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Abstract

Secret sharing schemes are cryptographic primitives for distributing shares of a secret
amongst a set of entities in such a way that only certain coalitions can reconstruct the
secret from their shares. Secret sharing schemes are highly versatileprimitives that are par-
ticularly useful in applications where there is no single point of trust. Traditionally, secret
sharing schemes are studied in an environment where there is a trusted dealer who initiates
the scheme, passive adversaries who do not manipulate shares, and participants who either
co-operate or do not co-operate in a reconstruction attempt. These assumptions are rea-
sonable in some situations, but do not necessarily map comfortably onto many application
environments. In this paper we review work on secret sharing schemes where one or more
of these assumptions is challenged.

1. Introduction

A secret sharing schemeis a method of distributing asecretamongst a set ofparticipantsby
giving each participant asharein such a way that only certain specified subsets of participants
(defined by theaccess structureΓ) can reconstruct the secret from a pooling of their shares.
Secret sharing schemes are highly versatile cryptographicprimitives and, as a result, have been
employed in a vast range of different applications including protection of cryptographic keys,
access control, key recovery mechanisms, electronic voting, distributed certificate authorities,
online auctions and secure multiparty computation. They are also objects of inherent mathe-
matical interest and have also been researched as such.

The access structure of a secret sharing scheme normally partitions the set of all subsets
of participants intoauthorised setswho are able to recover the secret andunauthorised sets
who can not. (Some schemes feature a third class of subsets who are neither authorised or
unauthorised.) The two fundamental properties of a secret sharing scheme are thus:

1



1. Privacy: Unauthorised subsets of participants should be preventedfrom learning the se-
cret.

2. Recoverability: Authorised subsets of participants should be able to recover the secret by
pooling their shares.

Secret sharing schemes also involve two functionalities that are, in many cases, carried out by
a dedicated entity. Thedealeris normally responsible for generating system parameters,gener-
ating the secret, creating initial shares and sending initial shares to participants. Thecombiner
is responsible for pooling shares and reconstructing the secret. The dealer is normally a fully
trusted third party, while the combiner is often left unspecified (but can be a third party or even
one of the participants).

Most secret sharing schemes feature amonotoneaccess structureΓ, which has the property
that if A ∈ Γ then all supersetsA′ of A are also inΓ. Where the access structure consists of all
subsets ofn participants of at least sizek, the secret sharing scheme is normally referred to as
a (k, n)-threshold scheme.

This article is not intended to be a tutorial on secret sharing schemes (although we provide a
very basic primer). We recommend established review articles such as [37] for a more detailed
mathematical treatment of the basics. The purpose of this article is to present an overview
of research in one area of secret sharing, namely secret sharing under different adversarial
models. We will explain these different adversarial modelsand provide pointers to the extensive
literature on this subject, so that interested researcherscan pursue this topic in greater detail.

The organisation of the remainder of the article is as follows. In Section 2, we present
the “traditional” model for secret sharing schemes. In Section 3, we note the limitations of
the traditional adversarial model. In the remaining sections, we review research results for a
number of different adversarial models and discuss the extent to which these, at least in part,
overcome the limitations of the traditional case.

2. Traditional secret sharing

Traditionally, secret sharing schemes have been studied inan information-theoreticsecurity
model, where the security is independent of the computing capabilities of an adversary. This
can however be relaxed and some schemes have been defined forcomputationally securemodels
where the scheme relies on the difficulty of a mathematical problem. The information-theoretic
security model permits a notion ofperfectprivacy. In aperfectsecret sharing scheme, unautho-
rised sets do not learn any information about the security via their shares.

The most famous perfect secret sharing scheme is the(k, n)-threshold scheme first proposed
by Shamir in 1979 and hereafter referred to as aShamirthreshold scheme [35]. The idea behind
this construction is simple and elegant. A Shamir(k, n)-threshold scheme is defined overZp.
Each participantPi is associated with a unique non-zeroxi (which is not secret). If the secret
is s, the dealer randomly chooses a polynomialf(x) of degree at mostk − 1 defined overZp

such thatf(0) = s. The dealer then securely issues participantPi with sharef(xi). The Shamir
scheme has perfect privacy since knowledge ofk − 1 shares does not leak any information
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about the secrets. It also has recoverability since anyk participants can interpolate their shares
to recover the polynomialf(x) and hence the secrets.

