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Zero/Positive Capacities of Two-Dimensional
Runlength-Constrained Arrays

Tuvi Etzion, Fellow, IEEE, and Kenneth G. Paterson, Member, IEEE

Abstract—A binary sequence satisfies a one-dimensional
( 1 1 2 2) runlength constraint if every run of zeros has
length at least 1 and at most 1 and every run of ones has
length at least 2 and at most 2. A two-dimensional binary
array is ( 1 1 2 2; 3 3 4 4)-constrained if it satis-
fies the one-dimensional ( 1 1 2 2) runlength constraint
horizontally and the one-dimensional ( 3 3 4 4) runlength
constraint vertically. For given 1 1 2 2 3 3 4 4, the
two-dimensional capacity is defined as

( 1 1 2 2; 3 3 4 4)

= lim
log

2
( 1 1 2 2; 3 3 4 4)

where

( 1 1 2 2; 3 3 4 4)

denotes the number of binary arrays that are
( 1 1 2 2; 3 3 4 4)-constrained. Such constrained
systems may have applications in digital storage applications.

We consider the question for which values of and is the
capacity ( 1 1 2 2; 3 3 4 4) positive and for which
values is the capacity zero. The question is answered for many
choices of the and the .

Index Terms—Capacity, constraint coding, two dimensional.

I. INTRODUCTION

RUNLENGTH-constrained coding is widely used in digital
storage applications, particularly magnetic and optical

storage devices [7]. Recent developments in optical storage—
especially in the area of holographic memory—increase
recording density by exploiting the fact that the recording
device is a surface. In this new model, the recording data is
regarded as two-dimensional, as opposed to the track-oriented
one-dimensional recording paradigm. This new approach, how-
ever, necessitates the introduction of new types of constraints
which are two-dimensional rather than one-dimensional. While
the one-dimensional case has been widely explored, results
in the two-dimensional case have been slower to arrive. This
is mainly due to the fact that imposing constraints in both
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dimensions makes the coding problem much more difficult.
Nevertheless, in the last decade there has been a considerable
progress in the study of two-dimensional constraints.

The most commonly considered constraint is the
constraint: a binary sequence satisfies a one-dimensional

runlength constraint if every run of zeros has length at
least and at most (and it is assumed that ones occur in
runs of length unless in which case ones can occur
in runs of arbitrary length). A binary sequence satisfies a
one-dimensional runlength constraint if every
run of zeros has length at least and at most and every
run of ones has length at least and at most . Hence, a

-constrained sequence is a -constrained se-
quence . A two-dimensional binary array is said to
satisfy a runlength constraint
if it satisfies the one-dimensional runlength
constraint horizontally (i.e., on every row) and the one-dimen-
sional runlength constraint vertically (i.e., on
every column). Here, the semicolon separates the horizontal
and vertical constraints. For convenience, we will say that a
binary array satisfies the runlength constraint if each
row and each column satisfy the runlength constraint
and that a binary array satisfies the runlength
constraint if it is runlength constrained both
horizontally and vertically. We say that a binary array satisfies
the runlength constraint if each row satisfies the

runlength constraint and each column satisfies
the runlength constraint. Finally, we always
allow violation of the smallest runlength constraint at the
beginning and the end of sequences and at the edges of arrays.

For given , the two-dimensional
capacity of the constraint is de-
fined to be

where

denotes the number of binary arrays of size satisfying
a runlength constraint. That this
limit exists can be shown using methods of [9]. We assume
throughout that . We sometimes refer
to this capacity as being the capacity of the channel, referring
to the assumption that the capacity is utilized to encode infor-
mation bits onto codewords represented by arrays. We also refer
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to it as being the capacity of the set of arrays satisying the con-
straint.

Tight lower and upper bounds on for binary arrays
were given by Calkin and Wilf [2]. One can easily verify that

since the complement of a run-
length-constrained sequence is a runlength-constrained
sequence. These bounds were improved in [6], [12] and ex-
tended to three dimensions by Nagy and Zeger [12]. Weeks and
Blahut [24] have considered the capacity of the constraint in
which all the ones are isolated, i.e., each position with a one
is surrounded by a ring of eight zeros. Ashley and Marcus [1]
proved that . Their result was extended by Kato
and Zeger [9] who determined the positive capacity region of

runlength-constrained arrays. They proved that
if and only if . Kato and Zeger [10] have ex-

tended these results to tackle the zero/positive-capacity problem
for runlength-constrained arrays. But,
unlike the case, the case is not
completely solved. Ito et al. [8] have extended some of the re-
sults to higher dimensions. Vardy et al. [21] gave a construction
for conservative arrays, i.e., arrays in which each row and each
column has at least one zero and at least one one. Talyansky et
al. [20] gave an efficient construction for -conservative arrays,
i.e., arrays in which each row and each column has at least tran-
sitions of the form or transitions of the form .
Talyansky [19] has shown how to derive lower bounds on the
capacities of runlength-constrained arrays from this con-
struction. Talyansky et al. [20] also considered balanced arrays,
i.e., arrays in which each row and each column is balanced.
These arrays were considered also by Ordentlich and Roth [15].
Finally, Etzion and Wei [4] and later Etzion [3] have consid-
ered the full two-dimensional run-
length constraint. In [4], a connection between the capacity and
the entropy of Markov random field is examined, and in [3]
merging of such arrays is considered. Other work concerning the
capacity of constrained arrays can be found in [5], [6], [11],[13],
[14], [16]–[18], [22], and [23].

In the present work we also consider general
runlength constraints. We

examine the following fundamental question about two-dimen-
sional runlength constraints:

For which values of is
positive and for which

values is it equal to zero?

