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Two-Dimensional Patterns with Distinct Differences
– Constructions, Bounds, and Maximal Anticodes

Simon R. Blackburn, Tuvi Etzion, Keith M. Martin and Maura B. Paterson

Abstract—A two-dimensional grid with dots is called a config-
uration with distinct differences if any two lines which connect
two dots are distinct either in their length or in their slope.
These configurations are known to have many applications
such as radar, sonar, physical alignment, and time-position
synchronization. Rather than restricting dots to lie in a square
or rectangle, as previously studied, we restrict the maximum
distance between dots of the configuration; the motivation for this
is a new application of such configurations to key distribution
in wireless sensor networks. We consider configurations in the
hexagonal grid as well as in the traditional square grid, with
distances measured both in the Euclidean metric, and in the
Manhattan or hexagonal metrics.

We note that these configurations are confined inside maximal
anticodes in the corresponding grid. We classify maximal anti-
codes for each diameter in each grid. We present upper bounds on
the number of dots in a pattern with distinct differences contained
in these maximal anticodes. Our bounds settle (in the negative)
a question of Golomb and Taylor on the existence of honeycomb
arrays of arbitrarily large size. We present constructions and
lower bounds on the number of dots in configurations with
distinct differences contained in various two-dimensional shapes
(such as anticodes) by considering periodic configurations with
distinct differences in the square grid.

I. INTRODUCTION

A Golomb ruler (or ruler for short) of order m (also known
as a Sidon set) is a set S of integers with |S| = m having

the property that all differences a−b (for a, b ∈ S, with a 6= b)
are distinct. They were first used by Babcock, in connection
with radio interference [5]. The length of a Golomb ruler S
is the largest difference between any two elements of S. It
is easy to show that a ruler of order m has length at least(
m
2

)
; a ruler meeting this bound is called perfect. Golomb

has shown that no perfect ruler exists with order greater than
four [22]. The problem of finding the shortest possible length
of a Golomb ruler of a given order has been widely studied;
no general solution is known, but optimal rulers have been
determined for orders less than 24 (see [42] for details). The
elements of a Golomb ruler can be taken to represent marks
(‘dots’) on a physical ruler occurring at integer differences
from each other. The fact that the differences are all distinct
implies that if a Golomb ruler is placed on top of a second,
identical, ruler then at most one mark from the upper ruler
will coincide with a mark from the lower ruler, unless they
are exactly superimposed. Golomb rulers arise in the literature
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from both theoretical and practical aspects (see [4], [5], [25],
[30]). It is well known that the largest order of a ruler of length
n is
√
n+ o(

√
n), see [4], [30], [40].

There are various generalizations of one-dimensional rulers
into two-dimensional arrays. One of the most general was
given by Robinson [37]. A two-dimensional ruler is an n× k
array with m dots such that all

(
m
2

)
lines connecting two dots

in the array are distinct as vectors, i.e., any two have either
different length or slope. These arrays were also considered
in [38], [39]. The case where n = k was first considered
suggested by Costas and investigated by Golomb and Tay-
lor [25]. Costas considered the case when n = k and each
row and each column in the array has exactly one dot [25].
These arrays have application to a sonar problem [12], [25]
and also to radar, synchronization, and alignment; they are
known as Costas arrays. Sonar sequences are another class of
arrays mentioned in [25], where m = k and each column has
exactly one dot; see [20], [21], [34].

Other two-dimensional generalizations of a Golomb ruler
have been considered in the literature, but do not have direct
connection to our current work. For the sake of completeness
we will mention them. A radar array is an n× k array with
exactly one dot per column such that there are no two lines
connecting two disjoint pairs of dots, occupying the same
rows, which have the same length and slope. Radar arrays
were defined in [25] and considered in [9], [28], [37], [45].
Arrays in which all lines have distinct slopes were considered
in [14], [36], [44]. Arrays in which the Euclidean distances of
any pair of lines are distinct were considered in [31].

The examples above are concerned with dots in an (infinite)
square grid that are restricted to lie in a given line segment,
square or rectangle. More generally, we say that a set of dots
in a grid is a distinct difference configuration (DDC) if the
lines connecting pairs of dots are different either in length
or in slope. Having surveyed the known structures of two-
dimensional patterns with distinct differences, it seems that
the following natural question has not been investigated: what
is the maximum number of dots that can be placed on a two-
dimensional grid such that all lines connecting two dots are
different either in their length or their slope and the distance
between any two dots is at most r? In other words, rather than
considering the traditional rectangular regions of the square
grid, we consider dots which lie in maximal anticodes of
diameter r. (An anticode of diameter r is a set of positions
in the grid such that any pair of positions are at distance at
most r. See Section III for details.) We will consider several
notions of distance: Manhattan, hexagonal and Euclidean.

Our motivation for considering these configurations comes
from a new application to key predistribution for wireless
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sensor networks. We considered in [6] a key predistribution
scheme based on DDCs in general, and Costas arrays in
particular. A DDC A with m dots was shifted over the
two-dimensional square grid. For each shift we assigned the
same key to the m entries of the two-dimensional grid which
coincide with the m dots of A. In [6] we noted that a Costas
array is a DDC, and gave examples of DDCs with small
numbers of dots. However, the questions of finding more
general constructions, and providing bounds on the number of
dots in such configurations, were left open; it is these issues
that are addressed by the results of this paper. Other properties
of DDCs motivated by this application are considered in [7].

The rest of this paper is organized as follows. In Section II
we describe the models on which we will consider our two-
dimensional patterns with distinct differences. We consider
two two-dimensional grids: the square grid and the hexagonal
grid. In the square grid we consider the Manhattan distance
and the Euclidean distance, while in the hexagonal grid we
consider the hexagonal distance and the Euclidean distance.
We define the classes of DDCs we will study, and list
optimal examples for small parameter sizes. In Section III we
explain the relation between DDCs and maximal anticodes.
We classify the maximal anticodes when we use Manhattan
distance and hexagonal distance. We also briefly review some
properties of anticodes in R2 using Euclidean distance: these
properties will allow us to bound the size of an anticode in
either grid when we use Euclidean distance. In Section IV we
present upper bounds on the number of dots in a DDC when
we restrict the dots to lie in some simple regions (‘shapes’)
in the grid. The most important shapes we consider are the
anticodes, in particular the Lee sphere and the hexagonal
sphere. As a consequence of our upper bound, we settle an
old question of Golomb and Taylor [26] (on the existence of
honeycomb arrays of arbitrarily large size) in the negative. In
Sections V and VI we turn our attention to constructions and
lower bounds for the number of dots in the classes of DDC
defined in Section II. We generalize a folding technique that
was used by Robinson [38] to construct Golomb rectangles,
and provide more good examples by constructing periodic
infinite arrays that are locally DDCs. Our constructions are
asymptotically optimal in the case of the square grid and
Manhattan distance.

II. GRIDS, DISTANCES, AND DDCS

We first define some new classes of two-dimensional distinct
difference configurations. We believe that the definitions are
very natural and are of theoretical interest, independently of
the application we have in mind. We will consider the square
grid and the hexagonal grid as our surface. We start with a
short definition of the two models. Before the formal definition
we emphasize that we define a point (i, j) to be the point in
column i and row j of either a coordinate system or a DDC.
Hence, rows are indexed from bottom to top in increasing
order; columns are indexed from left to right in increasing
order. (So this is the usual convention for a Cartesian co-
ordinate system, but is not the standard way of indexing the
entries of a finite array.)
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Fig. 1. The hexagonal model translation

A. The two models

The first model is called the square model. In this model,
a point (i, j) ∈ Z2 has the following four neighbors when we
consider the model as a connected graph:

{(i− 1, j), (i, j − 1), (i, j + 1), (i+ 1, j)}.