There are numerous equivalent ways of modelling a general information-theoretically secure
secret sharing scheme:

• Information theory : By representing entities as probability distributions andmaking
statements about conditional entropy [15].

• Combinatorially : By defining a matrix of possible distribution rules [37].

• Algorithmically : As two algorithmsShareandReconstructand defining related proper-
ties.

The information theory model is useful because it can be effectively used to prove results about
the amount of information that needs to be stored by participants in a secret sharing scheme. The
most well-known result of this type is that in a perfect secret sharing scheme each participant
needs to store at least the amount of information that it takes to represent the secret. This leads
naturally to notions of secret sharing scheme efficiency. The information rateof a secret sharing
scheme is the ratio of the “size” of the secret over the “size”of the largest share. Schemes where
this rate is precisely one are optimal in this regard and referred to asideal.

The combinatorial secret sharing model is useful because itcan be used to classify certain
types of secret sharing scheme in the rich language of combinatorial mathematics. For example,
ideal threshold schemes are known to be equivalent to a number of well-studied combinatorial
objects that includeorthogonal arraysandmaximum distance separable codes[23].

The most studied examples of perfect secret sharing schemesfor general monotone access
structures arelinear secret sharing schemes. They are so-named because the secret can be com-
puted as a linear combination of any set of authorised shares. Linear secret sharing schemes can
be equivalently defined in terms of vector spaces [7], projective geometries [24], error correct-
ing codes [42] or monotone span programs [25]. A Shamir threshold scheme is an example of
a linear secret sharing scheme.

3. Changing the adversary model

The traditional secret sharing model makes the following important assumptions about the po-
tentially malicious behaviour of entities involved in the scheme (this behaviour is typically
modelled by the idea of anadversary):

• Trusted dealer: An adversary cannot corrupt the dealer, who is fully trusted.

• Passive: An adversary can capture shares, but otherwise the protocol is executed correctly
and shares are not corrupted.

• Polarised participants: Participants are either completely honest (follow the protocol)
or completely malicious (they have been captured by an adversary who will attempt to
subvert the protocol).
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Honest users Honest users Adversary
Section learn secret? alerted to cheating? learns secret?

Robust schemes Sec. 4 Yes Sometimes Yes
Cheater detection Sec. 5.1 No Yes Yes

Cheater identification Sec. 5.2 No Yes Yes
Almost robust (fairness) schemesSec. 6 Sometimes Yes Sometimes

Cheating immune Sec. 7 No No No

Table 1: Properties of schemes with respect to Tompa and Wollundesirable consequences

These assumptions are reasonable in some situations, but donot necessarily map comfort-
ably onto many application environments. In particular, they fall short of some of the high
security demands placed on computationally secure cryptographic primitives that are modelled
using provable security. A substantial amount of recent work on secret sharing schemes has
been devoted to looking at the problem of secret sharing in situations where one or more of
these assumptions is challenged. In particular, most of this work involvesactiveadversaries,
who are able to take full control of participants and corrupttheir shares.

3.1. The Tompa and Woll attack

The first challenge to this traditional secret sharing adversary model was a paper by Tompa and
Woll [41] which showed how an active adversary can exploit the Shamir threshold scheme (in
fact, this type of attack can be extended to any linear secretsharing scheme). They assessed the
impact of an active adversary who takes the form of a participant who maliciously submits a
false share during a reconstruction attempt. In other words, some participantPi submits a false
shareλi instead of a correct sharef(xi). This attack has several undesirable consequences:

1. it prevents the honest participants from learning the correct secret;

2. it fails to alert the other participants that they have notreconstructed the correct secret;

3. it allows the adversary to learn the correct secret (by exploiting knowledge off(xi)−λi).

In the next sections, we review a number of different proposals for overcoming the conse-
quences of the Tompa and Woll attack. Table 3.1 indicates which of these consequences are
addressed by which types of scheme.

3.2. Issues arising from new adversarial models

Changing the adversarial model (in particular moving from passive to active adversaries) for
secret sharing scheme raises a number of issues that are not apparent in the traditional model.
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3.2.1. WHO RECONSTRUCTS SHARES?

