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Abstract

Secret sharing schemes are cryptographic primitives for distributingestad a secret
amongst a set of entities in such a way that only certain coalitions can taatinhe
secret from their shares. Secret sharing schemes are highly vepsiatiléves that are par-
ticularly useful in applications where there is no single point of trust. Trauitlg, secret
sharing schemes are studied in an environment where there is a trusesdadeainitiates
the scheme, passive adversaries who do not manipulate sharesrtariggrdas who either
co-operate or do not co-operate in a reconstruction attempt. TheseEsms are rea-
sonable in some situations, but do not necessarily map comfortably onto iplication
environments. In this paper we review work on secret sharing schehmg wne or more
of these assumptions is challenged.

1. Introduction

A secret sharing schems a method of distributing aecretamongst a set gbarticipantsby
giving each patrticipant aharein such a way that only certain specified subsets of partitga
(defined by theaccess structuré’) can reconstruct the secret from a pooling of their shares.
Secret sharing schemes are highly versatile cryptogrgghatives and, as a result, have been
employed in a vast range of different applications inclgdimotection of cryptographic keys,
access control, key recovery mechanisms, electronic gjotiistributed certificate authorities,
online auctions and secure multiparty computation. Theyadso objects of inherent mathe-
matical interest and have also been researched as such.

The access structure of a secret sharing scheme normatltiqres the set of all subsets
of participants intcauthorised setsvho are able to recover the secret anthuthorised sets
who can not. (Some schemes feature a third class of subsetamehneither authorised or
unauthorised.) The two fundamental properties of a sebhegtrgy scheme are thus:



1. Privacy. Unauthorised subsets of participants should be prevdraetlearning the se-
cret.

2. Recoverability Authorised subsets of participants should be able to exdte secret by
pooling their shares.

Secret sharing schemes also involve two functionalitias dne, in many cases, carried out by
a dedicated entity. Theealeris normally responsible for generating system paramegerser-
ating the secret, creating initial shares and sendingalrstiares to participants. Tleembiner

is responsible for pooling shares and reconstructing theeseThe dealer is normally a fully
trusted third party, while the combiner is often left unsfied (but can be a third party or even
one of the participants).

Most secret sharing schemes featura@otoneaccess structurg, which has the property
that if A € I' then all supersetd’ of A are also in". Where the access structure consists of all
subsets of. participants of at least sizg the secret sharing scheme is normally referred to as
a(k,n)-threshold scheme

This article is not intended to be a tutorial on secret sigggohemes (although we provide a
very basic primer). We recommend established review egislich as [37] for a more detailed
mathematical treatment of the basics. The purpose of thidears to present an overview
of research in one area of secret sharing, namely secrahghamder different adversarial
models. We will explain these different adversarial mo@elg provide pointers to the extensive
literature on this subject, so that interested researd@rpursue this topic in greater detail.

The organisation of the remainder of the article is as foloin Section 2, we present
the “traditional” model for secret sharing schemes. In ®ac8, we note the limitations of
the traditional adversarial model. In the remaining sextjove review research results for a
number of different adversarial models and discuss thenextewhich these, at least in part,
overcome the limitations of the traditional case.

2. Traditional secret sharing

Traditionally, secret sharing schemes have been studieah information-theoreticsecurity
model, where the security is independent of the computipgloiities of an adversary. This
can however be relaxed and some schemes have been definethfuutationally secunmodels
where the scheme relies on the difficulty of a mathematicablpm. The information-theoretic
security model permits a notion pérfectprivacy. In aperfectsecret sharing scheme, unautho-
rised sets do not learn any information about the securéyheir shares.

The most famous perfect secret sharing scheme igthe-threshold scheme first proposed
by Shamir in 1979 and hereafter referred to &amirthreshold scheme [35]. The idea behind
this construction is simple and elegant. A Shafkirn)-threshold scheme is defined ov&y.
Each participanf’; is associated with a unique non-zero(which is not secret). If the secret
is s, the dealer randomly chooses a polynonfiat) of degree at most — 1 defined ovetZ,
such thatf(0) = s. The dealer then securely issues particiggmwith sharef (z;). The Shamir
scheme has perfect privacy since knowledgé: of 1 shares does not leak any information
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about the secret It also has recoverability since ahyparticipants can interpolate their shares
to recover the polynomiaf(z) and hence the secret

There are numerous equivalent ways of modelling a gendmahmation-theoretically secure
secret sharing scheme:

e Information theory : By representing entities as probability distributions anaking
statements about conditional entropy [15].

e Combinatorially : By defining a matrix of possible distribution rules [37].

e Algorithmically : As two algorithmsShareandReconstrucand defining related proper-
ties.