Most of our proofs of positive capacity results involve explicit,
novel constructions demonstrating that there is sufficient flexi-
bility in the selection of arrays to make the capacities positive.
Weak lower bounds on capacity can be derived from these con-
structions. Our proofs of zero capacity results typically involve
combinatorial analysis of patterns allowed by constraints.

Our paper is organized as follows. In Section II, we develop
some more notation and give background results that we will
need. Then, in Section III, we consider the situation where the
constraints on zeros and ones are equal, but where horizontal
and vertical constraints may be different. We are able to give
a complete characterization of the zero/positive-capacity region
in this case. Section IV gives our major result on constraints

with zero capacity. In Section V, we study the case where the
constraints on zeros and ones may be different, but where the
horizontal and vertical constraints are the same. Our results here
include those of [9] as a special case. We explicitly state the
set of cases left unresolved. Then, in Section VI, we give some
results and constructions for the most general two-dimensional
runlength constraints.

II. BASIC RESULTS

In the following, we give three simple lemmas which can be
easily verified and which will be used repeatedly in our proofs.

Lemma 1:

for .

Lemma 2:

Lemma 3: If then

for any positive integers and .

A very important theorem observed by Kato and Zeger [10]
is our main tool in proving that the capacity of constraints are
positive.

Theorem 4: If and are two
-constrained arrays such that the

16 arrays defined by

are also -constrained arrays then
.

We will refer to the two arrays and of Theorem 4 as being
compatible arrays. This theorem is proved by tiling the plane
with compatible arrays. The fact that compatible arrays can be
placed next to each other in a variety of ways can be used to
show that the capacity of the constraint is positive (in fact, at
least when the compatible arrays are of size ).

Throughout the paper, denotes a all-ones array (a
block of ones) and denotes a all-zeros array. denotes
the identity matrix.

In some of our proofs, we will be interested in how arrays can
be populated with zeros and ones. We will be interested in finite
arrays and arrays which are bi-infinite in both dimensions. To
this end, we introduce a coordinate system in which each posi-
tion in an array is identified by a pair of integers . The first
coordinate of a position is the column number of that position,
and increases from left to right. The second coordinate is the
row number of the position and increases going up vertically.
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III. EQUAL CONSTRAINTS ON ZEROS AND ONES

Our results in this section pertain to the case where zeros and
ones are constrained in the same way in each dimension, but
where the horizontal and vertical constraints may be different.

Theorem 5: Let be positive inte-
gers satisfying . If and or if

and , then .
Proof:

• If and then each row of any
array satisfying the constraint consists of runs of zeros
alternating with runs of ones, and so is determined
relative to the origin by one of possible horizontal
shifts. Thus,

• If and then we can use the previous case
and Lemma 2 to obtain

Theorem 6: if and only if and
.

Proof: We first consider the case where and
. We use Theorem 4 with the following two com-

patible arrays:

where is a all-ones array, is a
all-zeros array, is a all-zeros array, is a
all-ones array, and is a array whose entries
are ones except for a zero in the bottom right corner.

Hence, by Theorem 4 we have .
If or then by Theorem 5 we have

. The theorem now follows immedi-
ately from Lemma 1.

Theorem 6 gives a complete characterization of the zero and
positive capacity regions for two-dimensional constraints of the
type .

IV. A ZERO CAPACITY THEOREM FOR GENERAL CONSTRAINTS

This section is dedicated to proving the following theorem,
in which the constraints on ones horizontally and vertically are
rather strict. We will prove results in the next section showing
that our theorem is as strong as possible for constraints of this
type.

Theorem 7: Let be positive integers. Then
whenever

, and .

Before starting the proof, we make some more definitions and
then sketch the proof strategy.

A position is said to be adjacent to its eight neighbors

. Two positions
in a set of positions are said to be connected

in if there is a path
with , such that and are adjacent for
each . A set of positions is said to be connected
if every pair of positions in are connected. A connected set
of positions is said to be constant in an array if the entries
in in the positions in are all zero or are all one.

An block is defined to be a connected set consisting of
all the positions in a rectangle with rows and columns. A
constant block in an array is a block of positions in which the
array is constant. A block of ones is a constant block in which
every position is filled with a one. An isolated block in an array
is defined to be a constant block which is bordered on all four
sides by positions of the opposite parity (but where the parities
in positions diagonally opposite the corner positions of the block
are not specified).

We say that an block covers its rows and its columns.
Two blocks are called row leveled if together they cover

consecutive rows. Two blocks are called column lev-
eled if together they cover consecutive columns. Two
blocks are called row matched if together they cover rows. Two

blocks are called column matched if together they cover
columns. Two blocks are said to be partially row inter-

secting if together they cover more than rows and less than
rows. Two blocks are said to be partially column inter-
secting if together they cover more than columns and less than

columns.

Let be a bi-infinite connected set of positions in which each
row intersects the set in a nonempty but finite, connected set.
Let be the least integer such that and be the
greatest integer such that . Then is said to be a
diagonal if one of the two following conditions applies.

• For every row and . This diagonal
will be called a right diagonal.

• For every row and . This diagonal
will be called a left diagonal.

A diagonal is said to have period if, for every position
, we have if and only if .

If all the positions in a diagonal are filled with the same value
in some array, we say that the diagonal is a constant diagonal
in that array. If all the positions are filled with ones, we speak
of a diagonal of ones. A basic diagonal is one in which every
row contains the same number of positions, and in which the
positions in row of the diagonal are displaced either one
position to the right or left of those in row . The width of a basic
diagonal is the number of positions in any row of the diagonal.
A block diagonal is a diagonal consisting of blocks positioned
so as to touch at the corners. A non-block diagonal is a diagonal
that is not a block diagonal.