We can think of the points in Z2 as being the centres
of a tiling of the plane by unit squares, with two centres
being adjacent exactly when their squares share an edge. The
distance d((i1, j1), (i2, j2)) between two points (i1, j1) and
(i2, j2) in this model is the Manhattan distance defined by

d((i1, j1), (i2, j2)) = |i2 − i1|+ |j2 − j1|.

The second model is called the hexagonal model. Instead
of the square grid, we define the following graph. We start by
tiling the plane R2 with regular hexagons whose sides have
length 1/

√
3 (so that the centres of hexagons that share an

edge are at distance 1). The vertices of the graph are the centre
points of the hexagons. We connect two vertices if and only if
their respective hexagons share an edge. This way, each vertex
has exactly six neighbouring vertices.

We will often use an isomorphic representation of the
hexagonal model which will be of importance in the sequel.
This representation has Z2 as the set of vertices. Each point
(x, y) ∈ Z2 has the following neighboring vertices,

{(x+ a, y + b) | a, b ∈ {−1, 0, 1}, a+ b 6= 0}.

It may be shown that the two models are isomorphic by using
the mapping ξ : R2 → R2, which is defined by ξ(x, y) =
(x+ y√

3
, 2y√

3
). The effect of the mapping on the neighbor set is

shown in Fig. 1. From now on, slightly changing notation, we
will also refer to this representation as the hexagonal model.
Using this new notation the neighbors of point (i, j) are

{(i− 1, j − 1), (i− 1, j), (i, j − 1), (i, j + 1),
(i+ 1, j), (i+ 1, j + 1)}.

The hexagonal distance d(x, y) between two points x and
y in the hexagonal grid is the smallest r such that there exists
a path with r + 1 points x = p1, p2, . . . , pr+1 = y, where pi
and pi+1 are adjacent points in the hexagonal grid.

B. Distinct difference configurations

We will now define our basic notation for the DDCs we
will focus on.
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Definition 1. A Euclidean square distinct difference configu-
ration DD(m, r) is a set of m dots placed in a square grid such
that the following two properties are satisfied:

1) Any two of the dots in the configuration are at Euclidean
distance at most r apart.

2) All the
(
m
2

)
differences between pairs of dots are distinct

either in length or in slope.

Definition 2. A square distinct difference configuration
DD(m, r) is a set of m dots placed in a square grid such that
the following two properties are satisfied:

1) Any two of the dots in the configuration are at Manhattan
distance at most r apart.

2) All the
(
m
2

)
differences between pairs of dots are distinct

either in length or in slope.

We define similar notation in the hexagonal model, as
follows.

Definition 3. A Euclidean hexagonal distinct difference con-
figuration DD∗(m, r) is a set of m dots placed in a hexagonal
grid with the following two properties:

1) Any two of the dots in the configuration are at Euclidean
distance at most r apart.

2) All the
(
m
2

)
differences between pairs of dots are distinct

either in length or in slope.

Definition 4. A hexagonal distinct difference configuration
DD
∗
(m, r) is a set of m dots placed in a hexagonal grid with

the following two properties:

1) Any two of the dots in the configuration are at hexagonal
distance at most r apart.

2) All the
(
m
2

)
differences between pairs of dots are distinct

either in length or in slope.

In the application in [6], dots in the DDC are associated with
sensor nodes, and their position in the square or hexagonal
grid corresponds to a sensor’s position. The parameter r
corresponds to a sensor’s wireless communication rage. So
the most relevant distance measure for the application we
have in mind is the Euclidean distance. Moreover, as the best
packing of circles on a surface is by arranging the circles in a
hexagonal grid (see [11]), the hexagonal model may be often
be better from a practical point of view. But the Manhattan
and hexagonal distances are combinatorially natural measures
to consider, and our results for these distance measures are
sharper. Note that Manhattan and hexagonal distance are both
reasonable approximations to Euclidean distance (hexagonal
distance being the better approximation). Indeed, since the
distinct differences property does not depend on the distance
measure used, it is not difficult to show that a DD(m, r)
is a DD(m, r), and a DD(m, r) is a DD(m, d

√
2re). Sim-

ilarly a DD
∗
(m, r) is a DD∗(m, r), and a DD∗(m, r) is an

DD
∗
(m, d(2/

√
3)re).
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Fig. 2. Square distinct difference configurations with the largest number of
dots possible for r = 2, 3, . . . , 11.

Fig. 3. Hexagonal distinct difference configurations with the largest number
of dots possible for r = 2, 3, . . . , 10.

C. Small parameters

For small values of r, we used a computer search to find a
DD(m, r) with m as large as possible. The search shows that
for r = 2, 3, the largest such m are 3 and 4 respectively, and
for 4 6 r 6 11 the largest possible m is r+2. Fig. 2 contains
examples of configurations meeting those bounds.

Similarly, we found the best configurations DD
∗
(m, r) in

the hexagonal grid (see Figure 3) for 2 6 r 6 10.

III. ANTICODES AND DDCS

In this section we will show a trivial connection between
DDCs and maximal anticodes. This leads to a short investi-
gation of maximal anticodes in the square and the hexagonal
grids. We find all maximal anticodes in these two models under
the Manhattan and hexagonal distance measures respectively.

An anticode of diameter r in the two-dimensional grid
(square or hexagonal) is a set S of points such that for
each pair of points x, y ∈ S we have d(x, y) 6 r, where
the distance can be Manhattan, hexagonal, or Euclidean. An
anticode S of diameter r is said to be optimal if there is
no anticode S ′ of diameter r such that |S ′| > |S|. An
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(a) (b) (c)
Fig. 4. Maximal anticodes in the square grid

anticode S of diameter r is said to be maximal if {x} ∪ S
has diameter greater than r for any x /∈ S. Anticodes are
important structures in various aspects of coding theory and
extremal combinatorics [1]–[3], [13], [18], [33], [41].

The following two results provide an obvious connection
between DDCs and anticodes.

Lemma 1. Any anticode S of diameter r is contained in a
maximal anticode S ′ of diameter r.

Corollary 2. A DD(m, r) is contained in a maximal anticode
of (Euclidean) diameter r. The same statement holds for a
DD(m, r), DD∗(m, r) or DD

∗
(m, r) when the appropriate

distance measure is used.

A. Maximal anticodes in the square grid

We start by defining three shapes in the square grid. We
will prove that these shapes are the only maximal anticodes
in the square grid when we use Manhattan distance.

A Lee sphere of radius R is the shape in the square model
which consists of one point as centre and all positions of
Manhattan distance at most R from this centre. The area of
this Lee sphere is 2R2 +2R+1. For the seminal paper on Lee
spheres see [27]. Figure 4a illustrates a Lee sphere of radius
2.

A bicentred Lee sphere of radius R is the shape in the square
model which consists of two centre points (a 2×1 or an 1×2
rectangle) and all positions of Manhattan distance at most R
from at least one point of this centre. The area of this bicentred
Lee sphere is 2R2 + 4R + 2. These shapes were used for
two-dimensional burst-correction in [8]. Figure 4b illustrates
a bicentred Lee sphere of radius 2.

A quadricentred Lee sphere of radius R is the shape in
the square model which consists of four centre points (a
2× 2 square) and all positions of Manhattan distance at most
R − 1 from at least one point of this centre. The area of
this quadricentred Lee sphere is 2R2 + 2R. These shapes
were defined using the name ‘generalized Lee sphere’ in [17].
Figure 4c illustrates a quadricentred Lee sphere of radius 3.

Theorem 3.
• For even r there are two different types of maximal anti-

codes of diameter r in square grid: the Lee sphere of radius
r
2 and the quadricentred Lee sphere of radius r

2 .
• For odd r there is exactly one type of maximal anticode of

diameter r in the square grid: the bicentred Lee sphere of
radius r−1

2 .