The information theory model is useful because it can bect¥igy used to prove results about
the amount of information that needs to be stored by pasitin a secret sharing scheme. The
most well-known result of this type is that in a perfect seskearing scheme each participant
needs to store at least the amount of information that ittéixeepresent the secret. This leads
naturally to notions of secret sharing scheme efficiencgifitormation rateof a secret sharing
scheme is the ratio of the “size” of the secret over the “stfd¢he largest share. Schemes where
this rate is precisely one are optimal in this regard andmefeto agdeal.

The combinatorial secret sharing model is useful becausanitbe used to classify certain
types of secret sharing scheme in the rich language of catdrial mathematics. For example,
ideal threshold schemes are known to be equivalent to a nuofilmeell-studied combinatorial
objects that includerthogonal arraysandmaximum distance separable cod23].

The most studied examples of perfect secret sharing schimgeneral monotone access
structures arénear secret sharing schemes. They are so-named because theaadye com-
puted as a linear combination of any set of authorised shamesar secret sharing schemes can
be equivalently defined in terms of vector spaces [7], ptojegeometries [24], error correct-
ing codes [42] or monotone span programs [25]. A Shamir tiolelsscheme is an example of
a linear secret sharing scheme.

3. Changing the adversary model

The traditional secret sharing model makes the followinganant assumptions about the po-
tentially malicious behaviour of entities involved in theheme (this behaviour is typically
modelled by the idea of aadversary:.

e Trusted dealerAn adversary cannot corrupt the dealer, who is fully trdste

e Passive An adversary can capture shares, but otherwise the prhosoececuted correctly
and shares are not corrupted.

e Polarised participants Participants are either completely honest (follow thetqeol)
or completely malicious (they have been captured by an adwemwho will attempt to
subvert the protocol).



Honest users Honest users Adversary
Section | learn secret? alerted to cheating? learns secret?
Robust schemes Sec. 4 Yes Sometimes Yes
Cheater detection Sec.5.1 No Yes Yes
Cheater identification Sec.5.2 No Yes Yes
Almost robust (fairness) schemesSec. 6 | Sometimes Yes Sometimes
Cheating immune Sec. 7 No No No

Table 1: Properties of schemes with respect to Tompa andwidisirable consequences

These assumptions are reasonable in some situations, Imat decessarily map comfort-
ably onto many application environments. In particulagytffiall short of some of the high
security demands placed on computationally secure crygpbdc primitives that are modelled
using provable security. A substantial amount of recentkvasr secret sharing schemes has
been devoted to looking at the problem of secret sharingtiratsons where one or more of
these assumptions is challenged. In particular, most efuloirk involvesactive adversaries,
who are able to take full control of participants and coriingir shares.

3.1. The Tompa and Woll attack

The first challenge to this traditional secret sharing asitwgrmodel was a paper by Tompa and
Woll [41] which showed how an active adversary can explat 8namir threshold scheme (in
fact, this type of attack can be extended to any linear sebgeing scheme). They assessed the
impact of an active adversary who takes the form of a pagitipvho maliciously submits a
false share during a reconstruction attempt. In other wa@sie participanf; submits a false
share); instead of a correct shaéx;). This attack has several undesirable consequences:

1. it prevents the honest participants from learning thesmbisecret;
2. it fails to alert the other participants that they havenecbnstructed the correct secret;
3. itallows the adversary to learn the correct secret (byoibipg knowledge off (z;) — \;).

In the next sections, we review a number of different profgoga overcoming the conse-
guences of the Tompa and Woll attack. Table 3.1 indicatesiwbi these consequences are
addressed by which types of scheme.

