into blocks of size l, which are then used to define
a broadcast message. The advantage of this idea is that the user storage required
for the KPS on group size l is smaller than that for group size t. This scheme is
not particularly efficient with respect to broadcast size if we are planning to use a
BES to distribute a group key kA (which in this paper we are), however it has some
merits if the information to be broadcast to the group is longer.

In [72] another interesting family of broadcast encryption schemes were proposed,
which combine a KPS with an ideal secret sharing scheme (see Section 4.5). The
idea is the following:

Scheme 6.6 Let U be a set of users and X be an exclusion structure defined on U .
Suppose that we can find:

1. A set system (U ,B), where |B| = b and for each block Bj ∈ B we can construct
a (2Bj ,Xj)-KPS on user set Bj, where:

(a) The user secret for each Ui ∈ Bj is denoted by uj
i .

(b) The group key for each A ⊆ Bj is denoted by kj
A and is an element of K.

2. An ideal secret sharing scheme (with shares and secrets from K) on participant
set B with access structure Γ such that:

(a) For every Ui ∈ U , we have {Bj |Ui ∈ Bj} ∈ Γ;

(b) For every X ∈ X , we have {Bj |X ∩Bj /∈ Xj} /∈ Γ.
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Then a KIO (2U ,X )-broadcast encryption scheme is defined by:

• For each Ui let ui = {uj
i |Ui ∈ Bj}.

• BA = (Ek1(y1), . . . , Ekb
(yb)), where:

1. (y1, . . . , yb) are shares of the ideal secret sharing scheme corresponding to
secret kA;

2. kj = kj
A∩Bj

for each 1 ≤ j ≤ b;

3. E is a symmetric encryption algorithm with keys from set K.

Although at first glance complex, the intuition behind Scheme 6.6 is straightforward.
If Ui is a member of set A then they can use their secret information uj

i to determine
the group keys kj

A∩Bj
for each KPS that Ui is a member of. These then allow Ui

to decrypt a set of shares yj that correspond to a set in the access structure of the
secret sharing scheme, which means that the shares can be used to reconstruct kA.
On the other hand, a set of users X in the exclusion structure can, in the worst
case, determine a set of group keys that decrypt a set of shares not in the access
structure, hence they obtain no information about the group key kA.

Thus we need to find combinations of set systems, KPSs and ideal secret shar-
ing schemes that allow Scheme 6.6 to be enabled. The KIO broadcast encryption
scheme construction was first proposed in [72] using the Trivial Exclusion KDPs
(Scheme 5.15) from [35] with exclusion parameter w as the KPSs. In particular it
has been shown that the following combinations result in KIO broadcast encryption
schemes:

1. Let (U ,B) be a 2 − (n, b, r, k, λ) design with r > λ
(
w
2

)
and choose an ideal

(λ
(
w
2

)
+ 1, b)-threshold scheme [72].

2. An improved scheme is obtained by letting (U ,B) be an (n, b, r, λ)-broadcast
key distribution pattern (BKDP) [73], which is a set system of n points, b
blocks, every point on r blocks, every pair of points in at most λ blocks and
r > λ

(
w
2

)
. These structures were first defined in [74] using the name threshold

designs and several constructions based on Steiner systems and orthogonal
arrays were provided.

3. A further improvement was made in [75], where it was observed that the KIO
construction technique can be further generalised to allow the ideal secret
sharing scheme to be replaced by a ramp scheme (see [38]), which is a type of
secret sharing scheme that permits smaller share sizes.

Example 6.7 In order to see the kinds of parameter tradeoff that are possible using
KIO, we note that in [74] it was shown that an orthogonal array OA1(t, q, q) can
be used to construct a (qt, q2, q, t− 1)-BKDP. This gives rise to a BES for qt users,
where each user stores at most q + (t − 1)(qt − 1) values and the broadcast BA to
enable any group key kA is of length q2. This compares with user storage of 2qt−1

and broadcast length 1 for the TBES, and user storage of 1 and broadcast length
|A| for the DBES. Given that this construction works for any t < q, it is clear that
the KIO construction provides a balance between the extremes of TBES and DBES,
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especially when t is close to q and A is very large (as is likely to be the case in many
of the applications envisaged for broadcast encryption).

6.1.3 Logical key hierarchies for stateful receivers Using a tree of keys to man-
age a long term group key was first suggested in [77] and [79]. The broadcast en-
cryption scheme that they independently proposed is suitable for stateful receivers.
The basic idea is as follows.

Scheme 6.8 Let H be a subset of m users (chosen from a universe U) who wish to
establish a group key kH . For simplicity, assume that m = 2h. To establish a logical
key hierarchy:

1. Define a (complete) binary tree with m leaves, each associated with a user
from H. Iteratively label this tree with independent keys as follows: root by
k0,0; the left child of ki,j by ki+1,2j; and right child of ki,j by ki+1,2j+1. As-
sociate the users, which we label U0, . . . , Um−1, with the nodes labeled by keys
kh,0, . . . , kh,m−1.

2. For each user Uj let uj = {kx,y | kx,y is on the path from kh,j to k0,0}. Each
user thus holds h + 1 keys.

3. The key k0,0 is held by every user in H. In order to establish a group key kH

the TA could broadcast BH = Ek0,0(kH). Note however that since this scheme
is intended for stateful receivers (and thus users have the ability to refresh their
keys) it is also possible just to let kH = k0,0, in which case this scheme can
actually be considered as a type of key predistribution scheme.

k3,0 k3,1
k3,2 k3,3

k0,0

U0 U1 U2 U3

k3,4 k3,5 k3,6 k3,7

U4 U5 U6 U7

k2,0 k2,1 k2,2 k2,3

k1,0 k1,1

Figure 4: Logical key hierarchy tree for eight users

Example 6.9 Figure 4 shows the binary tree for a logical key hierarchy for eight
users H. Each user stores four keys. Thus, for example, user U3 stores u3 =
{k3,3, k2,1, k1,0, k0,0}. The group key can be decrypted using (or is) k0,0, which is
stored by every user, and the remaining keys that a user stores all facilitate group
changes. We illustrate this process by an example. Suppose that U5 leaves the
group. It is necessary to replace all the keys held by U5 that are also held by any
other user. The most efficient process for doing this is as follows:
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1. The TA generates new keys k′2,2, k
′
1,1, k

′
0,0;

2. The TA encrypts k′2,2 using key k3,4;

3. The TA encrypts k′1,1 using keys k3,4 and k2,3;

4. The TA encrypts k′0,0 using keys k3,4, k2,3 and k1,0;

5. The TA broadcasts all these encrypted keys;

6. User U4 decrypts k′2,2 and replaces k2,2 with this new key (user U4 can do this
because it is a stateful receiver);

7. Similarly, users U4, U6 and U7 replace k1,1 by k′1,1;

8. Similarly, all users except U5 replace k0,0 by k′0,0.

The scheme has now been updated in such a way that the new group key is deter-
mined using k′0,0, which is a key that the departing user U5 does not know.