Proof: Let A be a maximal anticode of diameter r in the
square grid.

Assume first that r is even, so r = 2ρ. We will embed A
in the two-dimensional square grid in such a way that there is
position in A on the line y = x, but no position below it. The
Manhattan distance between a point on the line y = x + 2ρ
and a point on the line y = x is at least 2ρ and hence A is
bounded by the lines y = x and y = x+2ρ. Similarly, without
loss of generality we can assume that there is a position in A
on the line y = −x or y = −x+1 and no position below this
line, so A is bounded by the lines y = −x and y = −x+ 2ρ,
or by the lines y = −x+ 1 and y = −x+ 2ρ+ 1. These four
lines define a Lee sphere of radius ρ or a quadricentred Lee
sphere of radius ρ.

Now, assume that r is odd, so r = 2ρ+ 1. We will embed
A in the two-dimensional square grid in a way that a position
of A lies on the line y = x, but no position lies below it.
The Manhattan distance between a point on the line y = x+
2ρ + 1 and a point on the line y = x is at least 2ρ + 1 and
hence A is bounded by the lines y = x and y = x+ 2ρ+ 1.
Similarly, without loss of generality we can assume that there
is a position of A on the line y = −x or y = −x + 1 and
no position below this line, and so A is bounded by the lines
y = −x and y = −x + 2ρ + 1 or by the lines y = −x + 1
and y = −x+ 2ρ+ 2. In either case, these four lines define a
bicentred Lee sphere of radius ρ.

Finally, the following theorem is interesting from a theoret-
ical point of view.

Theorem 4. There exists a DD(m, r) for which the only max-
imal anticode of diameter r containing it is a Lee sphere
(bicentred Lee sphere, quadricentred Lee sphere) of diameter
r.

Proof: We provide the configurations that are needed. All
the claims in the proof below are readily verified and left to
the reader.

When r is odd, we may take two points on the same
horizontal line such that d(x, y) = r: this pair of points is
in a bicentred Lee sphere of radius r−1

2 . When r is even, the
same example is contained in a Lee sphere of radius r/2, but
is not contained in a quadricentred Lee sphere of radius r/2.

Let r be even, and set R = r/2. The points (0, R − 1),
(0, R), (2R− 2, 0), (2R− 2, 2R− 1), and (2R− 1, R) form
DD(5, 2R). This set of points is not contained in a Lee sphere
of radius R, but is contained in a quadricentred Lee sphere of
radius R.

B. Maximal anticodes in the hexagonal grid

Theorem 5. There are exactly d r+1
2 e different types of maxi-

mal anticodes of diameter r in the hexagonal grid, namely the
anticodes A0,A1, . . . ,Ad r−1

2 e
defined in the proof below.

Proof: We consider the translation of the hexagonal grid
into the square grid. By shifting it appropriately, any maximal
anticode A of diameter r can be located inside an (r+1)×(r+
1) square B with corners at (0, 0), (0, r), (r, 0), and (r, r). Let
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i be defined by the property that the lines y = x− i contains
a point of A, but no point of A lies below this line.

We claim that i > 0. To see this, assume for a contradiction
that i < 0. Then A is contained in the region of B bounded
by the lines y = x − i, y = r, and x = 0. But the point
(0, r+1) outside B is within distance r from all the points of
this region, contradicting the fact that A is a maximal anticode.
Thus, i > 0 and our claim follows.

All the points on the line y = x − i that are inside B
are within hexagonal distance r from all points on the lines
y = x− i+ j, 0 6 j 6 r, that lie inside B. All the points on
the line y = x − i inside B have hexagonal distance greater
than r from all the points on the line y = x− i+r+1. Hence,
as A is maximal, A consists of all the points bounded by the
lines y = x− i and y = x− i+ r inside B. It is easy to verify
that each one of the r+ 1 anticodes Ai defined in this way is
a maximal anticode. One can readily verify that Ai and Ar−i
are equivalent anticodes, since Ar−i is obtained by rotating
Ai by 180 degrees. So the theorem follows.

Theorem 6. Let i be fixed, where 0 6 i 6 d r−1
2 e. There exists

a DD
∗
(m, r) for which the only maximal anticode of diameter

r containing it is of the form Ai.

Proof: Again, we provide the configurations, and leave
the verification of the details to the reader.

For each i, 1 6 i 6 r−1
2 , Ai has six corner points. If

we assign a dot to each corner point then we will obtain a
DDC which cannot be inscribed in another maximal anticode.
When r = 2R these six points do not define a DDC in AR.
In this case we assign seven dots to AR as follows. In four
consecutive corner points we assign a dot; in the next corner
point we assign two dots in the adjacent points on the boundary
of AR; in the last corner point we assign a dot in the adjacent
point on the boundary of AR towards the first corner point.
When i = 0, Ai is a triangle and has three corner points. If
we assign a dot to each of these corner points we will obtain a
DDC which cannot be inscribed in another maximal anticode.

We now consider some basic properties of these d r+1
2 e

anticodes. First, the number of grid points in Ai is (r +
1)2 − i(i+1)

2 − (r−i)(r+1−i)
2 = (r+1)(r+2)

2 + i(r − i). The
smallest anticode is A0, an isosceles right triangle with base
and height of length r + 1 containing (r+1)(r+2)

2 points. The
largest anticode is the hexagonal sphere Ad r−1

2 e
of radius r/2.

The hexagonal sphere contains 3(r+1)2

4 points when r is odd,
and contains 3r2+6r+4

4 = 3
(
r
2

)2 + 3
(
r
2

)
+ 1 points when r

is even. The hexagonal sphere of radius R is the shape in
the hexagonal model which consists of a centre point and all
positions in hexagonal distance at most R from this centre
(Fig. 5).

C. Maximal anticodes with Euclidean distance

It seems much more difficult to classify the maximal an-
ticodes in the square and hexagonal grids when we use Eu-
clidean distance. Note that the representation of the hexagonal
grid in the square grid does not preserve Euclidean distances,

Fig. 5. Hexagonal sphere of radius 2

r r r

(a) (b) (c)
Fig. 6. Anticodes in the Euclidean distance

and so we cannot use the map ξ. We expect that the overall
shape of a maximal anticode in both models should be similar,
since a maximal anticode in both models is just the intersection
of a maximal anticode in R2 with the centres of our squares or
hexagons respectively. But the ‘local’ structure of an anticode
will be different: for example, in the hexagonal grid we can
have three dots that are pairwise at distance r, but this is not
possible in the square grid.

Because maximal anticodes in R2 determine the shape
of maximal anticodes in the square or hexagonal models,
we conclude this section with a brief description of such
anticodes.

An anticode is confined to the area as depicted in Figure 6a,
where dots are two elements in the anticode at distance r.
The most obvious maximal anticode is a circle of diameter r
depicted in Figure 6b. Another maximal anticode is depicted
in Figure 6c, and is constructed by taking three dots at the
vertices of an equilateral triangle of side r, and intersecting the
circles of radius r about these dots. Between the ‘triangular’
anticode and the circle there are infinitely many other max-
imal anticodes. We will need the following ‘isoperimetrical’
theorem; see Littlewood [32, Page 32] for a proof.

Theorem 7. Let A be a region of R2 of diameter r and area a.
Then a 6 (π/4)r2.

We remark that the example of a circle of diameter r shows
that the bound of this theorem is tight.

IV. UPPER BOUNDS ON THE NUMBER OF DOTS

In this section we will provide asymptotic upper bounds on
the number of dots that can be contained in a DDC, using
a technique due to Turán [14], [15]. We start by considering
upper bounds on the number m of dots in a DD(m, r) and a
DD
∗
(m, r), and then consider upper bounds in a DD(m, r)

and DD∗(m, r). The results for small parameters in Section II
might suggest that a DD(m, r) can always contain r+2 dots:
our result (Theorem 9) that m 6 1√

2
r + o(r) surprised us.