The recoverability property of a traditional secret sharing scheme simply states that in the pres-
ence of a set of shares corresponding to an authorised set it will be possible to reconstruct the
secret. It does not place demands on preciselywho will perform this reconstruction. This is
normally assumed either to be one of the participants themselves or a third party entity (which
could correspond to the participants collectively reconstructing the secret themselves “in the
open”). The difference is often abstracted away by referring to acombiner, who could be either
of these.

If, however, we change the traditional adversarial model toconsider adversaries who can
corrupt shares, then the identity of the combiner becomes important. This is because if the
combiner is a participant then (assuming a trusted dealer) they will always know at least one
valid share, whereas if the combiner is a third party entity then they will not. In [3], these two
cases are referred to as recovery by anuncorrupted playeror by anexternal party.

3.2.2. ARE SHARES REVEALED DURING RECONSTRUCTION?

Likewise, in the traditional secret sharing model the issueof whether shares are revealed to the
participants during a reconstruction attempt is not explicitly addressed. When considering more
adventurous adversaries, it can be important to distinguish betweenopen reconstructions, where
shares are revealed, andclosed reconstructions, where they are not. Note that a reconstruction
can be open or closed, regardless of who is playing the role ofthe combiner.

3.2.3. ARE ADVERSARIES STATIC OR DYNAMIC?

The traditional secret sharing scheme model does not explain how an adversary might behave
but only the consequences of the adversary gaining knowledge of sets of shares. If we move
to more general adversarial settings, then it can become important to distinguish between the
static adversarycase where the adversary captures a particular fixed set of participants (shares),
and thedynamic adversarycase where the adversary can choose which participants to capture
one by one, as it learns their shares.

3.2.4. WHAT ARE THE GOALS OF AN ADVERSARY?

With respect to privacy, in all secret sharing schemes an adversary wishes to learn information
about the secret, perhaps through learning information about shares. However with respect to
recoverability, the goals of different types of secret sharing schemes vary quite subtly. In the
traditional model, the passive adversary can only engage inshare capture and hence they can
only try to prevent reconstruction of the secret through withholding shares. For each of the
different types of secret sharing schemes, we will begin by identifying the main recoverability
goals of an adversary.
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4. Robust secret sharing schemes

Robust secret sharingis a term that is commonly used to describe schemes where, even if some
participants submit incorrect shares, the correct secret can still be recovered.

4.1. Bellare and Rogaway’s classification

Bellare and Rogaway [3] observed that the idea of robust secretsharing had been studied within
a number of different models. They thus proposed a unifying framework for secret sharing
schemes that maintain a trusted dealer and polarised participants, but for which the share capture
only assumption can be relaxed.

This framework identifies three different meaningful levels of privacy (we omit their fourth
category ofno privacy):

• Perfect(PSS): no information is revealed about the secret, independentof the computing
power of an adversary (the traditional notion of privacy);

• Statistical(SSS): a small amount of information is potentially revealed about the secret,
independent of the computing power of an adversary (this corresponds to the traditional
secret sharing scheme model when a scheme is not perfect);

• Computational(CSS): the secret is protected from an adversary with “reasonable” com-
puting resources (computationally secure schemes).

The framework further identifies nine different levels of recoverability. These are identified by
specifying:

• The extent to which an adversary can prevent an authorised set of honest participants from
reconstructing the secret. This can either be:

– PR: an authorised set of honest participants cannot be prevented from reconstructing
the secret, independent of the computing power of an adversary (which is the case
in the traditional notion of recoverability);

– SR: an authorised set of honest participants can only be prevented from reconstruct-
ing the secret with a small probability, independent of the computing power of an
adversary;

– CR: an authorised set of honest participants can reconstruct the secret in the presence
of an adversary with “reasonable” computing resources.

• The extent to which an adversary can corrupt shares. Adversaries can either be classified
as:

– Erasure(0): an adversary cannot corrupt shares (only view them and prevent them
being used in a reconstruction attempt, which is the case in the traditional notion of
recoverability);
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– Recoverability-1(1): an adversary can corrupt all shares except one (this corre-
sponds to the case where the combiner is an honest participant - see Section 3.2.1);

– Recoverability(2): an adversary can corrupt all shares (this corresponds to the case
where the combiner is a third party - see Section 3.2.1).

Note that erasure and recoverability-1 adversaries are special cases of recoverability ad-
versaries.

