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Abstract. We present a new Certificateless Public Key Encryption (CL-
PKE) scheme whose security is proven to rest on the hardness of the
Bilinear Diffie-Hellman Problem (BDHP) and that is more efficient than
the original scheme of Al-Riyami and Paterson. We then give an analysis
of Gentry’s Certificate Based Encryption (CBE) concept, repairing a
number of problems with the original definition and security model for
CBE. We provide a generic conversion showing that a secure CBE scheme
can be constructed from any secure CL-PKE scheme. We apply this
result to our new efficient CL-PKE scheme to obtain a CBE scheme that
improves on the original scheme of Gentry.
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1 Introduction

Gentry introduced the concept of Certificate Based Encryption (CBE) in [7]. His
concept provides an efficient implicit certification mechanism for PKI and allows
a form of automatic revocation. Independently, [2] introduced and developed the
notion of certificateless public key cryptography (CL-PKC). CL-PKC is designed
to overcome the key-escrow limitation of identity-based cryptography [9] without
introducing certificates and the management overheads that this entails. CL-
PKC is a model for the use of public key cryptography that is intermediate
between the identity-based and traditional PKI approaches.

On the surface, CBE and CL-PKC appear to be quite different. In [2], it was
recognized, though not explored in any detail, that the two concepts of CBE
and certificateless public key encryption (CL-PKE) are in fact related. In this
paper, we revisit the work of [2] and [7], providing more efficient schemes and
exploring the connections between the concepts of CBE and CL-PKE.

Our first contribution is a new certificateless public key encryption (CL-PKE)
scheme that improves on the main scheme of [2] in two ways. Firstly our scheme
is more efficient than the scheme in [2]. Secondly, we show that the security of



the new scheme rests on the hardness of the Bilinear Diffie-Hellman Problem
(BDHP), rather than the non-standard generalized BDHP that was the basis of
security for the scheme in [2]. Our security result is proved in the full security
model of [2].

Our second contribution is to provide a detailed analysis of the CBE concept
of [7]. We point out a number of shortcomings in the definition of CBE as
given in [7]. We repair these and then examine Gentry’s security model for
CBE. Comparing it to the model for CL-PKE given in [2] justifies us in making
small changes to Gentry’s security model. These still allow the security model
to capture the kinds of attacks seen in real-world applications.

The small changes we make to Gentry’s model also allow us to make our
third contribution: a generic conversion that takes any CL-PKE scheme as input
and produces from it a CBE scheme. The security of the CBE scheme in our
adaptation of Gentry’s model is tightly related to that of the CL-PKE scheme
in the security model of [2]. Our result shows that the two concepts – CBE and
CL-PKE – are indeed closely connected. We go on to explain why a generic
construction going in the opposite direction, starting with a secure CBE scheme
and yielding a secure CL-PKE scheme, is unlikely to be forthcoming.

Finally, we apply the generic conversion with our new CL-PKE scheme as
input. The result is a secure CBE scheme that is more efficient than the original
concrete scheme of [7].

1.1 Related Work

Kang, Park and Hahn [8] considered the signature analogue of certificate-based
encryption. Since any certifying information can always be sent along with the
actual signature, this concept seems less useful than that of CBE. Yum and Lee
[11] gave a generic construction or a certificateless signature scheme from an
ID-based signature scheme, proving the former to be secure (in an appropriate
model) if the latter is. These authors also considered a generic construction
for CL-PKE from identity-based encryption (IBE) [10] and the relationships
between IBE, CBE and CL-PKE [12]. However, none of the results concerning
the security of CL-PKE schemes proved in [10, 12] actually establishes security
in the full security model developed in [2]: certain additional restrictions are
always placed on the adversaries. For example, the Type I CL-PKE adversaries
in [10, 12] are never permitted to extract the partial private key for the challenge
identity. This restriction limiting the power of the adversary was not imposed
in [2]. Moreover, no attempt is made in [10, 12] to properly handle decryption
queries for identities whose public keys have been changed by the adversary. This
issue was dealt with in [2] for concrete schemes by developing novel knowledge-
extraction techniques. Thus the generic construction of CL-PKE schemes, secure
in the full model of [2], from IBE or CBE schemes, remains an open problem.
We return to this issue in Section 5.1.