Our techniques easily generalise to DDCs where we restrict
the dots to lie in various shapes in the grid not necessarily
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related to distance measures: we end the section with a brief
discussion of this general situation.

A. Manhattan and hexagonal distances
Lemma 8. Let r be a non-negative integer. LetA be an anticode
of Manhattan diameter r in the square grid. Let ` be a positive
integer such that ` 6 r, and let w be the number of Lee spheres
of radius ` that intersectA non-trivially. Thenw 6 1

2 (r+2`)2+
O(r).

Proof: Let A′ be the set of centres of the Lee spheres
we are considering, so w = |A′|. We claim that A′ is an
anticode of diameter at most r+2`. To see this, let c, c′ ∈ A′.
Since the spheres of radius ` about c and c′ intersect A non-
trivially, there exist elements a, a′ ∈ A such that d(c, a) 6 `
and d(c′, a′) 6 `. But then

d(c, c′) 6 d(c, a) + d(a, a′) + d(a′, c′) 6 `+ r + ` = r + 2`,

and so our claim follows.
Let A′′ be a maximal anticode of diameter r+2` containing

A′. Theorem 3 implies that A′′ is a Lee sphere, bicentred
Lee sphere or quadricentred Lee sphere of radius R, where
R = b(r + 2`)/2b. In all three cases, |A′′| = 2R2 +O(R) =
1
2 (r + 2`)2 +O(r). Since

w = |A′| 6 |A′′|,

the lemma follows.

Theorem 9. If a DD(m, r) exists, then

m 6 1√
2
r + (3/24/3)r2/3 +O(r1/3).

Proof: We begin by giving a simple argument that leads
to a linear bound on m in terms of r, with an inferior leading
term to the bound in the statement of the theorem. There are
2r2+2r non-zero vectors of Manhattan length r or less, where
a vector is a line with direction which connects two points.
The distinct difference property implies that each such vector
arises at most once as the vector difference of a pair of dots.
Since a configuration of m dots gives rise to m(m−1) vector
differences, we find that

m(m− 1) 6 2r2 + 2r.

In particular, we see that m 6
√

2r + o(r) = O(r).
We now establish the bound of the theorem. Since all the

dots are at distance at most r, we see that all dots are contained
in a fixed anticode A of the square grid of diameter r. Set
` = bαr2/3c, where we will choose the constant α later so
as to optimize our bound. We cover A with all the ‘small’
Lee spheres of radius ` that intersect A nontrivially. Every
point of A is contained in exactly a small Lee spheres, where
a = 2`2 + 2` + 1. Moreover, by Lemma 8, we have used w
small Lee spheres, where w 6 1

2 (r + 2`)2 +O(r).
Let mi be the number of dots in the ith small Lee sphere.

Let µ be the mean of the integers mi. Since every dot is
contained in exactly a small Lee spheres, µ = am/w. We
aim to show that

w(µ2 − µ) 6
w∑
i=1

mi(mi − 1) 6 a(a− 1). (1)

The first inequality in (1) follows from expanding the non-
negative sum

∑w
i=1(µ−mi)2, so it remains to show the second

inequality.
The sum

∑w
i=1mi(mi − 1) counts the number of pairs

(L, d) where L is a small Lee sphere and d is a vector
difference between two dots in `. Every difference d arises
from a unique ordered pair of dots in A, since the dots form
a distinct difference configuration. Thus

w∑
i=1

mi(mi − 1) 6
∑
d

k(d),

where we sum over all non-zero vector differences d and where
k(d) is the number of Lee spheres of radius ` that contain any
fixed pair of dots with vector difference d. If we assume that
the first element of the pair of dots with vector difference d
lies at the origin, we see that∑

d

k(d) = a(a− 1)

since there are exactly a Lee spheres of radius ` containing the
origin, and each such sphere contributes 1 to k(d) for exactly
a− 1 values of d. Thus we have established (1).

Now, the inequality (1) together with the fact that µ =
am/w imply that

(µ− 1)m 6 a− 1 6 a,

and so
m2 6 w

(
1 +

m

a

)
. (2)

By Lemma 8,

√
w 6

1√
2
r

(
1 +

2`
r

+O(r−1)
)
,

and we have that√
(1 + (m/a)) = 1 +m/(2a) +O((m/a)2).

Since m = O(r) and a > 2α2r4/3, these two inequalities
combine with (2) to show that

m 6
1√
2
r
(
1 + 2αr−1/3 +

m

4α2r4/3
+O(r−2/3)

)
. (3)

Since m = O(r), this inequality implies that m 6 1√
2
r +

O(r2/3). Combining this tighter bound with (3) we find that

m 6
1√
2
r

(
1 +

(
2α+

1
4
√

2α2

)
r−1/3 +O(r−2/3)

)
.

The expression 2α + 1/(4
√

2α2) is minimized when α =
2−5/6 at the value 3/25/6, so choosing this value for α we
deduce that

m 6 1√
2
r
(
1 + 3

25/6 r
−1/3 +O(r−2/3)

)
= 1√

2
r + 3

24/3 r
2/3 +O(r1/3),

as required.
We now look at the hexagonal grid.

Lemma 10. Let r be a non-negative integer. Let A be an
anticode of hexagonal diameter r in the hexagonal grid. Let `
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be a positive integer such that ` 6 r, and let w be the number
of hexagonal spheres of radius ` that intersect A non-trivially.
Then w 6 3

4 (r + 2`)2 +O(r).

Proof: The set of centres of the hexagonal spheres of
radius ` that have non-trivial intersection with A clearly form
an anticode of diameter at most r+ 2`. Therefore the number
w of such spheres is bounded by the maximal size of such
an anticode. The results on the maximal anticodes in the
hexagonal metric in Section III imply that

w 6 1
4 (3(r + 2`)2 + 6(r + 2`) + 4)

= 3
4 (r + 2`)2 +O(r),

as required.

Theorem 11. If a DD
∗
(m, r) exists, then

m 6
√

3
2 r + (34/32−5/3)r2/3 +O(r1/3).

Proof: The dots in a DD
∗
(m, r) form an anticode of

diameter r. Let ` = b2−2/33−1/6r2/3c. We may cover these
dots with the w hexagonal spheres of radius ` that contain
one or more of these dots. By Lemma 10, we have that
w 6 3

4 (r + 2`)2 +O(r).
Using the fact that a hexagonal sphere of radius ` contains a

points in the hexagonal grid, where a = 3`2 +3`+1, we may
argue exactly as in Theorem 9 to produce the bound (2). There
are O(r2) vectors in the hexagonal grid of hexagonal length
r or less, so the argument in the first paragraph of Theorem 9
shows that m = O(r). Since m/a = O(r−1/3), the bound (2)
implies that

m 6
√
w +O(r2/3) =

√
3

2
r +O(r2/3).

This bound on m implies that m/a = 21/33−1/6r−1/3 +
O(r−2/3), and so applying (2) once more we obtain the bound
of the theorem, as required.

One consequence of Theorem 11 is an answer to the ninth
question asked by Golomb and Taylor [26]: a honeycomb array
of order R is a DDC whose shape is an hexagonal sphere of
radius R, and it contains 2R+1 dots (a dot in each hexagonal
row, which makes this DDC akin to the Costas array). Do
honeycomb arrays exist for infinitely many R? The conjecture
in [26] is that the answer is YES. However, the answer is in
fact NO, as the following corollary to Theorem 11 shows.

Corollary 12. Honeycomb arrays exist for only a finite number
of values of R.