This framework accommodates 27 different cases, dependingon the levels of privacy and
recoverability, each of which defines a type of secret sharing scheme with a trusted dealer.
These are labelled using the framework abbreviations. We have already mentioned three of
these types;

• PSS-PR0: this corresponds to traditional perfect secret sharing schemes of Section 2;

• SSS-PR0: this corresponds to traditional non-perfect secret sharing schemes;

• CSS-PR0: this corresponds to the computationally secure secret sharing schemes.

4.2. Robust constructions

Recall that traditional ideal(k, n)-threshold schemes have a rich combinatorial structure andcan
be classified in a number of ways, including as maximum distance separable codes. Further,
such schemes (but not all of them) can be linear, with Shamir’s scheme as the most famous
example of this.

Tompa and Woll’s attack of Section 3.1 shows that in general traditional ideal(k, n)-threshold
schemes are not secure in the presence of share-corrupting adversaries, however in certain cases
limited degrees of robustness are possible:

• Tompa and Woll’s attack is most devastating when the underlying threshold scheme is
linear, since in this case the adversary who has corrupted upto k − 1 participants can
not only prevent honest participants from obtaining the secret, but can also recover the
correct secret, even during a closed reconstruction attempt. If the underlying scheme is
non-linear, then the adversary can still disrupt honest recovery, however with respect to
the recovering the secret:

– during a closed reconstruction attempt, they may not be ableto obtain the correct
secret from this attack (since they will not know the honest shares);

– during an open reconstruction attempt, they will be able to obtain the correct secret
from this attack (since they will know a threshold of honest shares).

• It was first noted in [27] that in a linear ideal(k, n)-threshold scheme ifl > k participants,
where at mostl − k are corrupt, attempt a recovery then the presence of corruptshares
will be detected. It follows immediately from the combinatorial classification of ideal
schemes as MDS codes that this also holds for non-linear schemes (since the submitted
shares will be “inconsistent”). However this does not deliver full robustness since it may
not be possible to determine the correct secret.
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• However it was also noted in [27] that in a linear ideal(k, n)-threshold scheme ifl > k
participants, where at most(l − k)/2 are corrupt, attempt a recovery, then the corrupt
shares can be identified and corrected, providing a type of robust PSS-PR2 scheme. It
was observed in [32] that this also extends to non-linear schemes.

• Tompa and Woll [41] proposed a method of adapting traditional (k, n)-threshold schemes
to make them robust. This required a massive increase in share size and multiple rounds
(each of which involves a reconstruction attempt of a different(k, n)-threshold scheme).
While fairly impractical, this scheme is an example of a robust PSS-SR1 secret sharing
scheme. (As observed in [3] this is more than just SR1, since itis also simultaneously a
PSS-PR0 scheme.)

5. Detecting and identifying cheaters

Recall the Tompa and Woll attack described in Section 3.1 and its three undesirable outcomes.
Robust secret sharing schemes overcome this attack by eliminating the first of these outcomes
and allowing successful recovery of the secret in the presence of an adversary who can corrupt
shares. Solutions of this type are fairly heavy-handed and so it is worth considering weaker
approaches which might be just as effective in certain application environments. We discuss
two such approaches here:

1. Secret sharing schemes with cheater detectionallow honest participants to detect any
corrupt shares that have been submitted by an adversary.

2. Secret sharing schemes with cheater identificationallow honest participants to detect and
identify any corrupt shares that have been submitted by an adversary.

Secret sharing schemes with cheater identification (detection):

• Assume a trusted dealer.

• Honest participants are willing to sacrifice recovery of thesecret if an adversary corrupts
shares, so long as corrupt shares are identified (detected).

• The main recoverability goal of the adversary is to prevent the correct secret from being
reconstructed while remaining unidentified (undetected).

• Potentially allow the adversary to obtain the correct secret while the honest participants
do not.

It is widely noted that addressing these problems in computationally-secure environments
could be handled by using mechanisms such as digital signatures. Thus the bulk of research
on these types of secret sharing schemes has concentrated onthe information-theoretic environ-
ment. This capability, not surprisingly, comes at a cost. This cost is typically that the schemes:

• Have large shares: Each participant is equipped with extra information that allows him
to recognise malicious behaviour.
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• Require extra cooperation: Need more than a minimum coalition of participants to co-
operate in a recovery attempt.