Until the end of the proof of Theorem 7, all state-
ments will refer to arrays which satisfy the constraint

for integer param-
eters satisfying , and

, unless otherwise stated. We will denote this
constraint by .



ETZION AND PATERSON: ZERO/POSITIVE CAPACITIES OF TWO-DIMENSIONAL RUNLENGTH-CONSTRAINED ARRAYS 3189

Fig. 1. Illustrating the proof of Lemma 8.

The proof of Theorem 7 will be a result of a sequence of
lemmas. First, we will show that every one in an array satis-
fying belongs either to a block or lies on a diagonal
which is uniquely determined by consecutive rows and by

consecutive columns. Because of the constraint on ones, any
block of ones will of course be isolated. We prove that if

a diagonal of ones exists then every one must belong to some di-
agonal. We show that a channel with the constraint in which
every one belongs to a diagonal has capacity zero. From then
on we consider the case where no diagonals of ones exist in the
array, so that the array contains only blocks of ones. We
then show that the capacity of a channel with the constraint
in which no pair of blocks of ones partially intersects
is zero. Finally, we show that if some pair of blocks of
ones partially intersects, then the capacity must also be zero.

Lemma 8: Every one in an array satisfying constraint be-
longs either to a block of ones or to a non-block diagonal
of ones. Any such diagonal has period .

Proof: This proof is illustrated in Fig. 1. Consider a one
which is not part of a block of ones in an array sat-
isfying constraint . By shifting the array if necessary and ap-
plying the horizontal constraint on ones, we can assume that
there are ones in the set of positions
and that there are zeros in positions and . Our
special one is among these ones.

Suppose that all the positions contain
zeros. Then, from the horizontal constraint, we quickly find that
our one lies in a block. So some position with

contains a one. We assume that this one starts
a length run to the right from position . If this one were
to start a run to the left, the proof would be very similar, but we
would construct a left diagonal. We also have that : if not,
we can repeat the argument above. Within repetitions, we
must find an —otherwise, we would construct a
block of ones containing our special one.

So now applying the horizontal constraint on ones, we have
a run of ones in positions . This
set of positions must include position . But this position
has a zero below it, so we must have a vertical run of ones in
positions .

Now consider the position . Suppose this position
contains a one. Consider column between rows and .
We either have a vertical run of ones in this column (from
rows up to inclusive), contradicting the vertical constraint
on ones, or this column contains a zero, which means it must
contain a run of zeros. But this run of zeros would have length

Fig. 2. Illustrating the proof of Lemma 9, Claim 1.

at most , contradicting the vertical constraint
on zeros. We conclude that position contains a zero,
which means that position initiates a horizontal run
of ones. This run is located exactly positions to the right
and positions above our original run of ones.

Each of the ones in the vertical run must also lie in a hori-
zontal run of ones of length . These runs cannot start further
to the left as we go up , otherwise, we would obtain a contra-
diction to the vertical constraint on zeros between that
run and the run of ones in row . These horizontal runs will
form one period of our diagonal.

It is now a simple matter involving repeated application of
the horizontal and vertical constraints on ones to see that we do
indeed have a right diagonal of ones of period which
contains our original one. We omit the details. This diagonal is
not a block diagonal because of the fact that the run in row is
positions to the right of the run in row , where .

Notice that a block diagonal of ones also has period ,
so every diagonal of ones in an array satisfying constraint
has the same period . Every such diagonal has exactly

ones in each row and ones in each column.

Lemma 9: In any array satisfying constraint , either all the
ones are located in diagonals or all the ones are located in
blocks.

Proof: We will prove this lemma via a sequence of claims.
Suppose an array satisfies constraint and contains both a di-
agonal of ones and a block of ones which is not
part of the diagonal but which is separated from the diagonal
only by a run of zeros. We prove our claims in the case where
is a right diagonal and is situated to the right of . The proofs
for other configurations are similar.

Claim 1: Every row of the array contains part of a block of
ones which is separated from the diagonal only by a run of zeros.
Each block is situated to the left of the block above it.

Proof of Claim 1: We illustrate the proof of Claim 1 in
Fig. 2. Assume that the row immediately below block does not
contain a run of ones that is located to the left of . So this row
has a run of zeros extending horizontally from the diagonal
at least as far as the right-hand edge of . We will calculate the
length of and show that it violates the constraint .

Let the top row of be in row of the array, and suppose
the rightmost one of in row is in position . Then the
leftmost one of in row must be in position
where . Then the bottom right one of is in position
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Fig. 3. Illustrating the proof of Lemma 9, Claim 2.

. Therefore, the run is in row
and extends from the right-hand edge of at least as far

as position .

Now we calculate the position of the rightmost one in row
of . This diagonal is a right diagonal of period

by Lemma 8. Its rightmost one in row is in position .
It follows that its rightmost one in row is in position

. Now we see that has length at least
. This contradicts the constraint .

So we must have a run of ones in row in the array
that is located to the right of but to the left of . Such a run
must, from Lemma 8, belong to either a block or to a
non-block diagonal. The latter situation cannot arise, because
such a diagonal would not be compatible with the presence of

. It follows that the run of ones in row is part of a block
. This block is located below and to the left of .
We can now repeat the argument above to construct a se-

quence of blocks of ones below and to the left of , every row
of the array intersecting with at least one block. A similar ar-
gument can also be made to show that the sequence of blocks
extends upwards and to the right too.