Proof: A hexagonal sphere of radius R has diameter
at most 2R (using hexagonal distance). Hence a honeycomb
array is a DD

∗
(m, 2R) with m = 2R + 1. But Theorem 11

shows that m 6
√

3R+O(R2/3) and so no honeycomb array
exists when R is sufficiently large.
In fact, numerical computations indicate that no honeycomb
arrays exist for R > 644: for R in this range, there is a
suitable choice of ` such that a honeycomb array violates the
inequality (2).

B. Euclidean distance
We now turn our attention to Euclidean distance. Our first

lemma is closely related to Gauss’s circle problem:

Lemma 13. Let ` be a positive integer, and let S be a (Eu-
clidean) circle of radius ` in the plane. Then the number of
points of the square grid contained in S is π`2 +O(`).

Proof: Let c be the centre of S. Let X be the set of points
of the square grid contained in S. Define X to be the union
of all unit squares whose centres lie in X . Clearly X has area
|X|. The maximum distance from the centre of a unit square
to any point in the unit square is at most 1/

√
2, and so X

is contained in the circle of radius `+ (1/
√

2) with centre c.
Similarly, every point in a circle of radius ` − (1/

√
2) with

centre c is contained in X . Hence

π(`− (1/
√

2))2 6 |X| 6 π(`+ (1/
√

2))2,

and so the lemma follows.

Lemma 14. Let r be a non-negative integer. Let A be an
anticode in the square grid of Euclidean diameter r. Let ` be
a positive integer such that ` 6 r, and let w be the number of
circles of radius ` whose centres lie in the square grid and that
intersect A non-trivially. Then w 6 (π/4)(r + 2`)2 +O(r).

Proof: As in Lemma 8, it is not difficult to see that the set
A′ of centres of circles we are considering form an anticode in
the square grid of diameter at most r+2`. Note that w = |A′|.
Let X be the union of the unit squares whose centres lie in A′,
so X has area w. The maximum distance between the centre
of a unit square and any other point in this square is 1/

√
2, and

so X is an anticode in R2 of diameter at most r+2`+(1/
√

2).
Hence, by Theorem 7, w 6 (π/4)(r+ 2`+ (1/

√
2))2 and the

lemma follows.

Theorem 15. If a DD(m, r) exists, then

m 6
√
π

2 r + 3π1/3

25/3 r
2/3 +O(r1/3).

Proof: The proof is essentially the same as the proof
of Theorem 11, using Lemma 13 to bound the number a of
points in a sphere of radius `, and using Lemma 14 instead
of Lemma 10. The bound of the theorem is obtained if we set
` = b1/(22/3π1/6)r2/3c.

Lemma 16. Let ` be a positive integer, and let S be a (Eu-
clidean) circle of radius ` in the plane. Then the number of
points of the hexagonal grid contained in S is (2π/

√
3)`2 +

O(`).

Proof: The proof of the lemma is essentially the same as
the proof of Lemma 13. The hexagons whose centres form the
hexagonal grid have area

√
3/2, and the maximum distance

of the centre of a hexagon to any point in the hexagon is
1/
√

3. Define X to be the set of points of the hexagonal grid
contained in S, and let X be the union of all hexagons in our
grid whose centres lie in X . Clearly X has area (

√
3/2)|X|.

The argument of Lemma 13 shows that

π(`− (1/
√

3))2 6 (
√

3/2)|X| 6 π(`+ (1/
√

3))2,
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and so the lemma follows.

Lemma 17. Let r be a non-negative integer. Let A be an
anticode in the square grid of Euclidean diameter r. Let ` be
a positive integer such that ` 6 r, and let w be the number of
circles of radius ` whose centres lie in the hexagonal grid and
that intersectA non-trivially. Then w 6 (π/(2

√
3))(r+2`)2 +

O(r).

Proof: The proof of this lemma is essentially the same as
the proof of Lemma 14. The argument there with appropriate
modifications shows that (

√
3/2)w 6 (π/4)(r+2`+(1/

√
3))2

(where the factor of
√

3/2 comes from the fact that the
hexagons associated with our grid have area

√
3/2).

Theorem 18. If a DD∗(m, r) exists, then

m 6
√
π√

2 31/4 r + 35/6π1/3

24/3 r2/3 +O(r1/3).

Proof: The proof is the same as the proof of Theorem 15,
using Lemmas 16 and 17 in place of Lemmas 13 and 14, and
defining ` = b31/122−5/6π−1/6r2/3c.

C. More general shapes

All the theorems above consider a maximal anticode in
some metric, and cover this region with small circles of radius
`. We comment (for use later) that the same techniques work
for any ‘sensible’ shape that is not necessarily an anticode.
(We just need that the number of small circles that intersect
our shape is approximately equal to the number of grid points
contained in the shape.) So we can prove similar theorems
for DDCs that are restricted to lie inside regular polygons, for
example. The maximal number of dots in such a DDC is at
most

√
s + o(

√
s) when the shape contains s points of the

grid.

V. PERIODIC TWO-DIMENSIONAL CONFIGURATIONS

The previously known constructions for DDCs restrict dots
to lie in a line or a rectangular region (often a square region)
of the plane. The application described in [6] instead demands
that the dots lie in some anticode. The most straightforward
approach to constructing DDCs for our application is to find
a large square or rectangular subregion of our anticode, and
use one of these known constructions to place dots in this
subregion. This approach provides a lower bound for m that
is linear in r, but in fact we are able to do much better
than this by modifying known constructions (in the case
of Robinson’s folding technique below) and by making use
of certain periodicity properties of infinite arrays related to
rectangular constructions. We will explain how this can be
done in the next section. In this section we will survey some
of the known constructions for rectangular DDCs, extend
these constructions to infinite periodic arrays, and prove the
properties we need for Section VI.

Let A be a (generally infinite) array of dots in the square
grid, and let η and κ be positive integers. We say that A is
doubly periodic with period (η, κ) if A(i, j) = A(i+η, j) and
A(i, j) = A(i, j + κ) for all integers i and j. We define the

density of A to be d/(ηκ), where d is the number of dots in
any κ× η sub-array of A. Note that the period (η, κ) will not
be unique, but that the density of A does not depend on the
period we choose. We say that a doubly periodic array A of
dots is a doubly periodic n×k DDC if every n×k sub-array
of A is a DDC. See [16], [34], [43] for some information
on doubly periodic arrays in this context. We aim to present
several constructions of doubly periodic DDCs of high density.

A. Constructions from Costas Arrays

A Costas array of order n is an n × n permutation array
which is also a DDC. Essentially two constructions for Costas
arrays are known, and both give rise to doubly periodic DDCs.

The Periodic Welch Construction:
Let α be a primitive root modulo a prime p and let A be the

square grid. For any integers i and j, there is a dot in A(i, j)
if and only if αi ≡ j (mod p).

The following theorem is easy to prove. A proof which also
mentions some other properties of the construction is given
in [7].

Theorem 19. Let A be the array of dots from the Periodic
Welch Construction. Then A is a doubly periodic p × (p − 1)
DDC with period (p− 1, p) and density 1/p.

Indeed, it is not difficult to show that each p × (p − 1) sub-
array is a DDC with p − 1 dots: a dot in each column and
exactly one empty row. The (p− 1)× (p− 1) sub-array with
lower left corner at A(1, 1) is a Costas array.

The Periodic Golomb Construction:
Let α and β be two primitive elements in GF(q), where q

is a prime power. For any integers i and j, there is a dot in
A(i, j) if and only if αi + βj = 1.

The following theorem is proved similarly to the proof
in [7], [23].

Theorem 20. Let A be the array of dots from the Periodic
Golomb Construction. ThenA is a doubly periodic (q−1)×(q−
1) DDC with period (q−1, q−1) and density (q−2)/(q−1)2.