It is straightforward to generalise Scheme 6.8 to use a-ary trees rather than binary
trees. Example 6.9 should be sufficient to illustrate how general protocols for leaving
or joining groups of users can be derived.

6.1.4 Schemes based on covers for stateless receivers We now look at a family
of broadcast encryption schemes designed for stateless receivers.

Definition 6.10 Let (I,B) be a set system and for each x ∈ I let β(x) = {B ∈
B |x ∈ B}. We say that (I,B) is a cover-based revocation system (CBRS) if for
every non-empty A ⊆ B there exists IA ⊆ I such that

⋃

x∈IA
β(x) = A.

In other words, a set system is a CBRS if for every non-empty collection A of blocks
there exists a subset H of points such that the subsets {β(x) |x ∈ H} form a cover
of A.

Scheme 6.11 Given a cover-based revocation system (I,B) we can define a broad-
cast encryption scheme for stateless receivers as follows:

• Associate each point x ∈ I with a key kx, and associate each block Bi ∈ B with
a user Ui;

• ui = {kx |x ∈ Bi};

• For any subset A of users (corresponding to the set of blocks A), BA =
{Ekx(kA) |x ∈ IA};

• By definition of a CBRS, the only users holding at least one of the keys kx are
those in A.
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Broadcast encryption schemes arising from Scheme 6.11 allow group keys to be estab-
lished for any subset of users (hence C = 2U ), while not permitting any unauthorised
subset access to the group key (full collusion security). It is worth noting however
that such schemes are only practical if there also exists an efficient algorithm for
determining the appropriate cover of keys, given a particular subset of users.

We now describe a manifestation of Scheme 6.11 from [58], based on the binary
tree exhibited in Scheme 6.8.

Scheme 6.12 For simplicity, assume that |U| = m = 2h. To establish a complete
subtree revocation scheme:

1. Define a (complete) binary tree with m leaves as in Scheme 6.8.

2. As in Scheme 6.8, let uj = {kx,y | kx,y is on the path from kh,j to k0,0}. Each
user thus holds h + 1 keys.

3. In order to establish a group key kA, where A = U \R:

• Form the subtree ST(R) consisting of the paths from the nodes in R to
the root (this is sometimes called the Steiner Tree of nodes R).

• Identify the set K(A) of nodes kx,y of the main tree such that kx,y is not
a node of ST(R) but the parent of kx,y is a node of ST(R) (such nodes
are sometimes referred to as hanging off ST(R), and form a cover of A).

• Let BA = {Ekx,y(kA) | kx,y ∈ K(A)}.

k3,0 k3,1
k3,2 k3,3

k0,0

U0 U1 U2 U3

k3,4 k3,5 k3,6 k3,7

U4 U5 U6 U7

k2,0 k2,1 k2,2 k2,3

k1,0 k1,1

Figure 5: Complete subtree revocation of users U1, U4 and U5

Example 6.13 Figure 5 shows the binary tree for a complete subtree revocation
scheme for eight users in which users R = {U1, U4, U5} are being revoked (in other
words, a group key is being established for A = {U0, U2, U3, U6, U7}). The edges in
bold form ST(R) and the keys connected to ST(R) by dashed edges form K(A). In
this case BA = {Ek3,0(kA), Ek2,1(kA), Ek2,3(kA)}.

Scheme 6.12 was generalised in [2] to a-ary trees and some interesting compres-
sion techniques were proposed for further reducing the user storage.

In [58] it was shown that the following alternative CBRS, which we describe
informally, can be extracted from a different labeling of a complete binary tree.
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Scheme 6.14 For simplicity, assume that |U| = m = 2h. To establish a subset
difference revocation scheme:

1. Define a (complete) binary tree with m leaves whose nodes are labeled from
the root downwards by v1, . . . , v2h+1−1. Associate the users, which we label
U0, . . . , Um−1, with the leaf nodes (labeled by keys v2h , . . . , v2h+1−1).

2. Associate a key kx,y with any pair of nodes vx and vy of the tree such that vy

is a descendent of vx.

3. For each user Uj let uj = {kx,y |Uj is a descendent of vx but not of vy}.
4. In order to establish a group key kA, where A = U \R, run a simple algorithm

(defined in [58]) to find a subset of keys that cover A.

Without going into further details it should be evident that Scheme 6.14 results in
a broadcast encryption scheme with much greater user storage than Scheme 6.12.
However in general Scheme 6.14 has a much smaller broadcast message (resulting
from a smaller cover) than Scheme 6.12 and so represents an alternative tradeoff.

Several variants of these schemes have been proposed in the literature. For exam-
ple: in [36] a modification of the subset difference scheme based on defining layers
of the underlying tree was proposed; in [3] a compression technique for reducing
the user storage of the subset difference scheme was identified; in [55] it was shown
that the complete subtree and subset difference schemes can be combined to obtain
further examples of attractive tradeoffs.

Lastly we note that in [43] it was observed that a (1, w, d)-CFF (see Section 5.3)
provides a restricted notion of a CBRS, where there exists a suitable cover for any
subset of at least |B| − w blocks (and hence up to w users can be revoked).

6.1.5 Broadcast encryption with extended capabilities The attractive applica-
tions of broadcast encryption have resulted in some interesting extensions to the
basic concept being proposed and investigated. We briefly identify two areas where
interesting research has been conducted:

• Traceable broadcast encryption: The problem of piracy of decoder boxes
for commercial information services has led to an interest in incorporating
traceability into the keys allocated to a user in a broadcast encryption scheme.
This means that any group of users who combine their keys to forge a new
decoder can have at least one of their identities revealed if that decoder is
later captured and analysed. This idea was first proposed in [25] and has
subsequently been extensively investigated. Creating suitable distributions
of keys presents a number of interesting combinatorial problems, which were
comprehensively reviewed in [7].

• Self-healing broadcast encryption: If the broadcast channels being used
are unreliable then it is possible that some users may not reliably receive
the broadcast information that allows them to determine a given group key.
The idea behind a self-healing broadcast encryption scheme is that additional
information is broadcast on each occasion that allows valid group members
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to recover any missing group key from a combination of previous and sub-
sequent broadcast messages. This idea is most appropriate for applications
where regular group keys are established over a series of discrete time intervals.
Self-healing broadcast encryption was first proposed in [70] and subsequently
investigated in, for example, [13] and [14].