5.1. Secret sharing schemes with cheater detection

The weakest approach is just to require detection of malicious behaviour. Indeed Tompa and
Woll [41] proposed a (fairly expensive) fix for their attack (see Section 3.1) that does precisely
this. We also observed in Section 4.2 that an ideal(k, n)-threshold scheme can detectt cheating
participants ifk + t participants (at mostt of whom are cheating) collaborate. As noted for
cheater correction, this is more cooperation than the scheme was originally designed to support.

In [10], it was shown that in order to restrict the probability of an adversary who has cor-
ruptedk − 1 shares (and wants to deceive an honest participant) from escaping detection toε,
in a perfect(k, n)-threshold scheme, it is necessary to increase the lower bound on each par-
ticipant’s share size|Si| from |S| (in traditional perfect secret sharing schemes) to|S|

ε
. This

bound was derived under the (perhaps unlikely) assumption that the adversary somehow knows
the correct secret before they commence their attempt to deceive the honest participant. We
will describe schemes that provide cheater detection underthis assumption asinformedand the
more likely situation that cheating participants do not know the secret asuninformed. Note
that such schemes have been rather ambiguously defined asrobustandsecurein some of the
previous literature such as [9], and cryptically as being based on theCDV assumptionand the
OKS assumptionin the likes of [29].

In [30], the bound for informed schemes was improved to:

|Si| ≥
|S| − 1

ε2
+ 1,

and a bound for uninformed schemes was given as:

|Si| ≥
|S| − 1

ε
+ 1.

A family of uninformed(k, n)-threshold schemes with cheater detection probabilityε = 1/|S|
was then constructed using combinatorial objects calleddifference setsthat meet the uninformed
bound. Both these bounds easily generalise to perfect secretsharing schemes that are not thresh-
old schemes, in which case rather than being concerned with up to k − 1 adversaries, we are
concerned with adversaries of the formA \ {P} (whereA is a minimal authorised set and
P ∈ A) trying to cheat participantP .

Two generic techniques were given in [9] that allow a linear secret sharing scheme for any
access structure to be converted into a secret sharing scheme that can detect cheating partici-
pants.

• To construct an informed scheme, each participant is given three separate shares:

1. a share of the real secretk;

2. a share of a random valuer;

3. a share of the productkr.
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During a recovery attempt, all three values are recovered and it is checked whether the
third secret is the product of the first two.

• To construct an uninformed scheme, each participant is given two separate shares:

1. a share of the real secretk;

2. a share of the squarek2 of the real secret.

During a recovery attempt, both values are recovered and it is checked whether the second
is the square of the first.

As for the scheme of [30], in each of these cases the chances ofcheating participants getting
past the check is1/q, whereq = |S|. The equivalent share size bounds from [30] for these
cases areq3 − q2 + 1 andq2 − q + 1. Thus with share sizes ofq3 andq2, the generic schemes
of [9] are close to optimal.

An alternative technique for building informed schemes that are secure against cheating for
any access structure was proposed in [29] (and later corrected in [2]) which involves using a
linear secret sharing scheme to issue each participant witha share of the genuine secret and a
share of the key of a class of universal hash functions. Both the secret and the key are recon-
structed and the latter is used to check the validity of the former. Two schemes are proposed.
The first scheme has the same parameters to the informed scheme in [9]. The second scheme
has the attractive property that it is configurable in the sense that the share size can be traded
off against the cheating probability (unlike the previous schemes which fix this atε = 1/|S|).
More precisely, for|S| = pN , the second scheme hasε = (N + 1)/p and|Si| = pN+2. While
this scheme does not meet the bound of [30], such schemes perform considerably better than
any previous schemes for cases whereε > 1/|S|.

Note that the schemes of [9] and [29] have an advantage over the scheme of [30] in that they
work for arbitrary probability distributions on the secret(whereas the scheme of [30] requires
this distribution to be uniform).

All the schemes discussed thus far in this section assume that the adversary controls at most
k−1 shares of a(k, n)-threshold scheme. An adversary in control of at leastk shares is powerful
enough to obtain the secret on its own, however it is argued in[1] that they might still wish to
fool another shareholder into believing that the secret is adifferent value. An informed scheme
(and any scheme under these conditions is informed by default) is proposed in [1] that involves
giving each participant a share in two Shamir(k, n)-threshold schemes plus a random number,
where the random numbers serves as a “secret identity” and isused as the participant’sxi value
in the second Shamir scheme.