Indeed, each (q− 1)× (q− 1) sub-array of A is a DDC with
q − 2 dots; exactly one row and one column are empty. The
(q − 2)× (q − 2) sub-array with lower left corner at A(1, 1)
is a Costas array.

If we take α = β in the Golomb construction, then the
construction is known as the Lempel Construction. There are
various variants for these two constructions resulting in Costas
arrays with orders slightly smaller (by 1, 2, 3, or 4) or larger
by one than the orders of these two constructions (see [24],
[26]). These are of less interest in our discussion, as they do
not extend to doubly periodic arrays in an obvious way.

B. Constructions from Golomb rectangles

A Golomb rectangle is an n× k DDC with m dots; Costas
arrays are a special case. Apart from constructions of spe-
cial cases, there is essentially one other general construction
known, the folded rulers construction due to Robinson [38].
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Folded Ruler Construction:
Let S = {a1, a2, · · · , am} ⊆ {0, 1, . . . , n} be a Golomb

ruler of length n. Let ` and k be integers such that `·k 6 n+1.
Define A to be the `× k array where A(i, j), 0 6 i 6 k − 1,
0 6 j 6 `− 1, has a dot if and only if i · `+ j = at for some
t.

Theorem 21. The array A of the Folded Ruler Construction is
an `× k Golomb rectangle.

We now show how to adapt the Folded Ruler Construction
to obtain a doubly periodic `×k DDC. We require a stronger
object than a Golomb ruler as the basis for our folding
construction, defined as follows.

Definition 5. Let A be an abelian group, and let D =
{a1, a2, . . . , am} ⊆ A be a sequence of m distinct elements
of A. We say that D is a B2-sequence over A if all the sums
ai1 + ai2 with 1 6 i1 6 i2 6 m are distinct.

For a survey on B2-sequences and their generalizations the
reader is referred to [35]. The following lemma is well known
and can be readily verified.

Lemma 22. A subset D = {a1, a2, . . . , am} ⊆ A is a B2-
sequence over A if and only if all the differences ai1 − ai2 with
1 6 i1 6= i2 6 m are distinct in A.

So, in particular, a Golomb ruler is exactly a B2-sequence
over Z. Note that a B2-sequence {a1, a2, . . . , am} over Zn
produces a Golomb ruler {b1, b2, . . . , bm} whenever the bi are
integers such that ai ≡ bi mod n. Also note that if D is a
B2-sequence over Zn and a ∈ Zn, then so is the shift a+D =
{a + d : d ∈ D}. The following theorem, due to Bose [10],
shows that large B2-sequences over Zn exist for many values
of n.

Theorem 23. Let q be a prime power. Then there exists a B2-
sequence a1, a2, . . . , am over Zn where n = q2−1 andm = q.

The Doubly Periodic Folding Construction:
Let n be a positive integer and D = {a1, a2, . . . , am} be a

B2-sequence in Zn. Let ` and k be integers such that `·k 6 n.
Let A be the square grid. For any integers i and j, there is a
dot in A(i, j) if and only if at ≡ i · `+ j (mod n) for some
t.

Theorem 24. LetA be the array of the Doubly Periodic Folding
Construction. ThenA is a doubly periodic `×k DDC of period
( n
g.c.d.(n,`) , n) and density m/n.

Proof: Let f(x, y) = x · `+ y. The period of A follows
from the observation that for each two integers α and β we
have f(i, j) = f(i+α n

g.c.d.(n,`) , j+ βn) ≡ i · `+ j (mod n).
The density of A is m/n follows since there are exactly m
dots in any n consecutive positions in any column.

Let S be an `× k sub-array, whose lower left-hand corner
is at A(i, j). An alternative construction of the dots in S is as
follows. Take the shift (i ·`+j)+D of D, which is also a B2-
sequence in Zn. Let D′ be the corresponding Golomb ruler

in {0, 1, . . . , n − 1}, so a ∈ D if and only if a ≡ b mod n,
where b ∈ (i · `+ j) +D. Then form dots in S by using the
Folded Ruler Construction. Hence, by Theorem 21, the dots
in S form a DDC and so the theorem follows.

The following slightly different construction also produces
doubly periodic Golomb rectangles.

The Chinese Remainder Theorem Construction:
Let n be a positive integer and let D = {a1, a2, . . . , am}

be a B2-sequence in Zn. Let n = ` · k be any factorization of
n such that g.c.d.(`, k) = 1. For any two integers i and j we
place a dot in A(i, j), if and only if at = (i ·`+j ·k) (mod n)
for some t.

Theorem 25. Let A be the array constructed by the Chinese
Remainder Theorem construction. Then A is a doubly periodic
` × k DDC of period (k, `) and density m/n. Moreover, every
`× k sub-array of A contains exactly m dots.

Proof: Let f(x, y) = x · `+ y · k. For any two integers α
and β we have f(i, j) ≡ f(i+αk, j+β`) ≡ i·`+j ·k (mod n).
So the definition of A implies that A is doubly periodic with
period (k, `).

Since ` and k are relatively primes, it follows (from the
Chinese Remainder Theorem) that each integer s in the range
0 6 s 6 `·k−1, has a unique representation as s = d·`+e·k,
where 0 6 d 6 k− 1, 0 6 e 6 `− 1. Hence every `× k sub-
array of A has m dots corresponding to the m elements of the
B2-sequence D. In particular, this implies that A has density
m/n.

Assume for a contradiction that there exists an ` × k sub-
array S of A that is not a DDC. Suppose that the lower left-
hand corner of S is at A(i, j). The distribution of dots in
S is the same as the distribution in the sub-array with lower
left-hand corner the origin once we replace D by the shift
(i`+ j`) +D. So, without loss of generality, we may assume
that the lower left-hand corner of S lies at the origin. As the
distinct difference property fails to be satisfied, there are four
positions with dots in A of the form:

A(i1, j1) A(i1 + d, j1 + e)
A(i2, j2) A(i2 + d, j2 + e)

where i1, i1 + d, i2, i2 + d ∈ {0, 1, . . . , k − 1} and j1, j1 +
e, j2, j2 + e ∈ {0, 1, . . . , ` − 1}. By the definition of A we
have

(i1 + d)`+ (j1 + e)k − (i1`+ j1k) = d · `+ e · k
(i2 + d)`+ (j2 + e)k − (i2`+ j2k) = d · `+ e · k

Since by Lemma 22 each nonzero residue s modulo n has at
most one representation as a difference from two elements of
D, it follows that the pairs

{A(i1, j1),A(i1 + d, j1 + e)}
{A(i2, j2),A(i2 + d, j2 + e)}

are identical, and the theorem follows.
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VI. LOWER BOUNDS

A. Manhattan distance

In this section we will prove that there exists a DD(m, r)
with r√

2
− o(r) dots: this attains asymptotically the upper

bound of Theorem 9. We will see that this construction is
actually using folding in a slightly different way. We further
show that we can construct a doubly periodic array in which
each Lee sphere of diameter r is a DDC with r√

2
+ o(r) dots.

The LeeDD Construction:
Let r be an integer, and define R = b r2c. Let D =

{a1, a2, . . . , aµ} be a ruler of length n. Define f(i, j) =
iR+ j(R+1)+R2 +R. Let A be the Lee sphere of radius R
centred at (0, 0), so A has the entry A(i, j) if |i| + |j| 6 R.
We place a dot in A(i, j) if and only if f(i, j) ∈ D.

Theorem 26. The Lee sphere A of the LeeDD Construction is
a DD(m, r), where m =

∣∣D ∩ {0, 1, . . . , 2R2 + 2R}
∣∣.