6.2 Decentralised schemes

One of the concerns of relying on a TA to play a major role during the key
establishment phase is that it becomes a potential central point of failure. This
even applies to the (trivial) key distribution scheme when the TA maintains secure
channels with users throughout the scheme lifetime. One method of mediating
against this, which was first studied in [59], is to have a set TA1, . . . , TAr of r
different TAs, of which at least m must be involved in the establishment of any group
key. This idea was first suggested for decentralising key predistribution schemes in
[44]. We capture this concept informally in the following definition.

Definition 6.15 An (m, r, C,X )-distributed key distribution scheme (DKDS) is a
(C,X )-KDS with the stronger properties that:

1. Given A ∈ C, any Ui ∈ A can compute the group key kA from knowledge of
ui and {vi,A,j1 , . . . , vi,A,jm}, where vi,A,jl

is some information obtained by Ui

from TAl during the key establishment phase for key kA.

2. Given A ∈ C, B ∈ X and a set of m−1 TAs, it is not possible to determine kA

from uA, the private information held by the m− 1 TAs and any information
sent to any user in a previous key establishment event.

Defintion 6.15 was formalised in [11] in an information theoretically secure model
and several bounds on scheme parameters, including TA storage, were established.
These essentially show that a scheme suggested in [59] is optimal. We briefly outline
this optimal DKDS.

Scheme 6.16 Given (C,X ), we let λ = maxB∈X |{A ∈ C |A ∩ B 6= ∅} (in other
words, the maximum number of group keys that any set B ∈ X can compute) and
associate each A ∈ C with an element hA ∈ GF (q). Initialise the (m, r, C,X )-DKDS
as follows:

• Each user Ui is issued with a set of keys that allow them to communicate
securely with each of the r TAs.

• TAi (1 ≤ i ≤ m) constructs a random bivariate polynomial fi(x, y) of degree
m− 1 in x, degree λ− 1 in y, and with coefficients from GF (q).

• TAi securely sends the univariate polynomial fi(j, y) to TAj (1 ≤ j ≤ r).

• TAj computes and stores the univariate polynomial tj(y) =
∑m

i=1 fi(j, y) as
their private information.

When user Ui ∈ A wants to establish kA:
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• Ui sends a request to a set of m TAs, say TAi1 , . . . , TAim.

• TAij sends vi,A,ij = tij (hA) to Ui.

• Ui uses Lagrange interpolation to recover kA =
∑m

l=1 fl(0, hA) from the values
{ti1(hA), . . . , tim(hA)}.

Various generalisations and extensions to the basic idea of a DKDS have been studied
in the literature. For example in [12] a tradeoff between storage and security was
exhibited by employing ramp schemes and in [29] a DKDS was proposed which
is more robust against users and TAs who do not follow the specified protocols
correctly.

7 Group key agreement schemes

The third class of key establishment schemes that we look at are those where
users can communicate with one another during the key establishment phase. We
assume that, as for the reasons given at the start of Section 5, there is no trusted
authority available to assist with key establishment after the initialisation phase.
The majority of group key agreement schemes are particularly suited to environ-
ments where the nature of the communication structure is not known in advance.
A group key agreement scheme then allows an ad hoc group to create a group key
amongst themselves. For this reason (motivated by potential applications to secure
teleconferencing) they are sometimes referred to as conference key schemes. In [15]
they are referred to as interactive key distribution schemes.

Our classification of key agreement schemes as any scheme that involves user
interaction unassisted by a trusted authority is highly generic and allows us to group
together several very different types of group key establishment schemes. The vast
majority of group key agreement schemes are based on public key cryptographic
techniques and are mostly beyond the scope of this paper as they do not inherently
involve combinatorial techniques. Many of these, including one that we will look at
in Section 7.2, are based around the classical Diffie-Hellman protocol [30], which we
briefly describe for the simple two-party case.

Scheme 7.1 Let G be a finite multiplicative group of some large prime order q and
let g be a generator of G (these parameters are published during the initialisation
phase). If U1 and U2 wish to establish a key k then:

1. U1 randomly chooses x1 ∈ Z∗q and sends gx1 to U2;

2. U2 randomly chooses x2 ∈ Z∗q and sends gx2 to U1;

3. U1 computes k = (gx2)x1 and U2 computes k = (gx1)x2, both of which are equal
to gx1x2.

The security of the Diffie-Hellman protocol relies on the difficulty of taking discrete
logarithms (see any standard cryptographic text such as [73]). We will not make
any attempt in this paper to review the vast range of extensions and alternatives
to Diffie-Hellman that have been proposed for group key agreement, and refer to
surveys such as [18] and (more recently and exclusive on key agreement) [31].
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7.1 Group key agreement from KPSs and KDSs

In a similar way to our discussion in Section 6.1.2, it is conceptually possible
to construct a group key agreement scheme for either a group key predistribution
scheme or a group key distribution scheme.

Scheme 7.2 If we have a (C,X )-KPS then we can realise a (C,X ) key agreement
scheme as follows:

• Each user stores ui, as issued in the KPS;

• Users Ui ∈ A establish group key kA by utilising secure channels amongst
themselves that are protected by the group key k∗A associated with the KPS.

Precisely how Scheme 7.2 can be manifested very much depends on the mutual trust
between users in the scheme. One simple option is that one user Ui could generate
kA and then distribute it to the others encrypted by k∗A. Another option is that each
user Ui ∈ A generates a component ki

A, which is then distributed encrypted by k∗A.
Each user in A then decrypts the component and forms kA =

∑
Ui∈A ki

A. Regardless
of how this is done, the resulting key agreement scheme will suffer from limitations
similar to those of Scheme 6.5 that were noted in Section 6.1.2.

Scheme 7.3 If we have a (C,X )-KDS then we can realise a (C,X ) key agreement
scheme as follows:

• During the initialisation phase, each user is provided with data that allows
them to fulfill the role of TA in a (C,X )-KDS;

• Users Ui ∈ A establish group key kA by utilising the group keys ki∗
A associated

with each of the KDSs.

Again there are many ways in which Scheme 7.3 could actually manifest itself. Note
also that there is no need for the individual KDSs strictly to be (C,X )-KDSs, since
it is possible that schemes with smaller communication structures could be cleverly
combined. This is precisely what was done in [6], which was later generalised in
[15]. This scheme used the broadcast encryption scheme based on a resolvable
design discussed in Section 6.1.2 to establish a group key agreement scheme, where
each user in A acted as a TA and broadcast an encrypted component key ki

A, which
was then combined to form the group key kA.