5.2. Secret sharing schemes with cheater identification

A stronger alternative to countering the effectiveness of malicious participants is to build in a
mechanism that, with high probability, identifies any participants who submit incorrect shares
during a secret reconstruction attempt.
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As observed in Section 4.2, an ideal(k, n)-threshold scheme can identifyt cheating partici-
pants, but only ifk + 2t participants (at mostt of whom are cheating) collaborate. This is more
cooperation than the scheme was originally designed to support.

All the bounds proven for share size of schemes that provide cheater detection clearly
also apply to those with cheater identification. However theknown constructions for schemes
with cheater identification capability have significantly larger shares than these bounds. In the
schemes of [33] and [8], shares are of size|S|f(n) for a linear function of the number of partic-
ipantsn. In [26], a perfect(k, n)-threshold scheme was exhibited that fork ≥ 3t + 1 allowsk
participants to identify up tot cheaters and has the property that:

|Si| ≥
|S|

εt+2
,

whereε is the probability that up tot cheaters fail to be detected.

6. Almost robust secret sharing

It is noted in [22] that a(k, n)-threshold scheme that can identifyr < k/2 cheaters can be
used to create an “almost robust”(k, n)-threshold scheme that allows the honest participants to
obtain the secret under certain circumstances. A generalised version of this conversion works
by giving each participant one share in a(k, n)-threshold scheme that can identifyr cheaters
with secretk1, and one share in a(k − r, n)-threshold scheme that can identifyr cheaters with
secretk2. The real secrets = k1 ⊕ k2. During a reconstruction attempt:

1. Participants submit their first shares and they are checked for the presence of cheaters
(technically it suffices that a scheme with cheaterdetectionis used for this stage). If
cheaters are noted, then recovery is aborted.

2. If no cheaters are noted in the first stage, participants submit their second shares and they
are checked for the presence of cheaters. Even ifr cheaters are identified, thek−r honest
participants can still recoverk2.

3. The secrets is computed fromk1 andk2.

This scheme, which was termed afairnesssecret sharing scheme in [22], is “almost” a PSS-SR1
robust scheme. The reason that it is “almost” is that if the adversary decides to cheat during the
first stage, then recovery is aborted and so nobody succeeds in reconstructing the secret.

7. Cheating immune secret sharing

Cheating immune secret sharing schemesare secret sharing schemes which adopt a subtly dif-
ferent approach to addressing the problem of adversaries who can corrupt shares. The idea
behind cheating immune secret sharing is to remove the benefit to an adversary of submitting
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corrupted shares, thus reducing the incentive of an adversary to attack the scheme solely to one
of disruption without personal gain. Cheating immune secretsharing schemes:

• Assume a trusted dealer.

• Assume a third party (external) combiner.

• Honest participants are willing to sacrifice recovery of thesecret if an adversary corrupts
shares, so long as the adversary does not as a result have an advantage over the honest
participants with respect to recovery of the genuine secret.

• The main recoverability goal of the adversary is to have moreknowledge about the secret
than a set of honest participants.

• If an adversary submits corrupted shares, then nobody obtains the secret.

Cheating immune secret sharing schemes were first proposed in[43]. An information-
theoretic setting was adopted and two notions were proposed: t-cheating immuneif an adver-
sary who submitst incorrect shares gains no advantage and a more generalstrictly t-cheating
immuneif an adversary who submitsup tot incorrect shares gains no advantage. They were sub-
sequently investigated in greater depth in [13], where somecombinatorial properties of cheating
immune schemes were proven, it was shown that cheating immune secret sharing schemes can-
not be perfect, it was proven thatt-cheating immune(n, n)-threshold scheme must havet < n/2
and some constructions were given. By classifying cheating immune secret sharing schemes in
terms of resilient functions, this bound is slightly improved in [6].

However the current research on cheating immune secret sharing schemes is very limited in
scope since all schemes investigated thus far;

1. are(n, n)-threshold schemes;

2. have the secret and shares chosen from the same set (in thissense they are ideal but not
perfect).

Using the notation of Section 4.1, the cheating immune secret sharing schemes studied to date
would be classified as having SSS privacy and operate under recoverability (2) adversaries.
However, they are not robust schemes since an adversary can prevent reconstruction of the
secret.