3.2. Issues arising from new adversarial models

Changing the adversarial model (in particular moving frorsgpze to active adversaries) for
secret sharing scheme raises a number of issues that angpaoseat in the traditional model.
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3.2.1. WHO RECONSTRUCTS SHARE?®

The recoverability property of a traditional secret shgqusoheme simply states that in the pres-
ence of a set of shares corresponding to an authorised sitliewpossible to reconstruct the
secret. It does not place demands on precisdlg will perform this reconstruction. This is
normally assumed either to be one of the participants thiseser a third party entity (which
could correspond to the participants collectively recarging the secret themselves “in the
open”). The difference is often abstracted away by refgriinacombiner who could be either
of these.

If, however, we change the traditional adversarial modeddosider adversaries who can
corrupt shares, then the identity of the combiner becom@®itant. This is because if the
combiner is a participant then (assuming a trusted dediey) will always know at least one
valid share, whereas if the combiner is a third party entigntthey will not. In [3], these two
cases are referred to as recovery byianorrupted playeor by anexternal party

3.2.2. ARE SHARES REVEALED DURING RECONSTRUCTIOR

Likewise, in the traditional secret sharing model the issisghether shares are revealed to the
participants during a reconstruction attempt is not expliaddressed. When considering more
adventurous adversaries, it can be important to distiildagsweeropen reconstructionsvhere
shares are revealed, adlbsed reconstructionsvhere they are not. Note that a reconstruction
can be open or closed, regardless of who is playing the rdleeocdombiner.

3.2.3. ARE ADVERSARIES STATIC OR DYNAMIC?

The traditional secret sharing scheme model does not exiptav an adversary might behave
but only the consequences of the adversary gaining knowleflgets of shares. If we move
to more general adversarial settings, then it can becomertant to distinguish between the
static adversargase where the adversary captures a particular fixed settafipants (shares),
and thedynamic adversargase where the adversary can choose which participantptorea
one by one, as it learns their shares.

3.2.4. WHAT ARE THE GOALS OF AN ADVERSARY?

With respect to privacy, in all secret sharing schemes apradvy wishes to learn information
about the secret, perhaps through learning informationitetlmares. However with respect to
recoverability, the goals of different types of secret slgaschemes vary quite subtly. In the
traditional model, the passive adversary can only engagéane capture and hence they can
only try to prevent reconstruction of the secret throughtaiding shares. For each of the
different types of secret sharing schemes, we will begindeypiifying the main recoverability
goals of an adversary.



4. Robust secret sharing schemes

Robust secret sharing a term that is commonly used to describe schemes whernejfes@me
participants submit incorrect shares, the correct searestll be recovered.

4.1. Bellare and Rogaway’s classification

Bellare and Rogaway [3] observed that the idea of robust sglcaging had been studied within
a number of different models. They thus proposed a unifymagnéwork for secret sharing
schemes that maintain a trusted dealer and polarisedipartts, but for which the share capture
only assumption can be relaxed.

This framework identifies three different meaningful lesvef privacy (we omit their fourth
category ofno privacy):

e Perfect(PSS: no information is revealed about the secret, indepenadlietite computing
power of an adversary (the traditional notion of privacy);

e Statistical(SS$. a small amount of information is potentially revealed atihe secret,
independent of the computing power of an adversary (thiesponds to the traditional
secret sharing scheme model when a scheme is not perfect);

e ComputationalCSS: the secret is protected from an adversary with “reas@iatdm-
puting resources (computationally secure schemes).

The framework further identifies nine different levels ofogerability. These are identified by
specifying:

e The extent to which an adversary can prevent an authorised lsenest participants from
reconstructing the secret. This can either be:

— PR an authorised set of honest participants cannot be preddmm reconstructing
the secret, independent of the computing power of an adyefahich is the case
in the traditional notion of recoverability);

— SR an authorised set of honest participants can only be prestérom reconstruct-
ing the secret with a small probability, independent of thenputing power of an
adversary;

— CR an authorised set of honest participants can reconsheskcret in the presence
of an adversary with “reasonable” computing resources.

e The extent to which an adversary can corrupt shares. Advesszan either be classified
as:

— Erasure(0): an adversary cannot corrupt shares (only view them angeptehem
being used in a reconstruction attempt, which is the cadeeitraditional notion of
recoverability);



— Recoverability-1(1): an adversary can corrupt all shares except one (this-corre
sponds to the case where the combiner is an honest participaa Section 3.2.1);

— Recoverabilit(2): an adversary can corrupt all shares (this correspondeetodse
where the combiner is a third party - see Section 3.2.1).