7.2 Key agreement schemes for long term group management

Analogously to the situation discussed in Section 6.1, in dynamic application
environments where group membership regularly changes it may be desirable to
have schemes that allow long term group keys to be established by key agreement
techniques. We have already seen in Section 6.1 that trees underpin a number of
group key distribution schemes. There have been several proposals for tree-based
group key agreement schemes based on Diffie-Hellman. We will describe the basic
set up of just one such scheme, from [42].
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Scheme 7.4 Let H be a subset of m users (chosen from a universe U), G be a
finite multiplicative group of some large prime order q and let g be a generator of
G. During the initialisation phase these parameters are published and users are
issued with information that allows them to communicate with one another using
authenticated public broadcast channels. For simplicity, assume that m = 2h. The
key establishment phase proceeds as follows:

1. Define a (complete) binary tree with m leaves, each associated with a user from
H. Label this tree iteratively as in Scheme 6.8 as follows: root by N0,0; the left
child of Ni,j by Ni+1,2j; and right child of Ni,j by Ni+1,2j+1. Hence the users,
which we label Uh,0, . . . , Uh,m−1, correspond to nodes Nh,0, . . . , Nh,m−1.

2. Each user Uh,j generates a secret value kh,j and publicly broadcasts gkh,j to the
other members of H.

3. Each pair of users Uh,j and Uh,j+1 (for all even 0 ≤ j ≤ m − 1) compute
the Diffie-Hellman key kh−1,j/2 using Scheme 7.1, which is then associated
with node Nh−1,j/2. Both Uh,j and Uh,j+1 securely store kh−1,j/2 and publicly
broadcast gkh−1,j/2.

4. Each quartet of users Uh,j , Uh,j+1, Uh,j+2, Uh,j+3 (for all j ≡ 0 (mod 4), 0 ≤
j ≤ m− 1) compute the Diffie-Hellman key kh−2,j/4 using Scheme 7.1, which
is then associated with node Nh−2,j/4. All four users securely store kh−2,j/4

and publicly broadcast gkh−2,j/4.

5. This process is iterated until the last Diffie-Hellman calculation results in k0,0,
which is adopted as the group key kH .

At the end of the above protocol, each user Uh,j holds each key that is associated with
the nodes on the path from Nh,j to the root N0,0, as well as gki,j for each node Ni,j

in the tree.

N2,0 N2,1
N2,2

N2,3

N1,0 N1,1

N0,0

U2,0 U2,1 U2,2 U2,3

Figure 6: Tree-based Diffie-Hellman node allocation on four nodes

Example 7.5 The underlying tree for m = 4 is shown in Figure 6. In this example,
U2,j first generates k2,j and broadcasts gk2,j (1 ≤ j ≤ 4). Users U2,0 and U2,1

conduct a Diffie-Hellman exchange to compute k1,0 = gk2,0k2,1 , and U2,2 and U2,3

conduct a Diffie-Hellman exchange to compute k1,1 = gk2,2k2,3 . Both gk1,0 and gk1,1

are then broadcast. Finally the group key k0,0 = gk1,0k1,1 can be computed by all
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four users. Each user stores all keys on the path from their leaf node to the root.
So, for example, U2,0 stores k2,0, k1,0 and k0,0.

As mentioned in Section 6.1, the main advantage of setting up the key agreement
tree in Scheme 7.4 is that this structure facilitates relatively efficient user join, user
leave, group merge and group partition operations in dynamic environments. We
leave the details of these protocols to [42].

7.3 Wireless sensor network schemes

A very interesting class of key establishment schemes that are of combinatorial in-
terest are those designed for application in wireless sensor networks. These networks
consist of tiny, inexpensive, low-powered sensors fitted with wireless transmitters,
which can be spatially scattered to form an ad hoc network. They are particularly
suited to applications in environments where it is difficult to manually establish a
communication network, such as during disaster relief operations, seismic data col-
lection, wildlife monitoring or military intelligence gathering. Sensors are distributed
around the application environment (perhaps by aeroplane drop) and then attempt
to set up a network in order to exchange and return data. What makes wireless
sensor networks particularly intriguing is that the actual network topology (defined
by a physical graph, whose edges represent sensors that are able to communicate
with one another at a particular instant in time) is not known prior to deployment
and is potentially highly dynamic. Thus we might as well model the physical graph
as a random graph.

There are three factors that influence the choice of key establishment techniques
for wireless sensor networks. The first is the fact that as there is no network controller
after initialisation, there is no entity that can play the role of a TA. This lends itself
to either key predistribution or key agreement schemes. However sensors also have
very limited storage and computational abilities. This presents a dilemma since:

• As we have already seen in Section 5, the cost of relying solely on key predis-
tribution is often substantial secret storage;

• Relying solely on key agreement involves considerable computational costs and
is likely to be hampered by the random nature of the physical graph.

A sensible compromise is thus to predistribute keys “as well as possible”, while also
permitting a limited amount of communication between sensors to take place during
key establishment, effectively making such schemes group key agreement schemes.

7.3.1 A key establishment model for wireless sensor networks The basic idea
behind a wireless sensor network scheme (WSN scheme) for communication struc-
ture C is to first establish a (C∗,X )-key predistribution scheme, where both C and
C∗ are defined on the same set of sensors (users). We refer to C∗ as the network
communication structure. When a set A ∈ C of sensors requires a group key kA:

1. if A ∈ C∗ then they establish kA using the KPS;

2. if A /∈ C∗ then they use some key agreement protocol to establish a key kA,
potentially using other sensors in the network to assist them.
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Note that it is quite reasonable to rely on other sensors to assist in a key agreement
process since the random nature of the physical graph necessitates that nodes typi-
cally rely on one another for message transmission services. One commonly proposed
key agreement technique is to seek a path of secure links in the physical graph that
joins the sensors in A, and then get one of the sensors on this path to generate a
key and securely relay it.

It is clearly desirable to have C∗ matching C as closely as possible. As a result, the
effectiveness of a WSN scheme is often measured in terms of the local connectivity,
which is a notion of the probability that a group of sensors in C either are in C∗
or are “close” to being in C∗ (where “close” is normally measured in terms of the
number of other sensors that need to be involved in establishing kA if A /∈ C∗).

There are a wide variety of different approaches to the design of WSN schemes
and we refer to [21] for a comprehensive survey. We now review a number of inter-
esting applications of combinatorial structures to the design of WSN schemes. We
will mainly restrict our interest here to the case where C = {A ⊆ U | |A| = t} (and
in particular the case t = 2), in which case we will refer to t-wise (pairwise) WSN
schemes.