8. Rational secret sharing

Rational secret sharingmodels a scenario which involves:

• a trusted dealer;

• open reconstruction;

• participants are neither completely honest nor completelymalicious.
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With respect to the last property, the participants are described asrational because they gener-
ally want to recover the secret (this is their top priority) but will take the opportunity to cheat
if it is in their interest (in particular they would prefer asfew people to know the secret as pos-
sible). It is observed that in a traditional(t, n)-threshold scheme a good “rational” strategy for
a participant is to wait fort − 1 other participants to reveal their share. The participant then
withholds its share and learns the secret, while thet − 1 who revealed their shares remain one
share short. The rational secret sharing scheme proposed in[19] involves a number of rounds
controlled by a dealer. In each round the dealer either:

1. with probabilityβ generates shares of a(t, n)-threshold scheme protecting the genuine
secrets ∈ S,

2. with probability1 − β generates shares of a(t, n)-threshold scheme protecting a random
secrets′ ∈ S ′ \ S for some larger setS ′ that contains the set of genuine secretsS.

After this has happened, participants who wish to take part broadcast their shares. It is shown in
[19] that by choosing the correct parameters, this situation can be modelled by a game in which
the “rational” strategy is to take part honestly. The game stops when in some round in which
the dealer chose the first option, more thant participants broadcast their shares.

9. Verifiable secret sharing

The adversaries that we have modelled thus far have not been able to corrupt the dealer of the
secret sharing scheme. Averifiable secret sharing scheme(or VSS) is designed to tolerate an
adversary who can corrupt the dealer and some of the participants. Verifiable secret sharing
schemes:

• Do not assume a trusted dealer.

• Honest participants want to recover the secret even if an adversary corrupts the dealer and
some shares.

• The main recoverability goal of the adversary is to prevent the correct secret from being
reconstructed.

A VSS thus requires an additional algorithm calledVerify to be run which allows participants
to verify the validity of their shares (before making any reconstruction attempt). At the end of
this algorithm, each participant output either decides toacceptor reject its share. The algorithm
must check for:

• Consistency: any authorised group of participantsA ∈ Γ that allaccepttheir shares will
be able to reconstruct the same secret valueu.

• Correctness: if the dealer was honest, then the above valueu is the genuine secret.

A VSS is said to be:

1. interactive, if Verify involves participants exchanging messages between themselves.

2. non-interactive, if Verifyonly involves participants exchanging messages with the dealer.
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9.1. Information-theoretically (interactive) secure VSSs

Given that the dealer has potentially been corrupted, it is impossible to establish an information-
theoretically secure VSS without interactivity between honest participants. Hence, such schemes
are proposed for interactive models, where not only there isa secure (private) channel between
the (potentially corrupt) dealer and the participants, butalso each pair of participants can com-
municate over their own secure channel.

Within this model, it is well-known that a VSS can only be established if the access structure
Γ has the property thatno three subsets not inΓ span the entire participant set(this is often
referred to by saying that theadversary structure, which in this case is the compliment of the
access structure, has theQ(3) property). This result was first shown for(k, n)-threshold access
structures in [4], where it equates to requiring that the number of adversaries is less thann/3,
and for general access structures in [21].

An information-theoretic verifiable(k, n)-threshold scheme based on polynomials that is
almost perfect was first given in [4]. In [38], a perfect verifiable(k, n)-threshold scheme was
proposed that supportsb < n/4 − 1 adversaries. This scheme is based onsymmetric bivariate
polynomials.

In [12], a general construction for converting any linear secret sharing scheme with aQ(3)

access structureΓ into an information theoretically secure VSS forΓ was demonstrated. This
construction generalises the threshold construction of [38].

An interesting observation is made in [14] concerning the general construction in [12].
Given that the dealer is potentially corrupt, any system parameters produced by the dealer need
to be checked as genuine. The construction in [12] relies on the publicly-known generator ma-
trix G being “genuine”. The VSS “proves” that the shares issues areconsistent with respect
to G, but doesG actually realise the stated access structureΓ? In [14], it is shown that this
is indeed a very hard problem. Note that this problem does notarise for the special case of
(k, n)-threshold schemes since the generator matrixG in this case is easily “recognisable”.

In [28], a relationship between information-theoretic secure VSSs and a class of error-
correcting codes known aserror-set correcting codesis observed. Finally, some work can
been undertaken into designing interactive verifiable schemes with minimal round complexity
[17, 18].