Note that erasure and recoverability-1 adversaries a@adpmses of recoverability ad-
versaries.

This framework accommodates 27 different cases, depermudirthe levels of privacy and
recoverability, each of which defines a type of secret shasitheme with a trusted dealer.
These are labelled using the framework abbreviations. We hieady mentioned three of
these types;

e PSS-PROthis corresponds to traditional perfect secret sharihgises of Section 2;
e SSS-PROthis corresponds to traditional non-perfect secret sigesthemes;

e CSS-PROthis corresponds to the computationally secure secreinghschemes.

4.2. Robust constructions

Recall that traditional idedk, n)-threshold schemes have a rich combinatorial structureand
be classified in a number of ways, including as maximum disteseparable codes. Further,
such schemes (but not all of them) can be linear, with Sharagheme as the most famous
example of this.

Tompa and Woll's attack of Section 3.1 shows that in geneaditional ideal k, n)-threshold
schemes are not secure in the presence of share-corrugtiagsaries, however in certain cases
limited degrees of robustness are possible:

e Tompa and Woll’s attack is most devastating when the unohgrlthreshold scheme is
linear, since in this case the adversary who has corrupted &p- 1 participants can
not only prevent honest participants from obtaining theetedut can also recover the
correct secret, even during a closed reconstruction attethihe underlying scheme is
non-linear, then the adversary can still disrupt honesivexy, however with respect to
the recovering the secret:

— during a closed reconstruction attempt, they may not be tabtdbtain the correct
secret from this attack (since they will not know the honésirss);

— during an open reconstruction attempt, they will be ablett@aio the correct secret
from this attack (since they will know a threshold of hondsires).

e Itwas first noted in [27] thatin a linear ide@l, n)-threshold scheme if> £ participants,
where at most — & are corrupt, attempt a recovery then the presence of cashges
will be detected. It follows immediately from the combinaéd classification of ideal
schemes as MDS codes that this also holds for non-lineanshésince the submitted
shares will be “inconsistent”). However this does not d&liull robustness since it may
not be possible to determine the correct secret.
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e However it was also noted in [27] that in a linear idé&ln)-threshold scheme if > k
participants, where at mogt — k)/2 are corrupt, attempt a recovery, then the corrupt
shares can be identified and corrected, providing a typemfstoPSS-PR2 scheme. It
was observed in [32] that this also extends to non-lineaeses.

e Tompa and Woll [41] proposed a method of adapting traditiohan )-threshold schemes
to make them robust. This required a massive increase ie siwg and multiple rounds
(each of which involves a reconstruction attempt of a défeef &, n)-threshold scheme).
While fairly impractical, this scheme is an example of a raRSS-SR1 secret sharing
scheme. (As observed in [3] this is more than just SR1, sinisesitso simultaneously a
PSS-PRO scheme.)

5. Detecting and identifying cheaters

Recall the Tompa and Woll attack described in Section 3.1 &ritiiee undesirable outcomes.
Robust secret sharing schemes overcome this attack by atingrthe first of these outcomes
and allowing successful recovery of the secret in the prasehan adversary who can corrupt
shares. Solutions of this type are fairly heavy-handed and is worth considering weaker
approaches which might be just as effective in certain appbn environments. We discuss
two such approaches here:

1. Secret sharing schemes with cheater detectibow honest participants to detect any
corrupt shares that have been submitted by an adversary.

2. Secret sharing schemes with cheater identificasibow honest participants to detect and
identify any corrupt shares that have been submitted by eersalry.

Secret sharing schemes with cheater identification (detgct

e Assume a trusted dealer.

e Honest participants are willing to sacrifice recovery ofseeret if an adversary corrupts
shares, so long as corrupt shares are identified (detected).

e The main recoverability goal of the adversary is to preveatdorrect secret from being
reconstructed while remaining unidentified (undetected).

o Potentially allow the adversary to obtain the correct dewtele the honest participants
do not.

It is widely noted that addressing these problems in contjpmially-secure environments
could be handled by using mechanisms such as digital sigggatrhus the bulk of research
on these types of secret sharing schemes has concentrateglinformation-theoretic environ-
ment. This capability, not surprisingly, comes at a cosis Thst is typically that the schemes:

e Have large sharesEach participant is equipped with extra information thédves him
to recognise malicious behaviour.



e Require extra cooperatiorNeed more than a minimum coalition of participants to co-
operate in a recovery attempt.