7.3.2 Using a KPS Any key predistribution schemes that we have already dis-
cussed in Section 5 could potentially be adopted as part of a WSN scheme. Thus be-
fore considering dedicated designs, it is worth considering existing candidate KPSs.
The most appropriate schemes are those with relatively low user storage and fast
key computation. This makes schemes such as tree-based key distribution patterns
(Section 5.4) attractive candidates. Also of interest are probabilistic schemes such
as Scheme 5.8 (the random KPS) and Scheme 5.10, where efficiencies have been
gained at the expense of a slightly unpredictable network communication structure.
However these KPSs have not all been proposed explicitly for WSNs and, in partic-
ular, it is desirable to try to custom-design a KPS that also results in an efficient
key agreement phase.

7.3.3 Key ring WSN schemes We now discuss a class of WSN schemes that are
based on key ring predistribution schemes (fundamental Scheme 5.7). Let t be a
positive integer and let U1, . . . , Un be a collection of sensors. Let R = (I,B) be a
key ring, as defined in Section 5.1.2.

Definition 7.6 A (t, n,R)-key ring WSN scheme (KRWSN) is a WSN scheme aris-
ing from a key ring predistribution scheme based on R, where the (network) com-
munication structure is

C∗ = {A ⊆ U | |A| = t and
⋂

Ui∈A

ui 6= ∅}.

In other words, a group U1, . . . , Ut of t sensors check their public identifier sets
Pub1, . . . , Pubt to see if they share any common identifiers. If they do, then they
can establish a group key kA by applying g to the keys ki that correspond to the
identifiers in ∩t

j=1Pubj . If not, then they establish the group key by an alternative
key agreement mechanism.
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The first KRWSN schemes proposed were based on a version of Scheme 5.8,
the random key predistribution scheme, where the key ring was defined by B = Ik

(the collection of all subsets of I of some fixed size k) [24, 33]. Not surprisingly
however, improved schemes can be obtained if the key ring has a more combinatorial
structure. In [20], both projective planes and generalized quadrangles were suggested
as candidate key rings.

Scheme 7.7 Let q be a prime power and R = (I,B) be a projective plane of order
q. For any n ≤ q2 + q + 1 we obtain a (2, n,R)-KRWSN scheme such that:

• Each sensor needs to store q + 1 keys;

• Every pair of sensors shares precisely one common key.

Scheme 7.7 is of course also an example of a KDP (see Section 5.3) and thus could
have been included in Section 7.3.2. The fact that every pair of sensors share a key
means that in this example no key agreement stage is necessary. There is a subtle
problem with this scheme however. Many of the applications for wireless sensor
networks involve a large number of sensors (potentially tens of thousands). This
necessitates a suitable large choice of q in Scheme 7.7, which in turn requires the
storage-limited sensor to hold too many keys. In [47] both transversal designs and
quadratic curves were considered as candidate key rings and shown to have better
properties.

Scheme 7.8 Let q be a prime and R = (I,B) be a transversal design TD(k, q). For
any n ≤ q2 we obtain a (2, n,R)-KRWSN scheme such that:

• Each sensor needs to store k keys;

• Every pair of sensors share precisely zero or one common key;

• The probability that a pair of sensors share a common key is k/(q + 1).

To see that Scheme 7.8 is an improvement on Scheme 7.7, consider the following
example:

Example 7.9 Suppose that we require a WSN with 2400 sensors. If Scheme 7.7 is
used then we need to choose q = 49 and each node is required to store 50 keys. On
the other hand, we could apply Scheme 7.8 with a TD(30, 49) [47], in which case
each node only needs to store 30 keys. In this case any pair of nodes share a key
with probability 0.6. It is further shown in [47] that if we make certain reasonable
assumptions about the valency of the physical graph, the probability that any pair
of sensors either share a key, or are connected in the physical graph to a third sensor
with whom they both share a common key, is very close to 1.

Example 7.9 motivates the hunt for a more general class of combinatorial structures
with similar properties. We say that two sensors Ui and Uj in a WSN can commu-
nicate via a two-hop path if there exists a third sensor Uk such that both Ui and Uk,
and Uj and Uk, share common keys. For a KRWSN scheme this condition equates
to requiring that ui∩uk 6= ∅ and uj ∩uk 6= ∅. It is particularly advantageous if there
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are several different choices of intermediary node Uk since this increases the chances
that one of them is able to act as a direct relay between Ui and Uj in the physical
graph. The following type of structure was first proposed in [45].

Definition 7.10 Let (I,B) be a (v, b, r, k)-configuration. We say that (I,B) is
a (v, b, r, k, µ)-common intersection design (CID) if for any distinct pair of blocks
Bi, Bj ∈ B we have: |{Bk ∈ B |Bi ∩Bk 6= ∅ and Bj ∩Bk 6= ∅}| ≥ µ.

Clearly common intersection designs make ideal candidates for KRWSN scheme key
rings, as well as being of intrinsic combinatorial interest in their own right. We
have already seen one example in Scheme 7.8, since a TD(k, q) is an example of a
(qk, q2, q, k, k(k−1))-CID. Since we require µ to be as large as possible in a KRWSN
scheme, an interesting question is to determine the maximum possible µ when fixing
other parameters. Several upper bounds on µ were established in [48] and optimal
CIDs were constructed using group-divisible designs, strongly-regular graphs and
generalized quadrangles. Further investigation of CIDs is certainly merited.

7.3.4 Graph-based WSN schemes Given that one of our goals in a WSN scheme
is to limit the number of hops between sensors who do not share a common key,
another sensible design approach is to base the allocation of keys around a virtual
network graph, whose vertices are sensors and whose edges join sensors who share
a common key (in some sense this is the opposite approach to that taken in Sec-
tion 7.3.3). We restrict our proposals in this section to pairwise WSN schemes, but
the approach could be generalised using hypergraphs. This idea was again first pro-
posed in the literature using random graphs (Scheme 5.8) but we will again see that
combinatorial structures provided a more intuitive basis for construction. We will
use the following generic scheme.

Scheme 7.11 A graph-based WSN scheme (GWSN) for a graph G = (U , E) is a
pairwise WSN scheme based on an underlying node-based KPS where:

• Each edge e ∈ E is associated with a random key ke;

• ui = {ke |Ui is adjacent to e};
• C∗ = {{Ui, Uj} |Ui and Uj are joined by an edge e ∈ E}.

One difference between graph-based schemes and KRWSN schemes in general is that
all graph-based schemes have full collusion security. In order to exploit this we need
to define appropriate graphs on which to base a graph-based WSN scheme. In [46]
it was pointed out that (n, r, λ, µ)-strongly regular graphs make ideal candidates,
since by definition any pair of sensors in the graph that do not share a key are
connected by µ two-hop paths. It was further demonstrated in [46] that careful
choices of strongly regular graph have better local connectivity than schemes based
on a random graph.