Claim 2: The blocks constructed in Claim 1 are row leveled.
Proof of Claim 2: We have already proved that and

are either row leveled or partially row intersecting. Suppose the
latter case holds, as illustrated in Fig. 3. Notice that is at least

positions to the left of , so there is vertical run of zeros
just to the right of which extends at least as far as the bottom
row of and as high as (this run cannot be terminated by a

block above —we have already shown that any such
block must be to the right of ).

We now calculate the length of run . Suppose that the top left
one in is in position . Then the bottom one of diagonal
in column is in position for some . By
periodicity, the bottom one of in column is in position

. This is the column containing . Now
it is easy to show that has length at least , violating
the vertical constraint on zeros. The same considerations apply
to any pair of consecutive blocks from our sequence.

Claim 3: The blocks constructed in Claims 1 and 2 are
column leveled.

Proof of Claim 3: Consider again blocks and and
suppose that they are not column leveled. They are row leveled
from Claim 2. Since they are not column leveled, there is a ver-
tical run of zeros between them. As in Claim 2, this run violates

the constraint . The same argument can be deployed for any
pair of blocks in the sequence.

Claim 4: The blocks in Claims 1–3 form a block diagonal of
ones.

Proof of Claim 4: We have seen in Claims 2 and 3 that the
blocks are row and column leveled. We have also seen in Claim
1 that any block lies to the left of the block above it. It follows
that the blocks form a right block diagonal of ones.

As a summary of our proof, we have shown that in any array
satisfying constraint , either every one is contained in diag-
onals (some of which may be block diagonals) or there are no
diagonals at all and every one is part of a block.

Lemma 10: The set of arrays satisfying constraint and in
which every one is contained in a diagonal has capacity zero.

Proof: Any diagonal in an array satisfying the constraint
has period and so is determined by the positions of the
ones in any consecutive rows. Each row can be shifted by
at most positions relative to the previous row. (In fact,
every row after the first is determined by a shift by at most
positions). Since the distance between two diagonals in a row
is at least and any diagonal has width , there are at most

different diagonals in an array. Hence, the
capacity is at most

Henceforth, we assume that there are no diagonals of ones
in our arrays satisying constraint . By Lemma 9, this means
that all the ones occur in blocks. We next consider the
situation where none of these blocks is partially intersecting.

The following result is due to Kato and Zeger [10].

Proposition 11: Let and be positive integers. Then

Lemma 12: The set of arrays satisfying constraint and in
which no two blocks of ones partially intersect has
capacity zero.

Proof: Consider any array with these properties. By trans-
lating the array, we can assume that the lower left corner of one
of the blocks of ones is in position . Since no two
blocks partially intersect, it follows that the lower left corner
of any block of ones must be in position where

and . For otherwise, we would
need to have an infinitely long run of zeros in the array.

Now from the constraint it can be seen that in fact any run
of zeros horizontally is of length or for some ,
and that any run of zeros vertically is of length or
for some . We can now replace each run of horizontal zeros
or ones by a run that is a factor of shorter, and each vertical
run by a run that is a factor of shorter. We obtain a new array
which satisfies the constraint .
Reversing the argument, from an array satisfying constraint
we can construct a unique array satisfying the conditions of the
lemma. But the capacity of the constraint is zero by Propo-
sition 11. The lemma follows.
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Fig. 4. Illustrating the position of blocks A ;B ;A .

Now we can begin the final part of the proof of Theorem 7.
From here on, we can assume that all the ones in our arrays are
contained in blocks and that some pair of these blocks are
partially intersecting. We also assume that there are no diagonals
of ones in our arrays. We will prove via a sequence of lemmas
that the arrangment of the blocks of ones is constrained to such
an extent that the capacity is zero.

Let and be a pair of partially intersecting blocks
of ones. We assume that these blocks are partially row inter-
secting, and are selected from among all such pairs of blocks
of ones as having the smallest number of zeros separating them
horizontally. Let denote this number. Of course .
We assume that is situated to the left of and higher than .
All other configurations can be handled by very similar argu-
ments. Fig. 4 depicts the situation we consider. This figure also
shows possible placements for a block of ones which must
be present in order to end the run of zeros that goes from the
left of in the row immediately below . Let denote the
length of this run. We havethe following.

Lemma 13: With notation as above, block is located to
the left of block and is row leveled with . Moreover, there
are columns between and , where .

Proof: Notice that cannot partially column intersect
because it intersects with the row immediately below .

If lay to the right of , we would have a contradiction to
the minimality of . So the situation in Fig. 4, Part 1 cannot
arise. So is situated to the left of . Now suppose that
partially row intersects . This situation is depicted in Fig. 4,
Part 2. Let denote the length of the run of zeros between
and . We have and

(the last inequality following here because ).
This contradicts the horizontal constraint on zeros. It follows
that does not partially row intersect . Since it terminates
the run , we must have that and are row leveled, as in

Fig. 5. Illustrating the position of blocks A ;B ;A ;B .

Fig. 4, Part 3. Let denote the number of columns between the
left edge of and the right edge of . It is a simple exercise
to show that .

Next we consider the placement of a block which must be
present in order to end the run of zeros that goes from the
right of in the row immediately below . We let
denote the length of this run. Fig. 5 depicts the situation we
consider.

Lemma 14: With notation as above, block is located to
the left of block and is row leveled with . Moreover, there
are columns between and , where .

Proof: Arguing as before, it is easy to show that if lies
to the right of as in Fig. 5, Part 1, then

, contradicting the horizontal constraint on zeros. So
lies to the left of . Similarly, cannot lie to the left of .

cannot partially column intersect since it would violate
the vertical constraint on the number of zeros between and

( ). Now suppose that partially row intersects
. This situation is depicted in Fig. 5, Part 2. Let denote the

length of the run of zeros between and . Clearly, ,
contradicting the minimality of . It follows that does not
partially row intersect . Since terminates the run , we
must have that and are row leveled, as in Fig. 5, Part 3.
Let denote the number of columns between the left edge of

and the right edge of . It is a simple exercise to show that
.