5.1. Secret sharing schemes with cheater detection

The weakest approach is just to require detection of malgclzehaviour. Indeed Tompa and
Woll [41] proposed a (fairly expensive) fix for their attadegé Section 3.1) that does precisely
this. We also observed in Section 4.2 that an idéah)-threshold scheme can detécheating
participants ifk + ¢ participants (at most of whom are cheating) collaborate. As noted for
cheater correction, this is more cooperation than the selvess originally designed to support.

In [10], it was shown that in order to restrict the probabpilif an adversary who has cor-
ruptedk — 1 shares (and wants to deceive an honest participant) froapegrdetection te,
in a perfect(k, n)-threshold scheme, it is necessary to increase the lowerdoon each par-
ticipant’s share sizéS;| from |S| (in traditional perfect secret sharing schemes}‘%o This
bound was derived under the (perhaps unlikely) assumgtiatrthe adversary somehow knows
the correct secret before they commence their attempt teidethe honest participant. We
will describe schemes that provide cheater detection uhéeassumption asformedand the
more likely situation that cheating participants do notwrnibe secret asininformed Note
that such schemes have been rather ambiguously definethast and securein some of the
previous literature such as [9], and cryptically as beingegllaon theCDV assumptiomand the
OKS assumptiom the likes of [29].

In [30], the bound for informed schemes was improved to:

S| —1
5= B2ty

and a bound for uninformed schemes was given as:

S|—1
|81-|2L+1.
€

A family of uninformed(k, n)-threshold schemes with cheater detection probahility1/|S|
was then constructed using combinatorial objects caliference setthat meet the uninformed
bound. Both these bounds easily generalise to perfect sf@ehg schemes that are not thresh-
old schemes, in which case rather than being concerned with b — 1 adversaries, we are
concerned with adversaries of the foun\ {P} (where A is a minimal authorised set and
P € A) trying to cheat participan®.

Two generic techniques were given in [9] that allow a linesarst sharing scheme for any
access structure to be converted into a secret sharing sctiithcan detect cheating partici-
pants.

e To construct an informed scheme, each participant is giveetseparate shares:
1. ashare of the real secret

2. a share of a random value
3. ashare of the produét.



During a recovery attempt, all three values are recoveredtar checked whether the
third secret is the product of the first two.

e To construct an uninformed scheme, each participant is\give separate shares:

1. a share of the real secret

2. a share of the squaké of the real secret.

During a recovery attempt, both values are recovered asdltecked whether the second
is the square of the first.

As for the scheme of [30], in each of these cases the chanagseating participants getting
past the check i$/q, whereq = |S|. The equivalent share size bounds from [30] for these
cases ar@® — ¢°> + 1 andq? — ¢ + 1. Thus with share sizes qf andq?, the generic schemes
of [9] are close to optimal.

An alternative technique for building informed schemeg #ra secure against cheating for
any access structure was proposed in [29] (and later cedart[2]) which involves using a
linear secret sharing scheme to issue each participantanstiare of the genuine secret and a
share of the key of a class of universal hash functions. Balsétret and the key are recon-
structed and the latter is used to check the validity of thenéy. Two schemes are proposed.
The first scheme has the same parameters to the informed echd@). The second scheme
has the attractive property that it is configurable in theseghat the share size can be traded
off against the cheating probability (unlike the previoahemes which fix this at = 1/|S]).
More precisely, folS| = p, the second scheme has- (N + 1)/p and|S;| = p¥*2. While
this scheme does not meet the bound of [30], such schemesmerbnsiderably better than
any previous schemes for cases where1/|S]|.

Note that the schemes of [9] and [29] have an advantage ozactteme of [30] in that they
work for arbitrary probability distributions on the sec(ethereas the scheme of [30] requires
this distribution to be uniform).

All the schemes discussed thus far in this section assurhththadversary controls at most
k—1 shares of &k, n)-threshold scheme. An adversary in control of at Iéastares is powerful
enough to obtain the secret on its own, however it is arguétl]ithat they might still wish to
fool another shareholder into believing that the secredsfarent value. An informed scheme
(and any scheme under these conditions is informed by defayiroposed in [1] that involves
giving each participant a share in two Shalf(tirn)-threshold schemes plus a random number,
where the random numbers serves as a “secret identity” arses as the participantis value
in the second Shamir scheme.