One problem with graph-based WSN schemes is that good connectivity often
comes at the expense of requiring a graph where vertices typically have a high
degree (and hence sensors have high storage). A clever efficiency improvement that
can be applied to certain network graphs was observed in [46]:
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Scheme 7.12 let G = (U , E) be a network graph that can be decomposed into star-
like subgraphs. We can then establish a pairwise WSN scheme based on an underlying
node-based KPS where:

• Each Ui is associated with an identifier IDi and a random key ki;

• ui = {ki ∪ {h(kj , IDi) |Ui is connected to a starlike subgraph centred at Uj}},
where h is a hash function;

• C∗ = {{Ui, Uj} |Ui and Uj are joined by an edge e ∈ E}.

The above “trick” allows the sensor storage to be reduced compared to Scheme 7.11,
since Ui only needs to store one key ki for all the edges of the star-like subgraphs
centred at Ui (it still needs to store a key for every other edge adjacent to Ui). This
saving comes at the cost of reducing the security from unconditional to computa-
tional, since security is now dependent on the strength of the hash function.

The last scheme we will look at here is not strictly a graph-based scheme in the
notion of Scheme 7.11, but it is based on a complete t-partite network graph. The
scheme we describe is a generalisation to t-wise (from pairwise) of a scheme from
[46].

Scheme 7.13 Let GN1,...,Nt = (I, E) denote a complete t-partite graph on n vertices,
based on a partition of I into subsets N1, . . . , Nt. The t-partite BDVHKY-KPS for
GN1,...,Nt is defined as follows, where q ≥ n:

• Pubi = si, where si ∈ GF (q) and Pubi 6= Pubj if i 6= j.

• The TA (randomly) constructs a secret t-variate polynomial f with coefficients
from GF (q),

f(x1, . . . , xt) =
w∑

i1=0

· · ·
w∑

it=0

ai1...itx
i1
1 . . . xit

t .

• If Ui ∈ Ni then ui = f(x1, . . . , xi−1, si, xi+1, . . . , xt).

• C∗ = {A |A contains precisely one member of each Ni}.

• For any A = {Uz1 , . . . , Uzt} ∈ C∗, the user Uzi computes kA = f(sz1 , . . . , szt).

Note that the underlying polynomial in Scheme 7.13 differs from that in Scheme 5.9
by not necessarily being symmetric. The t-partite BDVHKY-KPS provides efficient
key agreement since any t sensors A that are not in C∗ must not contain any members
of some partition subset Nl. Thus there are at least |Nl| common neighbours of the
sensors in A who can potentially act as a two-hop relay to all the sensors in A.
Scheme 7.13 also has better resilience than Scheme 5.9, since now w + 1 sensors
from the same partition subset Ni have to be captured before the scheme is broken.
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7.3.5 Hybrid WSN schemes The last approach that we will briefly mention in-
volves mixing WSN schemes with different properties. The first two ideas each
“randomise” in a different way an underlying combinatorial design in order to cre-
ate schemes that exhibit interesting tradeoffs in comparison to schemes that we have
already seen. The third technique combines schemes in a combinatorial way.

• Recall that key ring WSN schemes based on KDPs, such as Scheme 7.7, suffer
from the fact that if sensor storage is kept low, the number of possible sensors
in the network is restricted. In [20] it was suggested that Scheme 7.7 be
combined with a version of the RKPS (Scheme 5.8), essentially “topping up”
the number of blocks in a projective plane with some random blocks. This
leads to a degradation in the local connectivity but was shown in [20] to offer
interesting tradeoffs between local connectivity and sensor storage.

• Recall that Scheme 7.8 was proposed as an alternative to Scheme 7.7 that
permitted more sensors at the expense of a loss in connectivity. In [23] it
was suggested that this connectivity loss can be avoided by randomly merging
blocks of the underlying transversal design, thus creating a key ring with much
longer blocks but greater connectivity. This idea thus improves connectivity
at the expense of greater sensor storage.

• Recall that Scheme 5.10 was developed from Scheme 5.9 using a randomised
product construction to improve resilience at the expense of a loss of connec-
tivity. In [78] a deterministic product construction that combines multiple
copies of a key predistribution scheme using a generic set system was studied.
Combinatorial properties for desirable set systems were derived and it was
shown that special types of 1-designs known as difference families made good
candidates.

This concept of combining different types of WSN scheme merits further investiga-
tion.

7.4 Multisecret sharing schemes

The previous key agreement schemes that we have looked at involve users having
to collaborate to construct a group key for practical reasons (such as making key
establishment efficient or through restrictions in the connectivity of the network).
We now look at a family of key agreement schemes were users are forced to collabo-
rate to construct a group key for security reasons. This is most likely to happen in
applications where the group keys protect sensitive assets, with no single user being
trusted with the sole authority to access them.

Definition 7.14 Let C = {A1, . . . , Am} be a communication structure defined on
a set U . An access structure for C is a collection Γ = {Γ1, . . . ,Γm} of subsets of U
with the property that:

1. Γi consists of subsets of Ai;

2. Γi is monotone (in other words, if X ∈ Γi and X ⊆ Y ⊆ Ai then Y ∈ Γi).
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We will use an access structure on C to specify the degree of mandatory collaboration
between users that is required before a group key can be established. More precisely,
we will require the property that the group key kAi can be established only if users
belonging to a set in Γi collaborate. This is more clearly specified in the following
definition.

Definition 7.15 Let C = {A1, . . . , Am} be a communication structure and X be
an exclusion structure defined on a set U , and let Γ = {Γ1, . . . ,Γm} be an access
structure for C. A (C,X ,Γ)-multisecret sharing scheme is a (C,X )-key establishment
scheme such that for any set of users B:

1. If (B ∩ Ai) ∈ Γi then there exists a public function g such that g({ui |Ui ∈
B}) = kAi . In other words, the users in B can construct kAi from their
collective set of secret values.

2. If (B ∩ Ai) /∈ Γi and B ∈ X then, even if users in B exchange all their secret
values {ui |Ui ∈ B}, they will not learn any information about kAi .

Note that we have deliberately avoided formulating the notion of not learning any
information and refer to [40] for a combinatorial formalisation and [54] for an
information-theoretic formalisation of this concept. We have also avoided a detailed
discussion of how the users exchange their values ui and apply the public function
g (typically it is either assumed that users share secret channels or that there exists
an entity called a combiner that performs this task for them).

Multisecret sharing schemes are generalisations of secret sharing schemes (see
Section 4.5), which correspond to the case of a scheme with just one group A1

(associated with Γ1) in its communication structure. While bounds on the secret
storage have been established for general multisecret sharing schemes under a couple
of different threat models [16, 54], we will restrict our attention to the special case
of multisecret threshold schemes, defined as follows.