Lemma 15: Given the pattern of four blocks of ones es-
tablished above, there are two infinite sequences of blocks



3192 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 9, SEPTEMBER 2005

Fig. 6. Illustrating the position of blocks A ;B ;A .

and with the following proper-
ties:

• each pair are row leveled, is below and to
the left of , and is separated from by columns,
where ;

• each pair are row leveled, is below and to
the left of , and is separated from by columns,
where .

Proof: The proof is by induction on , where is the
number of blocks placed so far in each sequence. The preceding
lemmas establish the case . Suppose that the conditions in
the lemma hold for all up to . We show that blocks and

must be placed so that the conditions of the lemma hold
for as well.

Referring to Fig. 6, we first consider how a block of ones
must be placed in order to end the run of zeros that

goes from the left of in the row immediately below .
Let denote the length of this run. We have . Let

denote the length of the run of zeros between and
.

Notice that cannot partially column intersect be-
cause it intersects with the row immediately below . Sup-
pose lies to the right of , as in Fig. 6. From the figure,
we have . Also,

which is a contradiction. We conclude that must be lo-
cated to the left of .

Now arguing exactly as in the proof of Lemma 13, it can be
shown that is row leveled with and is separated
from by columns, where .

Finally, we consider the placement of the block which
must be present in order to end the run of zeros that goes
from the right of in the row immediately below .
An identical argument to that given in Lemma 14 shows that

are row leveled, is below and to the left of
, and is separated from by columns, where

.
This completes the induction step and with it the proof of the

lemma.

Fig. 7. Illustrating the proof of Lemma 16, Claim 1.

Fig. 8. Illustrating the proof of Lemma 16, Claim 2.

After this lemma, it is straightforward to see that the two se-
quences of blocks and must in fact extend in both direc-
tions, with the same properties concerning relative placement of
blocks as those in Lemma 15 holding in the up and to the right
direction as well. We now index the blocks in the two sequences
by integers .

Next we focus our attention on how blocks from different
sequences can be arranged vertically above one another.

Lemma 16: There exists an such that every block
is column leveled with the block .

Proof: We prove this lemma using a sequence of claims.

Claim 1: Every column immediately to the right of a block
intersects with some block (where depends on ).

Proof of Claim 1: Suppose the claim is not true for some
. Then the column to the right of must pass between two

consecutive blocks, say blocks and . This situation is
shown in Fig. 7. Because , we see that blocks

and must be partially column intersecting or column
matched. Now we see from the figure that the column to the
right of contains a run of zeros of length at least ,
a contradiction of the vertical constraint on zeros.

Claim 2: When , the block cannot partially
column intersect block .

Proof of Claim 2: Suppose to the contrary that
and block does partially column intersect block . This sit-
uation is shown in Fig. 8, Part 1. Consider the column immedi-
ately to the right of block . Notice that because ,
there can be no one in this column between the top of and
the bottom of . It follows that this column contains a run of
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Fig. 9. The alignment of blocks A ; A , and B ; B .

zeros of length at least , a contradiction of the vertical
constraint on zeros.

Claim 3: When , the block cannot partially
column intersect block .

Proof of Claim 3: Suppose to the contrary that and
block does partially column intersect block . This situa-
tion is shown in Fig. 8, Part 2. Suppose that . Consid-
ering the column immediately to the right of block , we get
a run of zeros contradicting the vertical constraint on zeros.
So we must have and we see that and are
column leveled. Recall that intersects with the column to the
right of . This implies that partially column intersects
with . A similar argument to that just presented shows that
we must have . Now we can repeat the whole argument
to show that for every . Similarly, we
can prove that for every . We deduce that
our array contains two block diagonals of ones. This contradicts
our assumption that our array contains no diagonals.

Claim 4: The block is column leveled with the block .
Proof of Claim 4: We know that contains a column that

is immediately to the right of from Claim 1, but we have
established in Claims 2 and 3 that cannot partially column
intersect . So must be column leveled with .

The lemma itself now follows quickly. We need only show
that is always leveled with block for some fixed .
That this is the case is an easy consequence of the inequalities

.

Now we have established that the blocks are column lev-
eled with the blocks . We already know that the blocks

and are row leveled. Let denote the
number of rows separating and , as illustrated in Fig. 9.
We claim that for every and that

for all . This is a straightforward consequence
of the leveled nature of the various pairs of blocks. Let denote
the common value for the and the common value for the

. We must have otherwise, there would be a diag-
onal of ones in the array. Then we can show that :
this can be proved by considering the possible positions for the
block of ones that is needed to end the run of zeros in the column
immediately to the right of .

Now each quadruple of leveled blocks
can be used to show that there must exist a pair of

bi-infinite sequences of blocks extending down and to the right,
the pairs beginning and . The
placement of blocks in each of these pairs of sequences is
completely determined by the values of and . The proof of
this for each sequence pair closely follows the proof of Lemmas
15 and 16, and uses the fact that the vertical constraints take the
same form as the horizontal constraints.

Finally, we have that the capacity of the channel in the case
where all ones are contained in blocks and where some
pair of blocks is partially intersecting must be zero: any array
with these properties is completely determined by the choice of

and where and .
This completes the proof of Theorem 7.

V. EQUAL HORIZONTAL AND VERTICAL CONSTRAINTS

In this section, we examine the situation where the same con-
straints are applied horizontally and vertically, but where zeros
and ones may be constrained differently. Our main result is as
follows.