5.2. Secret sharing schemes with cheater identification

A stronger alternative to countering the effectiveness alicrous participants is to build in a
mechanism that, with high probability, identifies any pap@ants who submit incorrect shares
during a secret reconstruction attempt.
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As observed in Section 4.2, an id€al n)-threshold scheme can identifgheating partici-
pants, but only it + 2¢ participants (at mostof whom are cheating) collaborate. This is more
cooperation than the scheme was originally designed tomstipp

All the bounds proven for share size of schemes that provigeter detection clearly
also apply to those with cheater identification. Howeverkhewn constructions for schemes
with cheater identification capability have significantlyder shares than these bounds. In the
schemes of [33] and [8], shares are of igg ("™ for a linear function of the number of partic-
ipantsn. In [26], a perfect k, n)-threshold scheme was exhibited that for 3t + 1 allowsk
participants to identify up to cheaters and has the property that:

S|

)
ett2

|Si| >

wheree is the probability that up tée cheaters fail to be detected.

6. Almost robust secret sharing

It is noted in [22] that &k, n)-threshold scheme that can identify< k/2 cheaters can be
used to create an “almost robust’, n)-threshold scheme that allows the honest participants to
obtain the secret under certain circumstances. A genedalisrsion of this conversion works
by giving each participant one share irf/an)-threshold scheme that can identifi)cheaters
with secretk;, and one share in@& — r, n)-threshold scheme that can identifgheaters with
secretk,. The real secret = k; & ko. During a reconstruction attempt:

1. Participants submit their first shares and they are cliefikethe presence of cheaters
(technically it suffices that a scheme with cheatetectionis used for this stage). If
cheaters are noted, then recovery is aborted.

2. If no cheaters are noted in the first stage, participarisguheir second shares and they
are checked for the presence of cheaters. Evenhkaters are identified, tihe- » honest
participants can still recovet,.

3. The secret is computed fronk; andk,.

This scheme, which was termefedrnesssecret sharing scheme in [22], is “almost” a PSS-SR1
robust scheme. The reason that it is “almost” is that if theeeshry decides to cheat during the
first stage, then recovery is aborted and so nobody succeeesdnstructing the secret.

7. Cheating immune secret sharing

Cheating immune secret sharing schermessecret sharing schemes which adopt a subtly dif-
ferent approach to addressing the problem of adversariesocah corrupt shares. The idea
behind cheating immune secret sharing is to remove the béoefh adversary of submitting
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corrupted shares, thus reducing the incentive of an adyeisattack the scheme solely to one
of disruption without personal gain. Cheating immune sesiating schemes:

e Assume a trusted dealer.
e Assume a third party (external) combiner.

e Honest participants are willing to sacrifice recovery of ¢skeeret if an adversary corrupts
shares, so long as the adversary does not as a result haveanraag over the honest
participants with respect to recovery of the genuine secret

e The main recoverability goal of the adversary is to have nkamvledge about the secret
than a set of honest participants.

e If an adversary submits corrupted shares, then nobodyrsiae secret.

Cheating immune secret sharing schemes were first propos®Jin An information-
theoretic setting was adopted and two notions were propdselteating immund an adver-
sary who submit$ incorrect shares gains no advantage and a more gestacdly ¢-cheating
immundf an adversary who submitg tot incorrect shares gains no advantage. They were sub-
sequently investigated in greater depth in [13], where socongbinatorial properties of cheating
immune schemes were proven, it was shown that cheating imisegret sharing schemes can-
not be perfect, it was proven thiatheating immunén, n)-threshold scheme must have n /2
and some constructions were given. By classifying cheafimigune secret sharing schemes in
terms of resilient functions, this bound is slightly impealin [6].

However the current research on cheating immune secrenghsthemes is very limited in
scope since all schemes investigated thus far;

1. are(n,n)-threshold schemes;

2. have the secret and shares chosen from the same set (&etisis they are ideal but not
perfect).

Using the notation of Section 4.1, the cheating immune $sbi@ing schemes studied to date
would be classified as having SSS privacy and operate undevarbility (2) adversaries.
However, they are not robust schemes since an adversaryreaenp reconstruction of the
secret.