Definition 7.16 A (t, w, λ)-multisecret threshold scheme (MTS) is a special class
of (C,X ,Γ)-multisecret sharing scheme where:

1. C = {A ⊆ U | |A| = t};
2. X = {A ⊆ U | |A| ≤ w};
3. For each Ai ∈ C, Γi = {X ⊆ Ai | |X| ≥ λ}.

A (t, w, 1)-MTS corresponds to a (t, w)-KPS (see Section 5) since in this case there
is no requirement for users to collaborate to construct their group keys. In [40] it
was shown that for most meaningful choices of w, each user in a (t, w, λ)-MTS needs
to be given a secret value ui that is at least

(
w+t−2λ+1

t−λ

)
times larger than the size

of any key kAi in the system. This bound is a generalisation of the bound on user
storage for KPSs proved in [17] (see Section 5.2). It is thus of particular interest
to find MTSs that meet this bound. The following are all “degenerate” cases of
optimal MTSs:

• Scheme 5.9 [17] is an optimal (t, w, 1)-MTS;
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• Optimal (n, w, λ)-MTSs (where |U| = n) correspond to optimal secret sharing
schemes (more precisely, if w = λ−1 they correspond to ideal threshold schemes
such as the classical scheme in [69] and for general w they correspond to optimal
ramp schemes, see [38]);

• An optimal (t, w, t)-MTS is easily constructed by letting ui be randomly chosen
in GF (q) and letting kA =

∑
Ui∈A ui for any A ∈ C [40].

However, the task of constructing optimal MTSs with 1 < λ < t appears to be
intriguingly difficult and to date only two constructions are known. In [41] a family
of optimal (t, n − k + 1, 2)-MTSs were constructed and in [5] a family of optimal
(3, w, 2)-MTSs. Both these constructions were based on complex and rather intri-
cate projective geometrical configurations and used a geometrical interpretation of
Scheme 5.9 as a building block.

8 Concluding remarks

In this paper we have reviewed a wide variety of applications of combinatorics ob-
jects, including designs and graphs, to different types of key establishment scheme.
The theory of group key establishment is by no means complete and there are a
number of areas where combinatorics can make further contributions to our under-
standing. Some specific areas where more research would be beneficial include:

• Several combinatorial objects that have direct application to key establishment
merit further investigatory work:

– While a moderate amount of research has been conducted on key distri-
bution patterns (cover free families), there is a great deal of information
about these structures to learn. In particular very little is known about
KDPs for non-threshold communication structures.

– Hash-tree key distribution patterns are relatively newly proposed struc-
tures and more theoretical work needs to be done concerning both con-
structions and performance bounds.

– Cover-based revocation systems have attracted a great deal of interest in
the area of broadcast encryption and greater understanding is needed of
how efficiently these can be implemented.

– Common intersection designs provide an interesting solution to the prob-
lem of key establishment in wireless sensor networks. More knowledge of
how to generate constructions with useful parameters is required.

• There has been some interesting preliminary research conducted on how to
take key establishment schemes with nice mathematical structure and convert
them into more practical schemes with less inherent structure, but better per-
formance. This can either be through merging schemes, extending schemes or
simply using a mathematical scheme as a starting point on which to build a
practical solution (Section 7.3.5 describes some work of this type for group key
agreement schemes). This area certainly merits further investigation.
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• Most of the schemes that we have presented in this review have been discussed
in their most basic form. We have not discussed how they can be extended to
incorporate all of the extended capabilities mentioned in Section 3.2.5. There
remains plenty work to de done in designing schemes with extended capabil-
ities, the most important of which is probably flexibility, in other words the
ability to efficiently process dynamic changes to the communication structure
over time.

It is hoped that this review has provided convincing evidence that combinatorial
mathematics has already made a substantial contribution to the theory of key es-
tablishment, and that we can expect it to continue to do so in future cryptographic
systems.
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[12] C. Blundo, P. D’Arco, and C. Padrò. A ramp model for distributed key distri-
bution schemes. Discrete Applied Mathematics, 128:47–64, 2003.

[13] C. Blundo, P. D’Arco, and A. De Santis. On self-healing key distribution
schemes. To appear in IEEE Transactions on Information Theory.

[14] C. Blundo, P. D’Arco, A. De Santis, and M. Listo. Design of self healing key
distribution schemes. Designs Codes and Cryptography, 32:15–44, 2004.

[15] C. Blundo, L. Frota Mattos, and D.R. Stinson. Generalized beimel-chor schemes
for broadcast encryption and interactive key distribution. Theoretical Computer
Science, 200:313–334, 1998.

[16] C. Blundo, A. De Santis, G. Di Crescenzo, A. Giorgio Gaggia, and U. Vaccaro.
Multi-secret sharing schemes. In Crypto ’94, volume 839 of Lecture Notes in
Computer Science, pages 150–163. Springer-Verlag, 1994.

[17] C. Blundo, A. De Santis, U. Vaccaro, A. Herzberg, S. Kutten, and M. Yung.
Perfectly secure key distribution for dynamic conferences. In Crypto ’92, volume
740 of Lecture Notes in Computer Science, pages 471–486. Springer-Verlag,
1993.

[18] C. Boyd and A. Mathuria. Protocols for authentication and key establishment.
Springer-Verlag, 2003.

[19] E.F. Brickell and D.M. Davenport. On the classification of ideal secret sharing
schemes. Journal of Cryptology, 4:123–134, 1991.

[20] S. A. Camtepe and B. Yener. Combinatorial design of key distribution mecha-
nisms for wireless sensor networks. In ESORICS 2004, volume 3193 of Lecture
Notes in Computer Science, pages 293–308. Springer-Verlag, 2004.

[21] S. A. Camtepe and B. Yener. Key distribution mechanisms for wireless sen-
sor networks: a survey. Rensselaer Polytechnic Institute, Computer Science
Department, Technical Report TR-05-07, March 2005.

[22] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multi-
cast security: a taxonomy and some efficient constructions. In Proceedings of
INFOCOM ’99, pages 708–716. IEEE Press, 1999.

[23] D. Chakrabarti, S. Maitra, and B. Roy. A hybrid design of key pre-distribution
scheme for wireless sensor networks. In ICISS 2005, volume 3803 of Lecture
Notes in Computer Science, pages 228–238. Springer-Verlag, 2005.

[24] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for
sensor networks. In IEEE Symposium on Research in Security and Privacy,
pages 197–213, May 2003.



The combinatorics of cryptographic key establishment 47

[25] B. Chor, A. Fiat, M. Naor, and B. Pinkas. Traitor tracing. IEEE Transactions
on Information Theory, 46:893–910, 2000.