Theorem 17: Let be positive integers satisfying
and .

1. If and then .
2. If and , for some , then

.
3. If and , where ,

then .
4. If and , then .
5. If and , then

.
Proof:

1. Suppose and . We first consider the
constraint . We construct two

arrays and . In , the first row
consists of zeros followed by ones. Each of the
other rows is a cyclic shift by one to the right of
the previous row. is constructed from by replacing the
first one in the first row of by a zero. It is easy to verify
that and are two compatible arrays for the constraint

and hence, by Theorem 4, we have
. By Lemma 1 we have

for and .
2. We first study the constraint . We consider

the following two arrays and . is an
identity matrix. is defined by

where is an all-zero matrix, is a all-zero
matrix, and is the matrix

It is easy to verify that and are compatible arrays for
the constraint and hence, by Theorem 4,
we have . By using Lemma 3 we
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Fig. 10. Placement of ones in proof of Theorem 17, Part 4.

have . By Lemma 1 we
have that if , and for ,
then .

3. If and , where
, then Theorem 7 gives .

4. Suppose and . We consider
the constraint and show that its capacity
is positive. Part 4 of the theorem will follow from this and
Lemma 1.

In what follows, we describe only the placement of ones
in arrays; unless otherwise stated, any other position is
assumed to contain a zero. We begin by filling the plane
with basic right diagonals of width , each pair being
separated by positions horizontally. We will
show that the space between pairs of diagonals can be
filled with blocks of ones with sufficient flexibility
to ensure that the capacity is nonzero, while respecting the
constraints. It will be sufficient to describe how the space
between a single pair of diagonals can be filled.

We form the following array of size :

So consists of two blocks of ones joined diagonally.
We can place the array between a pair of diagonals

in two different ways, which we denote by type A and
type B. In a type A placement, the upper left corner of
is separated from the left-hand diagonal of the pair by
zeros, so that (by virtue of the spacing of diagonals) the
lower right corner of is separated from the right-hand
diagonal of the pair by zeros. In a type B placement,
the upper left corner of is separated from the left-hand

diagonal of the pair by zeros, so that the lower right
corner of is separated from the right-hand diagonal of
the pair by zeros.

What we show next is that, irrepsective of whether a
copy of has been placed as type A or as type B, we can
place another copy of below and to the left of the
first , either as type A or as type B. As we describe this
placement, the reader may find it useful to refer to Fig. 10
which illustrates our argument in the special case of the
constraint .

Suppose has been placed as type A. Then to place
also as type A, we position it so that the upper right

corners of the blocks of ones in are diagonally adja-
cent to the lower left corners of the blocks of ones in
(Fig. 10, Part AA). It is easy to see that is separated
from the left-hand diagonal by zeros. To place as
type B, we put it one position lower than in the previous
case (Fig. 10, Part AB). Now is separated from the
left-hand diagonal by zeros, so is of type B.

On the other hand, suppose has been placed as type
B. Then to place also as type B, we position it so that
the upper right corners of the blocks of ones in are
diagonally adjacent to the lower left corners of the blocks
of ones in (Fig. 10, Part BB). It is easy to see that is
separated from the left-hand diagonal by zeros. To
place as type A, we put it one position further to the
left than in the previous case (Fig. 10, Part BA). Now
is separated from the left-hand diagonal by zeros, so is
of type A.

We can continue the placement of copies of down
and to the left between our two diagonals in this way. It is
also easy to see how this process can be extended up and
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Fig. 11. Placement of ones in proof of Theorem 17, Part 5.

to the right of , and to all the other pairs of diagonals.
Every time we place a copy of , we have a choice of
whether to place it as type A or type B. It is a simple
calculation to show that this ensures the capacity of the
constraint is positive.

Finally, we need to show that the constraint
is satisfied once all the copies of

have been placed. That this is so is a routine, but tedious
task. Notice however that our constraints are tight: when
a type A copy of is followed by a type copy, a
horizontal run of zeros is created between the
upper blocks of the two copies of . Likewise, when a
type B copy of is followed by a type copy, a vertical
run of zeros is opened up between the right-hand
blocks in the two copies of . Notice too that we have
used the condition when placing the ’s: their
placement so close together creates horizontal and ver-
tical runs of zeros with length as small as . Finally, note
that the original diagonals are positions apart,
much greater than the constraint on zeros,
but the placement of ’s removes all these long runs of
zeros.

5. Suppose and . We
consider the constraint and show that its
capacity is positive. Part 5 of the theorem will follow from
this and Lemma 1.

The remainder of our proof is very similar to part 4
above.

Again, we fill the plane with basic right diagonals, sepa-
rated by positions. We define in the same way
as before, and consider two ways of placing ’s between
diagonals. As before, in a type A placement, is situ-
ated so that the upper-left corner of is separated from
the left-hand diagonal by zeros. The lower-right corner
of is then separated from the right-hand diagonal of the

pair by zeros. Also, as before, in a type B placement,
the upper-left corner of is separated from the left-hand
diagonal by zeros, so that the lower-right corner of

is separated from the right-hand diagonal of the pair by
zeros.

Now we consider how subsequent copies of can be
placed. Again, we can place another copy of below
and to the left of the first , either as type A or as type
B. As we describe this placement, the reader may find it
useful to refer to Fig. 11 which illustrates our argument in
the special case of the constraint .

Suppose has been placed as type A. Then to place
also as type A, we put it positions to the left and
positions below (see Fig. 11, Part AA). It is easy

to see that the upper-left corner of is separated from
the left-hand diagonal by zeros. To place as type
B, we put it one position lower than in the previous case
(Fig. 11, Part AB). Now the upper-left corner of is
separated from the left-hand diagonal by zeros, so

is of type B.
On the other hand, suppose has been placed as type

B. Then to place also as type B, we put it positions
to the left and positions below (Fig. 11, Part BB).
To place as type A, we put it one position further to
the left than in the previous case (Fig. 11, Part BA).