8. Rational secret sharing

Rational secret sharingnodels a scenario which involves:
e atrusted dealer;
e Open reconstruction;

e participants are neither completely honest nor completelijcious.
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With respect to the last property, the participants areriesg asrational because they gener-
ally want to recover the secret (this is their top priorityi lvill take the opportunity to cheat
if it is in their interest (in particular they would prefer tesv people to know the secret as pos-
sible). It is observed that in a tradition@l »)-threshold scheme a good “rational” strategy for
a participant is to wait for — 1 other participants to reveal their share. The participhaent
withholds its share and learns the secret, whiletthel who revealed their shares remain one
share short. The rational secret sharing scheme propog&é]imvolves a number of rounds
controlled by a dealer. In each round the dealer either:

1. with probability 5 generates shares of(a n)-threshold scheme protecting the genuine
secrets € S,

2. with probabilityl — (5 generates shares ofan)-threshold scheme protecting a random
secrets’ € S’ \ S for some larger sef’ that contains the set of genuine secegts

After this has happened, participants who wish to take paddicast their shares. Itis shown in
[19] that by choosing the correct parameters, this sitnatan be modelled by a game in which
the “rational” strategy is to take part honestly. The ganopstwhen in some round in which
the dealer chose the first option, more thaoarticipants broadcast their shares.

9. Verifiable secret sharing

The adversaries that we have modelled thus far have not liemncacorrupt the dealer of the
secret sharing scheme. Verifiable secret sharing schenjer VSS is designed to tolerate an
adversary who can corrupt the dealer and some of the pamitsp Verifiable secret sharing
schemes:

e Do not assume a trusted dealer.

e Honest participants want to recover the secret even if aaradwy corrupts the dealer and
some shares.

e The main recoverability goal of the adversary is to preveatdorrect secret from being
reconstructed.

A VSS thus requires an additional algorithm calitify to be run which allows participants
to verify the validity of their shares (before making anyaestruction attempt). At the end of
this algorithm, each participant output either decideascieptor rejectits share. The algorithm
must check for:

e Consistencyany authorised group of participantse I' that allaccepttheir shares will
be able to reconstruct the same secret value

e Correctnessif the dealer was honest, then the above valigthe genuine secret.
A VSS is said to be:
1. interactive if Verify involves participants exchanging messages between tihezase

2. non-interactiveif Verify only involves participants exchanging messages with tiaéede
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9.1. Information-theoretically (interactive) secure VSS

Given that the dealer has potentially been corrupted, ibgoissible to establish an information-
theoretically secure VSS without interactivity betweenést participants. Hence, such schemes
are proposed for interactive models, where not only theaesiscure (private) channel between
the (potentially corrupt) dealer and the participants,disb each pair of participants can com-
municate over their own secure channel.

Within this model, it is well-known that a VSS can only be éditshed if the access structure
I' has the property thato three subsets not i span the entire participant séthis is often
referred to by saying that tredversary structurewhich in this case is the compliment of the
access structure, has tg¢* property). This result was first shown fdk, n)-threshold access
structures in [4], where it equates to requiring that the benof adversaries is less than3,
and for general access structures in [21].

An information-theoretic verifiablé¢k, n)-threshold scheme based on polynomials that is
almost perfect was first given in [4]. In [38], a perfect vexifie (k, n)-threshold scheme was
proposed that supporés< n/4 — 1 adversaries. This scheme is basedsypmmetric bivariate
polynomials.

In [12], a general construction for converting any lineasree sharing scheme with@®
access structurk into an information theoretically secure VSS fowas demonstrated. This
construction generalises the threshold construction&jf [3

An interesting observation is made in [14] concerning theegal construction in [12].
Given that the dealer is potentially corrupt, any systenapesters produced by the dealer need
to be checked as genuine. The construction in [12] reliehemublicly-known generator ma-
trix G being “genuine”. The VSS “proves” that the shares issuesansistent with respect
to GG, but doesG actually realise the stated access strucit?eln [14], it is shown that this
is indeed a very hard problem. Note that this problem doesarisé for the special case of
(k,n)-threshold schemes since the generator matrir this case is easily “recognisable”.

In [28], a relationship between information-theoretic .secVSSs and a class of error-
correcting codes known aarror-set correcting codess observed. Finally, some work can
been undertaken into designing interactive verifiable sasewith minimal round complexity
[17,18].