[26] C.J. Colbourn, J.H. Dinitz, and D.R. Stinson. Applications of combinatorial
designs to communications, cryptography and networking. In Surveys in Com-
binatorics 1999, pages 37–100. Cambridge University Press, 1999.

[27] J. Crampton, K.M. Martin, and P.R. Wild. An explication of key assignment
schemes. In preparation, 2006.

[28] J. Crampton, K.M. Martin, and P.R. Wild. Proceedings of 19th computer
security foundations workshop. pages 98–111, 2006.

[29] P. D’Arco and D.R. Stinson. On unconditionally secure robust distributed key
distribution centers. In ASIACRYPT 2002, volume 2501 of Lecture Notes in
Computer Science, pages 346–363. Springer-Verlag, 2002.

[30] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

[31] R. Dutta and R. Barua. Overview of key agreement protocols. Cryptology
ePrint Archive, Report 2005/289, 2005. http://eprint.iacr.org/.

[32] M. Dyer, T. Fenner, and A. Thomason. On key storage in secure networks.
Journal of Cryptography, 8:189–200, 1995.

[33] L. Eschenauer and V. Gligor. A key management scheme for distributed sensor
networks. In Proceedings of 9th ACM Conference on Computer and Communi-
cation Security, November 2002.

[34] A.L. Ferrara and B. Masucci. An information-theoretic approach to the access
control problem. In C. Blundo and C. Laneve, editors, ICTCS 2003, volume
2841 of Lecture Notes in Computer Science, pages 342–354. Springer-Verlag,
2003.

[35] A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology -
CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 480–
491. Springer-Verlag, 1994.

[36] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. In Crypto
’02, volume 2442 of Lecture Notes in Computer Science, pages 47–60. Springer-
Verlag, 2002.

[37] L. Harn and H.Y. Lin. A cryptographic key generation scheme for multilevel
data security. Computers and Security, 9(6):539–546, 1990.

[38] W.-A. Jackson and K.M. Martin. A combinatorial interpretation of ramp
schemes. Australasian Journal of Combinatorics, 14:51–60, 1996.

[39] W.-A. Jackson and K.M. Martin. Combinatorial models for perfect secret shar-
ing schemes. Journal of Combinatorial Mathematics and Combinatorial Com-
puting, 28:249–265, 1998.



48 Keith M. Martin

[40] W.-A. Jackson, K.M. Martin, and C.M. O’Keefe. Multisecret threshold schemes.
In Crypto ’93, volume 773 of Lecture Notes in Computer Science, pages 126–
135. Springer-Verlag, 1994.

[41] W.-A. Jackson, K.M. Martin, and C.M. O’Keefe. A construction for multisecret
threshold schemes. Designs Codes and Crytography, 9:287–303, 1996.

[42] Y. Kim, A. Perrig, and G. Tsudik. Tree-based group key agreement. ACM
Transactions on Information and System Security, 7(1):60–96, 2004.

[43] R. Kumar, S. Rajagopalan, and A. Sahai. Coding constructions for blacklisting
problems without computational assumptions. In Advances in Cryptology -
CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 609–
623. Springer-Verlag, 1999.

[44] K. Kurosawa, K. Okada, and K. Sakano. Security of the center in key distri-
bution schemes. In Asiacrypt ’94, volume 917 of Lecture Notes in Computer
Science, pages 333–341. Springer-Verlag, 1995.

[45] J. Lee and D.R. Stinson. A combinatorial approach to key predistribu-
tion for distributed sensor networks. In IEEE Wireless Communications
and Networking Conference, pages 6–11, 2005. CD-ROM, paper PHY53-06,
http://www.cacr.math.uwaterloo.ca/dstinson/pubs.html.

[46] J. Lee and D.R. Stinson. Deterministic key predistribution schemes for dis-
tributed sensor networks. In SAC 2004, volume 3357 of Lecture Notes in Com-
puter Science, pages 294–307. Springer-Verlag, 2005.

[47] J. Lee and D.R. Stinson. One the construction of practical key predistri-
bution schemes for distributed sensor networks using combinatorial designs.
http://www.cacr.math.uwaterloo.ca/ dstinson/pubs.html, November 2005.

[48] J. Lee and D.R. Stinson. Common intersection designs. Journal of Combina-
torial Designs, 14:251–269, 2006.

[49] J. Lee and D.R. Stinson. Tree-based key distribution patterns. In SAC 2005
Proceedings, volume 3897 of Lecture Notes in Computer Science, pages 189–204.
Springer-Verlag, 2006.

[50] T. Leighton and S. Micali. Secret-key agreement without public-key cryptog-
raphy. In Advances in Cryptology - CRYPTO ’93, volume 773 of Lecture Notes
in Computer Science, pages 456–479. Springer-Verlag, 1994.

[51] C.-H. Lin. Hierarchical key assignment without public key cryptography. Com-
puters & Security, 20(7):612–619, 2001.

[52] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks.
In Proceedings of 10th ACM Conference on Computer and Communication Se-
curity, October 2003.



The combinatorics of cryptographic key establishment 49

[53] S.J. MacKinnon, P.D. Taylor, H. Meijer, and S.G. Akl. An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Transactions
on Computers, C-34(9):797–802, 1985.

[54] B. Masucci. Sharing multiple secrets: models, schemes and analysis. Designs
Codes and Crytography, 39:89–111, 2006.

[55] M. J. Mihaljevic. Key management schemes for stateless receivers based on
time varying heterogeneous logical key hierarchy. In Asiacrypt 2003, volume
2894 of Lecture Notes in Computer Science, pages 127–154. Springer-Verlag,
2003.

[56] C. J. Mitchell and F.C. Piper. The cost of reducing key storage requirements
in secure networks. Computers and Security, 6:339–341, 1987.

[57] C. J. Mitchell and F.C. Piper. Key storage in secure networks. Discrete Applied
Mathematics, 21:215–228, 1988.

[58] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for state-
less receivers. In Advances in Cryptology - CRYPTO ’01, volume 2139 of Lecture
Notes in Computer Science, pages 41–62. Springer-Verlag, 2001.

[59] M. Naor, B. Pinkas, and O. Reingold. Distributed preudo-random functions
and kdcs. In Advances in Cryptology - Eurocrypt ’99, volume 1592 of Lecture
Notes in Computer Science, pages 327–346. Springer-Verlag, 1999.

[60] C.M. O’Keefe. A comparison of key distribution patterns constructed from
circle geometries. In Auscrypt ’92, volume 718 of Lecture Notes in Computer
Science, pages 517–527. Springer-Verlag, 1993.

[61] C.M. O’Keefe. Key distribution patterns using minkowski planes. Designs
Codes and Crytography, 5:261–267, 1995.
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