Again, there is sufficient flexibility to ensure the ca-
pacity is nonzero. Checking that the constraints are satis-
fied is also straightforward. Notice now that the condition

is needed so as to prevent a long run of zeros
occurring between ’s of type A and type B, and that runs
of zeros of length do occur in the arrays.

The first part of Theorem 17 states that, provided and
, we have . After this, and because

of Lemma 2, we need only consider cases where . Parts



3196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 9, SEPTEMBER 2005

2–5 of Theorem 17 refer to special cases of this problem. It is
apparent that by taking in parts 2 and 3, we recover
the result of [9] that if and only if .
In fact, the “if” part of this statement is re-proved in the course
of part 2 of our proof using compatible arrays. But note that we
do not prove the “only if” part here. Rather, we have assumed a
stronger result of [10] in the proof of Theorem 7.

It is interesting to explicitly evaluate for which constraints
of type the question of zero/positive capacity
remains open. In view of part 1 of Theorem 17 and Lemma 2,
we know that all open cases have . We divide into two
subcases: and .

In the first case, where , we have that the capacity is
positive whenever . When , our
results give no information, but we strongly suspect the capacity
is zero in all these cases. The smallest open cases are for the
constraints where we have . For each of
these, it is easy to construct ad hoc arguments like those used in
the proof of Theorem 7 to show that the capacity is indeed zero.
General methods remain to be found.

In the second case, where , the situation is slightly
more complex. First, consider the situation where

. Applying parts 3 and 5 of Theorem 17, we see that the
unresolved cases are where .
For smaller , the capacity is zero, for larger , it is positive.
Notice also that when , this range is actually empty,
so the capacity question is completely resolved in this situation.
We have the following.

Corollary 18: if and only if .

But when , the range is nonempty and there are unre-
solved cases. Of course, the constraint is covered
by the results of [9]. The smallest unresolved case is the con-
straint . Again, we believe that the capacity is zero in
all these cases.

Second, and finally, consider the situation where .
Write where , so that
where . Combining Theorem 17 part 2 (in the case

) with part 3, we discover that the unresolved cases have

The capacity is zero for smaller and positive for larger .
This range is empty (and the capacity question completely set-
tled) whenever exactly divides . Combining this with our
previous corollary, we have the following.

Corollary 19: Suppose and . Then
if and only if .

Again, the range is nonempty when does not exactly divide
. The smallest open case is the constraint . We

believe the capacity to be zero in all these open cases.

VI. GENERAL CONSTRAINTS

Our final results are for the most general two-dimensional
runlength constraints. We begin with a zero-capacity result.

Theorem 20: Let be positive integers
satisfying and . Then

.
Proof: The proof consists of several steps in which we

build up information about the structure of arrays satisfying
the constraint where and

. We will denote this constraint by . We refer the reader
back to Section III for definitions.

Claim 1: Let be an array satisfying constraint . Suppose
is not composed entirely of isolated blocks of zeros and ones.

Then there is at least one constant, non-block diagonal in .
Proof of Claim 1: We illustrate the proof of this claim in

Fig. 12, with A, B, C, D, E in that figure referring to the various
parts of the proof below.

Because is not composed entirely from isolated blocks,
must contain a array that comprises either three zeros and
a single one, or three ones and a single zero. We assume that in
fact contains the array

We will construct from this a left, nonblock diagonal of ones
in . The proof for the other seven possibilites are very similar
to this case. By shifting the array if necessary and applying the
vertical constraint on ones, we can assume that is located so
that there are runs of ones in the sets of positions

and

where . Then there are zeros in positions
and . We let denote the

largest integer such that there are ones in all positions

We have . There are zeros in all positions
with and in all positions with
.

A. There are zeros in positions and of the
array. Otherwise, if either of these positions were filled
with ones, there would be a vertical run of zeros begin-
ning in position of length less than , a
contradiction of the vertical constraint on zeros.

B. Position contains a zero. For assume the
contrary. Since there is a one in position and
zeros in positions for all , we would
have a run of zeros in row of the array, and hence
we would have that . On the other hand, there are
zeros in positions for which implies
that . This gives us a contradiction.

C. There is a one in position . For, going to the left
from this position along row are ones followed by a
zero (in position ). But we already have a run of at
least zeros in row , implying .
However, , so we must have at least ones in
the run in row . So position must contain a one.

D. There is a zero in position . For suppose
not. This position contains a one. We already know that
the position just above it contains a zero.
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Fig. 12. Illustrating the proof of Theorem 20, Claim 1, Parts A–E.

So the one in position would initiate
a vertical run of ones, ending with the one at position

. This would contradict the maximality of .
E. There is a one in position . This is the case

because column must contain a vertical run of ones
of length which contains the one in position ,
but this run cannot extend higher than position

because there is a zero in position .
So the run of ones must include position .

Now looking at Fig. 12, we see that columns and
have the same configuration as columns and did before. We
can therefore repeatedly apply the same argument as above to
deduce that there is a left, non-block diagonal of ones in the
array. Note, that the argument should be applied repeatedly in
both directions.

Claim 2: Suppose contains a constant diagonal and satis-
fies the constraint . Then the whole of is determined by this
diagonal.