Proof: We first note that if |i|+ |j| 6 R then the smallest
value that the function f takes is 0 and the largest value is
2R2 + 2R. Next, we claim that if (i1, j1) and (i2, j2) are two
distinct points such that |i1| + |j1| 6 |i2| + |j2| 6 R then
f(i1, j1) 6= f(i2, j2). Assume the contrary, that f(i1, j1) =
f(i2, j2). So i1R+ j1(R+1)+R2 +R = i2R+ j2(R+1)+
R2+R and therefore (i2−i1)R = (j1−j2)(R+1). If i1 = i2,
then j1 = j2 which contradicts our assumption that (i1, j1) and
(i2, j2) are distinct. So we may assume that i1 6= i2. Similarly,
we may assume that j1 6= j2. The equality (i2 − i1)R =
(j1− j2)(R+ 1) now implies that R+ 1 divides |i2− i1| and
R divides |j2−j1|. This implies that |i2−i1|+ |j2−j1| > 2R,
but

|i2 − i1|+ |j2 − j1| 6 |i1|+ |j1|+ |i2|+ |j2| 6 2R,

and so we have a contradiction. Thus, f(i1, j1) 6= f(i2, j2).
This implies that each one of the integers between 0 and
2R2 + 2R is the image of exactly one pair (i, j). In partic-
ular, the number m of dots in the configuration is exactly∣∣D ∩ {0, 1, . . . , 2R2 + 2R}

∣∣.
Since A is a Lee sphere of radius R, it follows that the

Manhattan distance between any two points is at most 2R 6 r.
Now, assume for a contradiction that A is not a DD(m, r), so
there exist four positions with dots in A as follows:

A(i1, j1) A(i1 + d, j1 + e)
A(i2, j2) A(i2 + d, j2 + e)

By definition we have that

f(i1, j1), f(i1 + d, j1 + e), f(i2, j2), f(i2 + d, j2 + e) ∈ D.

But then f(i1 + d, j1 + e) − f(i1, j1) = f(i1 + d, j1 + e) −
f(i1, j1) = dR+ e(R+ 1), contradicting the fact that D is a
ruler.

Thus, the Lee sphere A of the LeeDD Construction is a
DD(m, r).

Corollary 27 There exists a DD(m, r) in which m = r√
2
−

o(r).

24
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0

Fig. 7. Folding along diagonals

Proof: Define R = br/2c and let n = 2R2+2R+1. There
exists a ruler of length at most n containing m dots, where
m >

√
n+o(

√
n): see [4], [30], [40]. Let D ⊆ {0, 1, . . . , n−

1} be such a ruler. The corollary now follows, by Theorem 26.

It is worth mentioning that the LeeDD Construction is
actually a folding of the ruler by the diagonals of the Lee
sphere. Figure 7 illustrates why this is the case, by labelling
the positions in a Lee sphere of radius 3 by the values of
f(i, j) at these positions. So if we use a B2-sequence over
Zn instead of a ruler in the LeeDD Construction we obtain a
doubly periodic array with nice properties:

The Doubly Periodic LeeDD Construction:
Let r be an integer, R = b r2c, and let D = {a1, a2, . . . , aµ}

be a B2-sequence over Zn, where n > 2R2 + 2R + 1. Let
f(i, j) ≡ iR+ j(R+1) mod n. Let A be the square grid. For
each two integers i and j, there is a dot in A(i, j) if and only
if f(i, j) ∈ D.

Similarly to Theorem 26 we can prove the following result.

Theorem 28. The arrayA constructed in the LeeDD Construc-
tion is doubly periodic with period (n, n) and density µ/n. The
dots contained in any Lee sphere of radius R form a DDC.

Proof: The first statement of the theorem is obvious. The
second statement follows as in the proof of Theorem 26, once
we observe that f is an injection when restricted to any Lee
sphere of radius R.

In Subsections VI-D and VI-E we will make use of an
extension of this construction. For positive integers R and t,
an (R, t)-diagonally extended Lee sphere is a set of positions
in the square grid defined as follows. Let (i0, j0) ∈ Z2, and
define C = {(i0 + k, j0 + k) : 0 6 k 6 t − 1}. Then an
(R, t)-diagonally extended Lee sphere is the union of the Lee
spheres of radius R with centres lying in C. (See Fig. 8 for an
example.) An (R, t)-diagonally extended Lee sphere contains
exactly 2R2 + t(2R+1) positions; the Lee sphere of radius R
is the special case when t = 1. We observe that by choosing
n > 2R2 + t(2R+ 1), we can generalize the doubly periodic
LeeDD construction by continuing folding along the diagonals
of the rectangle. This yields the following corollary, which
will prove useful in the construction of configurations for the
hexagonal grid.

Corollary 29. Let a be positive, and let n be an integer such
that n > (2 + 2a)R2 + aR. Consider the array A constructed
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Fig. 8. A (3,5)-diagonally extended Lee sphere

using the doubly periodic LeeDD Construction. Then A is a
doubly periodic array with density µ/n. The dots contained in
any (R, baRc)-diagonally extended Lee sphere form a DDC.
There exists a family of B2 sequences so that A has density at
least 1/

√
(2 + 2a)R2 + o(R2).

Proof: To establish the final statement of the corollary,
we choose a family of B2 sequences as follows. Let p be
the smallest prime such that p2 − 1 > (2 + 2a)R2 + aR,
and define n = p2 − 1. By Ingham’s classical result [29] on
the gaps between primes, we have that n 6 (2 + 2a)R2 +
O(R13/8) = (2+2a)R2+o(R2). By Theorem 23, there exists
a B2 sequence over Zn with µ = p. Hence the density of A
is

µ/n = p/(p2 − 1) > 1/
√

(2 + 2a)R2 + o(R2),

as required.

B. A General Technique

Let S be a shape (a set of positions) in the square grid. We
are interested in finding large DDCs contained in S, where (for
example) S is an anticode. This subsection presents a general
technique for showing the existence of such DDCs, using the
doubly periodic constructions from Section V.

We write (i, j) + S for the shifted copy {(i + i′, j + j′) :
(i′, j′) ∈ S} of S. Let A be a doubly periodic array. We
say that A is a doubly periodic S-DDC if the dots contained
in every shift (i, j) + S of S form a DDC. So the doubly
periodic arrays constructed in Section V are all doubly periodic
S-DDCs where S is a square or a rectangle; the arrays in
Theorem 28 and Corollary 29 are doubly periodic S-DDCs
with S a Lee sphere and diagonally extended Lee sphere
respectively. The following lemma follows in a straightforward
way from our definitions:

Lemma 30. Let A be a doubly periodic S-DDC, and let S ′ ⊆
S. Then A is a doubly periodic S ′-DDC.

We will use doubly periodic DDCs to prove the existence
of the configurations we are most interested in, using the
following theorem.

Theorem 31. Let S be a shape, and let A be a doubly periodic
S-DDC of density δ. Then there exists a set of at least dδ|S|e
dots contained in S that form a DDC.

Proof: Let the period of A be (η, κ). Write mi,j for the
number of dots of A contained in the shift (i, j) + S of S.

Now A is periodic, so the definition of the density of A shows
that

η∑
i=1

κ∑
j=1

mi,j = (ηκ)δ|S|.

Hence the average size of the integer mi,j is δ|S|, so there
exists an integer mi′,j′ such that mi′,j′ > dδ|S|e. The mi′,j′

dots in (i′, j′)+S form a DDC, by our assumption on A, and
so the appropriate shift of these dots provides a DDC in S
with at least dδ|S|e dots, as required.

C. Euclidean distance in the square model

This subsection illustrates our general technique in the
square grid using Euclidean distance. So we wish to construct
a DD(m, r) with m as large as possible.