9.2. Computationally secure VSSs

To have a fully information-theoretically secure VSS places quite severe constraints on the
resulting scheme. In particular:

• The scheme must necessarily be interactive.

• The number of tolerated adversaries is restricted.

• The schemes are relatively inefficient.

These problems can be overcome if we relax the security modelto computational security. Note
that there are two options for relaxing this security model:

14



1. The security of the underlying secret sharing scheme could be relaxed.

2. The security of the verifiability of the shares could be relaxed.

It is possible to relax the security model without relaxingbothof these. This was demonstrated
in two early VSS threshold schemes.

In the scheme of [16], the security of the underlying threshold scheme is relaxed but the
verifiability is information-theoretically secure, whereas the underlying threshold scheme of
[31] is information-theoretically secure (it is essentially the Shamir scheme), but the verifiability
process is computationally secure. Both these schemes require the existence of secure (private)
channels between the dealer and the participants. In [20], it is observed that the scheme of [31]
generalises naturally to any linear secret sharing scheme for an arbitrary access structure.

Note that there have been a number of computationally secureinteractive VSS schemes
proposed in the literature [11], [39]. Such schemes offer potential efficiency advantages over
information-theoretically secure schemes, but the requirement for interactivity would appear to
limit their usefulness in comparison to non-interactive schemes.

9.3. Publicly-verifiable VSSs

Note that one of the by-products of allowing interactivity in VSS schemes such as those in
Section 9.1 is that at the end of theVerify process, a group of honest participants is not only
assured of the validity of their own shares, but also those ofthe other honest participants. This
property is lost when we move on to a non-interactive model, such as those in Section 9.2.

For this reason,publicly verifiablesecret sharing schemes (PVSSschemes) were proposed
in [36]. These schemes essentially replace the algorithmVerifywith one calledPublicly-Verify,
which works by publishing asymmetrically encrypted sharesand allowing the consistency check
to be performed on these encrypted shares. Note that:

1. The shares are distributed to participants using asymmetric channels and so schemes are
only as secure as the underlying asymmetric cryptosystem.

2. The consistency of the shares is literallypublicly verifiable, since the consistency check
can be done by entities not holding a share themselves.

Note that PVSS schemes are by definition non-interactive as previously defined. However
they are often referred to as beinginteractive if Publicly-Verify requires interaction between
participants and the dealer, andnon-interactiveif this is not required.

In fact, the very first VSS scheme proposed in [11] is actuallya PVSS scheme. In [36],
two PVSS schemes are proposed that are based on the ElGamal cryptosystem, but are based on
unconventional security assumptions.

The PVSS scheme proposed in [34] is more efficient and has security based on the standard
Diffie-Hellman assumption and its decisional variant. Thisscheme, which can be built onto any
linear secret sharing scheme, is based on using zero-knowledge proofs of correctness of shares.
An alterative PVSS scheme is proposed in [40] which is based on the VSS scheme of [31]
and thus, in contrast to [34] has an underlying information-theoretically secure secret sharing
scheme. Two PVSS schemes are proposed in [5], one for sharinga discrete logarithm and the
other for sharing a factorisation.
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10. Conclusions

We have reviewed a range of flavours of secret sharing schemes, each of which is designed
to combat a type of adversary who can do more “damage” than theadversary in the tradi-
tional secret sharing model. In each case, the additional capability to withstand more active
attacks on the scheme comes at a price, either in terms of information storage, compromise in
security model, or additional computational or communication requirements. Several of these
schemes provide elegant applications of mathematical techniques. While we have sacrificed
mathematical detail in this article, we have provided extensive pointers to the wider literature
and attempted to set this very varied research area into a structured context that should aid entry
into the field for new researchers.

There remain several gaps in the knowledge of secret sharingschemes under different ad-
versarial models, particularly with regard to efficiency and optimisation of schemes under dif-
ferent adversarial assumptions. We can also expect furtherdevelopments in the formalisation of
models for such schemes, as only robust secret sharing schemes have been set in a framework
compatible with much of the recent theoretical formalisation of other types of cryptographic
primitive. There would thus seem to remain some room in this area for further application of
interesting mathematical techniques to provide secret sharing schemes with the capability of
coping with sophisticated adversarial behaviour.
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