Proof of Claim 2: Suppose, without loss of generality, that
the diagonal is a diagonal of ones. From the rightmost or left-
most ones of any row of the diagonal there must be horizontal
runs of exactly zeros. This creates two adjacent diagonals of
zeros of width . Now from the top-most or bottom-most zero
in any column of these diagonals, there is a vertical run of ex-
actly ones. This creates two diagonals of ones of height .
Continuing in this way, we see that the whole array is deter-
mined.

Claim 3: Let be an array satisfying constraint in which
every zero or one lies in an isolated block. Then the array con-
tains a constant block diagonal.

Proof of Claim 3: Consider an isolated block of ones
in the array. Each column in this block must contain exactly

ones, and the block must contain at least columns. Next,
consider the horizontal run of zeros that must appear directly
above this block. This run has length exactly . But this run
must terminate all the runs of ones constituted by columns of

, of which there are at least . Hence, we must have
and has columns. Thus, (and indeed any isolated

block of ones in the array) is of size . It also follows that
the run of zeros exactly covers the columns of our block.
This means that there must be a block of ones above and to

the right of and diagonally adjacent to . It is now easy to see
how a block diagonal of ones is forced in the array.

Claim 4: The capacity of a channel with the constraint is .
Proof of Claim 4: We have seen in Claims 1–3 that any

array satisfying the constraint must contain a constant diagonal
(either non-block or block) and that the entire array is deter-
mined by this diagonal. That the capacity of the constraint is
zero now follows easily. For suppose, without loss of generality,
that we have a diagonal of ones. Then row of the diagonal con-
tains at most ones and the position of these ones is determined
relative to row by one of at most shifts.

Now we present a theorem which shows that the above zero-
capacity result is tight in some cases. In particular, we show that
if the condition in Theorem 20 is replaced by the con-
dition , then the capacity can be positive. Before giving
the theorem, we need to present a lemma which generalizes The-
orem 4.

Lemma 21: Suppose and are two
-constrained arrays. Consider the

16 nonsquare arrays of the form

where and the second set of columns are shifted
up by some fixed number of positions relative to the first set
of columns, . Suppose that these arrays all satisfy
the constraint (except possibly at
the edges of the arrays). Then

Proof: We can fill the plane using arrays and as fol-
lows. First, vertically stack copies of and arbitrarily to form
columns of width . Then, for every , place
column to the right of column , but shifting up by
positions relative to . From the stated properties of the arrays

, the set of arrays so constructed will satisfy the constraint
. It is clear that there is sufficient

flexibility in the construction of the columns to ensure that the
capacity of the constraint is positive.

Theorem 22: Let be positive integers with
and . Then

Proof: We construct a pair of arrays which can be
used in Lemma 21. We only sketch the construction, and leave
verification of the details to the reader.

Let and .
Our arrays and will be of size . We define them as
follows.
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Let be an array of zeros of size an array of zeros
of size and an array of ones of size .
Let be the arrays of size given by

Let denote the array obtained by cyclically shifting
all the columns of up by positions, and likewise for .

Then we define

It is easy to check that and are suitable for use in Lemma 21
with

and
. So now we apply Lemma 21 to this pair of

arrays to obtain the result.

We illustrate the theorem with an example.

Example 23: Consider the constraint .
This constraint satisfies the conditions of Theorem 22. We have

Notice that for clarity, we have only included the positions con-
taining zeros in these arrays. All vertical runs of ones are of
length . We take in Lemma 21.

The parameters resulting from the construction in the proof
of the preceding theorem can be improved in some cases; we
omit the details.

Finally, for given and , where , we have
found some less interesting constructions which show that

for some values of that depend on . The reader can
easily find these constructions for himself.

VII. CONCLUSION AND OPEN PROBLEMS

In this paper, we have initiated the study of completely
general two-dimensional runlength constraints. We have de-
termined, for various values, whether the capacity of the

runlength constraint is zero or

positive. Given the difficulty in handling eight parameters
simultaneously, we have focussed on the following three cases
(which can, of course, be expanded using Lemma 1).

Case 1: (equal
constraints on zeros and ones).

This case is completely solved by Theorem 6, in
which we proved that if and
only if and .

Case 2: (equal
constraints horizontally and vertically).

This case is covered in Theorem 17. By Lem-
ma 2, it is sufficient to consider cases where either

and , or where .
• If and then

(Theorem 17, part 1).
• If then we distinguish between two

cases:
— . We distinguish between two sub-

cases:
* If then

(Theorem 17,
part 3).

* If we distinguish between
several further subcases:
. If and

, for some , then
(Theorem 17,

part 2).
. If and

then
(Theorem 17, part 2).

. If and
then

(Theorem 17, part 5).
. If and

, for some , then
(Theorem 17,

part 2).
. If and

then whether is zero
or positive is NOT KNOWN.

. If and
then whether

is zero or positive is NOT KNOWN.
. If and

, for some , then whether
is zero or positive is

NOT KNOWN.
— . We distinguish between two sub-

cases:
* If , then

(Theorem 17, part 4).
* If , then whether

is zero or positive is
NOT KNOWN.

Note that the case-by-case analysis in Case 2 above is consis-
tent with the analysis which follows Theorem 17.
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Case 3: and for some .
By Lemma 2, we need only distinguish between

three cases:
• If and then

(Theorem 5).
• If and then

whenever ,
and (Theorem 7).

• If and then
—If and , then

(Theorem 20).
—If

, and , then

(Theorem 22).
For most of the other parameters of the type considered in

Case 3 and which we have not specifically mentioned in this
summary, we do not currently know if the capacity is zero or
positive. This determination is left as an open problem for fur-
ther research. Some parameter sets can be resolved using tech-
niques like those we have developed, but as they are minor cases
we do not include them here. Likewise, there are many param-
eter sets of a challenging nature left open under Case 2 above.
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