Let R = br/2e, and let S be the set of points in the square
grid that are contained in the Euclidean circle of radius R
about the origin. We construct a DDC contained in S with
many dots: any such configuration is clearly a DD(m, r) for
some value of m. The most straightforward approach is to find
a large square contained in S (which will have sides of length
approximately

√
2R), and then add dots within this square

using a Costas array. This will produce a DD(m, r) where

m =
√

2R− o(R) = 1√
2
r − o(r) ≈ 0.707r.

To motivate our better construction, we proceed as follows. We
find a square of side n where n >

√
2R that partially overlaps

our circle: see Figure 9. The constructions of Section V show
that there exist doubly periodic n×n DDCs that have density
approximately 1/n. So Theorem 31 shows that for any shape
S ′ within the square, there exist DDCs in S ′ that have at least
|S ′|/n dots. Let S ′ be the intersection of our square with S.
Defining θ as in the diagram, some basic geometry shows that
the area of S ′ is

|S ′| = (π/2)− 2θ + sin 2θ
2 cos2 θ

|S| = 2R2((π/2)− 2θ + sin 2θ).

Since n = 2R cos θ, Theorem 31 shows that the density of
dots within S ′ can be about 1/n = 1/(2R cos θ) when n is
large. So we can hope for at least µR dots, where µ is the
maximum value of

((π/2)− 2θ + sin 2θ)/ cos θ

on the interval 0 6 θ 6 π/4. In fact µ ≈ 1.61589, achieved
when θ ≈ 0.41586 (and so when n = r cos θ = cr, where
c ≈ 0.914769).

Theorem 32. Let µ be defined as above. There exists a
DD(m, r) in which m = (µ/2)r − o(r) ≈ 0.80795r.

Note that Theorem 15 gives an upper bound on m of the form
m 6 (

√
π/2)r + o(r) ≈ 0.88623r.

Proof: Define c ≈ 0.91477 as above. Let q be the
smallest prime power such that q > cr. We have that
cr < q < cr + (cr)5/8, by a classical result of Ingham [29]
on the gaps between primes; so in particular q ∼ cr. By
Theorem 20, there exists a doubly periodic (q − 1)× (q − 1)
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Fig. 9. Square intersecting a circle

︸ ︷︷ ︸
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r−1
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⌉

Fig. 10. A diagonal rectangle intersecting the image of a hexagonal sphere

DDC A of density (q − 2)/(q − 1)2. Let S ′ be the inter-
section between S and a Euclidean circle of radius br/2c
about the origin. Then A is a doubly periodic S ′-DDC. By
Theorem 31, there exists a DDC in S ′ with at least m dots,
where |S ′|(q−2)/(q−1)2. But the geometric argument above
shows that |S ′|(q−2)/(q−1)2 ∼ (µ/2)r, and so the theorem
follows.

D. Hexagonal distance

By representing the hexagonal anticodes in the square grid,
we may use Theorem 31 to show the existence of a DD

∗
(m, r)

where m is large. The method of producing lower bounds is
essentially the same as above, but the geometrical problem
we are solving is different, with the images under ξ of the
maximal anticodes Ai replacing the circle, and the DDC
contained a diagonally extended Lee sphere of Corollary 29
replacing the Costas array contained in a square. Here we
consider the case of configurations contained in the hexagonal
sphere Ad(r−1)/2e; the cases of the other anticodes may be
handled in a similar fashion. The problem we are solving
is pictured in Fig. 10. The figure shows the image under ξ
of the hexagonal sphere of radius R = br/2c in bold; the
square of side 2R + 1 containing this image is also shown.
The hexagonal sphere contains a Lee sphere of radius R with
the same centre; the region S we consider is the (R, baRc)-
diagonally extended Lee sphere whose mid-point is at the

2t

√
2at 2t

√
3t

t

at

Fig. 11. A (t, batc)-diagonally extended Lee sphere is transformed into a
rotated square (when at = (

√
3− 1)t + 1)

centre of the hexagonal sphere: see Fig. 10. Let S ′ be the
intersection of S with the image of the hexagonal sphere. We
have that |S ′| = R2(2 + 2a− a2) + o(R2). By Corollary 29,
there is a doubly periodic S-DDC of density at least 1/

√
n

where n = 2R2(1+a)+ o(R2). Thus Theorem 31 shows that
there is a DDC contained in S ′ containing µR − o(R) dots,
where µ is the maximum of

2 + 2a− a2

√
2
√

1 + a
.

It can be seen that µ =
(

2
3

) 3
2 1+2

√
7√

2+
√

7
≈ 1.58887, achieved

when a = −1+
√

7
3 . Since S ′ is contained in a hexagonal sphere

of radius R, all pairs of dots in our DDC are at hexagonal
distance at most r. Thus we have the following theorem:

Theorem 33. Let µ be defined as above. There exists a
DD
∗
(m, r) in which m = (µ/2)r − o(r) ≈ 0.79444r.

E. Euclidean distance in the hexagonal model

In this subsection we will obtain a construction for a
DD∗(m, r) contained within a circle of radius R = br/2c,
again based on the doubly periodic LeeDD construction. We
first observe that a diagonally extended Lee sphere in the
square grid is transformed by ξ−1 into a (rotated) rectangle
in the hexagonal grid. In particular, a (t, b(

√
3 − 1)t + 1c)-

diagonally extended Lee sphere is transformed by ξ−1 into
a set of hexagons whose centres all lie within a (rotated)
square S of side

√
3 t (see Fig. 11). Corollary 29 shows that

there is a doubly periodic S-DDC with density 1/
√
n, where

n = 2
√

3t2 + o(t2).
Consider (see Fig. 12) a circle of radius R and a square S

of side s where s = 2R cos θ. Since a hexagon has area
√

3/2,
the square S contains (8/

√
3)R2 cos2 θ+O(R) hexagons. Let

S ′ be the intersection of S with the circle of radius R. The
calculations in Subsection VI-C show that

|S ′| = (π/2− 2θ + sin 2θ)
2 cos2 θ

|S|+O(R).

The previous paragraph shows that there is an periodic S ′-
DCC of density δ = 1/

√
n, where n = (2/

√
3)s2 + o(s2). So

Theorem 31 now implies that there exists a distinct difference
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θ

R

Fig. 12. Rotated square intersecting a circle

TABLE I
UPPER AND LOWER BOUNDS ON THE NUMBER OF DOTS IN A DISTINCT

DIFFERENCE CONFIGURATION

lower bound upper bound

DD(m, r) (1/
√

2)r − o(r) (1/
√

2)r + O(r2/3)

DD(m, r) 0.80795r − o(r) 0.88623r + O(r2/3)

DD
∗
(m, r) 0.79444r − o(r) 0.86603r + O(r2/3)

DD∗(m, r) 0.86819r − o(r) 0.95231r + O(r2/3)

configuration in S ′ containing at least m dots, where

m =

√
2√
3
(π/2− 2θ + sin 2θ)

cos θ
R− o(R).

As in Subsection VI-C, we may take θ ≈ 0.41586 to maximise
this expression. Hence we have proved the following theorem:

Theorem 34. Let µ ≈ 1.61589 be the constant defined above
Theorem 32. There exists a DD∗(m, r) in which the number of
dots is at least

√
2√
3
µR− o(R) ≈ 0.86819r.

VII. CONCLUSION

We introduced the concept of a distinct difference config-
uration and gave specific examples for both the square and
hexagonal grids for small parameters. We went on to provide
general constructions for such configurations, as well as upper
and lower bounds on the maximum number of dots such
configurations may contain. In the case of distinct difference
configurations using Manhattan distance these bounds are
tight asymptotically, as we have provided a construction for
configurations which meets the leading term in our upper
bound. For the remaining classes of configurations, there is
a gap between the upper and lower bounds we have provided
(see Table I). We believe the upper bounds to be realistic, and
it is an interesting challenge to provide constructions that meet
these bounds.
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