9.2. Computationally secure VSSs

To have a fully information-theoretically secure VSS pkcpiite severe constraints on the
resulting scheme. In particular:

e The scheme must necessarily be interactive.
e The number of tolerated adversaries is restricted.
e The schemes are relatively inefficient.

These problems can be overcome if we relax the security ntodeimputational security. Note
that there are two options for relaxing this security model:
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1. The security of the underlying secret sharing schemeldoeirelaxed.

2. The security of the verifiability of the shares could baxel.

It is possible to relax the security model without relaxbahof these. This was demonstrated
in two early VSS threshold schemes.

In the scheme of [16], the security of the underlying thréglszheme is relaxed but the
verifiability is information-theoretically secure, whaethe underlying threshold scheme of
[31] is information-theoretically secure (it is essenyithe Shamir scheme), but the verifiability
process is computationally secure. Both these schemesedhaiexistence of secure (private)
channels between the dealer and the participants. In fA6]pbserved that the scheme of [31]
generalises naturally to any linear secret sharing schenmanfarbitrary access structure.

Note that there have been a number of computationally sentemctive VSS schemes
proposed in the literature [11], [39]. Such schemes offeéemital efficiency advantages over
information-theoretically secure schemes, but the reguent for interactivity would appear to
limit their usefulness in comparison to non-interactiveesues.

9.3. Publicly-verifiable VSSs

Note that one of the by-products of allowing interactivity ¥'SS schemes such as those in
Section 9.1 is that at the end of tMerify process, a group of honest participants is not only
assured of the validity of their own shares, but also those@bther honest participants. This
property is lost when we move on to a non-interactive modmslhss those in Section 9.2.

For this reasonpublicly verifiablesecret sharing schemeB\YSSschemes) were proposed
in [36]. These schemes essentially replace the algoniteniy with one calledPublicly-Verify,
which works by publishing asymmetrically encrypted shares$allowing the consistency check
to be performed on these encrypted shares. Note that:

1. The shares are distributed to participants using asynowétannels and so schemes are
only as secure as the underlying asymmetric cryptosystem.

2. The consistency of the shares is litergllyblicly verifiable, since the consistency check
can be done by entities not holding a share themselves.

Note that PVSS schemes are by definition non-interactiveeasqusly defined. However
they are often referred to as beingeractiveif Publicly-Verify requires interaction between
participants and the dealer, andn-interactivef this is not required.

In fact, the very first VSS scheme proposed in [11] is actualgVSS scheme. In [36],
two PVSS schemes are proposed that are based on the EIGgptakgstem, but are based on
unconventional security assumptions.

The PVSS scheme proposed in [34] is more efficient and hasigelsased on the standard
Diffie-Hellman assumption and its decisional variant. T¥dkeme, which can be built onto any
linear secret sharing scheme, is based on using zero-kdge/|eroofs of correctness of shares.
An alterative PVSS scheme is proposed in [40] which is basethe VSS scheme of [31]
and thus, in contrast to [34] has an underlying informatiogeretically secure secret sharing
scheme. Two PVSS schemes are proposed in [5], one for shadiggrete logarithm and the
other for sharing a factorisation.
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10. Conclusions

We have reviewed a range of flavours of secret sharing schezaehl of which is designed
to combat a type of adversary who can do more “damage” thamdkersary in the tradi-
tional secret sharing model. In each case, the additionmhikty to withstand more active
attacks on the scheme comes at a price, either in terms omatmn storage, compromise in
security model, or additional computational or communaatequirements. Several of these
schemes provide elegant applications of mathematicahigabs. While we have sacrificed
mathematical detail in this article, we have provided esitenpointers to the wider literature
and attempted to set this very varied research area intactsted context that should aid entry
into the field for new researchers.

There remain several gaps in the knowledge of secret shacimgmes under different ad-
versarial models, particularly with regard to efficiencylaptimisation of schemes under dif-
ferent adversarial assumptions. We can also expect fulttheopments in the formalisation of
models for such schemes, as only robust secret sharing ssheawe been set in a framework
compatible with much of the recent theoretical formalsatof other types of cryptographic
primitive. There would thus seem to remain some room in treg &or further application of
interesting mathematical techniques to provide secrairghachemes with the capability of
coping with sophisticated adversarial behaviour.
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