2 Certificateless Public Key Encryption

In this section, we review the definition and security model for CL-PKE from
[2]. We also provide some criticisms of the scheme in [2].

Definition 1. [2] A CL-PKE scheme is specified by seven algorithms (Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, En-
crypt, Decrypt) such that:

– Setup is a probabilistic algorithm that takes security parameter k as input
and returns the system parameters params and master-key. The system pa-
rameters includes a description of the message space M and ciphertext space
C.

– Partial-Private-Key-Extract is a deterministic algorithm that takes params,
master-key and an identifier for entity A, IDA ∈ {0, 1}∗, as inputs. It returns
a partial private key DA.

– Set-Secret-Value is a probabilistic algorithm that takes as input params1 and
outputs a secret value xA.

– Set-Private-Key is a deterministic algorithm that takes params, DA and xA

as input. The algorithm returns SA, a (full) private key.
– Set-Public-Key is a deterministic algorithm that takes params and xA as input

and outputs a public key PA.
– Encrypt is a probabilistic algorithm that takes params, M ∈ M, PA and

IDA as inputs and returns either a ciphertext C ∈ C or the null symbol ⊥
indicating an encryption failure2.

– Decrypt is a deterministic algorithm that takes as inputs params, C ∈ C and
SA. It returns a message M ∈ M or a message ⊥ indicating a decryption
failure.

Naturally, an output M should result from applying algorithm Decrypt with inputs
params, SA on a ciphertext C generated by using algorithm Encrypt with inputs
params, PA, IDA on message M .

Algorithms Set-Private-Key and Set-Public-Key are normally run by an en-
tity A for itself, after running Set-Secret-Value. Usually, A is the only entity in
possession of SA and xA. Algorithms Setup and Partial-Private-Key-Extract are
usually run by a trusted third party, called a key generating centre (KGC) [2].

2.1 Security Model for CL-PKE

The full IND-CCA security model for CL-PKE of [2] is an extension of the
IND-ID-CCA model for IBE described in [4]. Below, we list the actions that an
1 Note that the original definition of this algorithm in [2] also takes IDA as input;

however this string is not used in defining xA in any concrete schemes, so we omit
it here.

2 The concrete encryption schemes in [2] could fail because the public key fails to have
the correct structure. A general encryption algorithm could fail because the public
key is not in the right group, for example.



IND-CCA adversary A against a CL-PKE scheme may carry out and discuss
how each action should be handled by the challenger for that adversary.

1. Extract partial private key of entity A: Challenger C responds by run-
ning algorithm Partial-Private-Key-Extract to generate DA for entity A.

2. Extract private key for entity A: If A’s public key has not been replaced
then C can respond by running algorithm Set-Private-Key to generate the
private key SA for entity A. It is assumed, as in [2], that the adversary does
not make such queries for entities whose public keys have been changed.

3. Request public key of entity A: C responds by running algorithm Set-
Public-Key to generate the public key PA for entity A (first running Set-
Secret-Value for A if necessary).

4. Replace public key of entity A: Adversary A can repeatedly replace the
public key PA for any entity A with any value P ′A of its choice. The current
value of an entity’s public key is used by C in any computations or responses
to A’s requests.

5. Decryption query for ciphertext C and entity A: In the model of [2],
adversary A can issue a decryption query for any entity and any ciphertext.
It is assumed in [2] that C should properly decrypt ciphertexts, even for
those entities whose public keys have been replaced. This is a rather strong
property for the security model (after all, the challenger may no longer know
the correct private key). However, it ensures that the model captures the fact
that changing an entity’s public key to a value of the adversary’s choosing
may give that adversary an advantage in breaking the scheme. For further
discussion of this feature, see [2].

The IND-CCA security model of [2] distinguishes two types of adversary. A
Type I adversary is able to change public keys of entities at will, but does not
have access to the master-key. A Type II adversary is equipped with master-
key but is not allowed to replace public keys. This adversary models security
against an eavesdropping KGC. The security game proceeds in three phases; in
the middle challenge phase, the adversary selects a challenge identifier IDch and
corresponding public key Pch, and is given a challenge ciphertext C∗. We provide
a detailed description of the two adversary types and the security game next.
CL-PKE Type I IND-CCA Adversary: Adversary AI does not have access
to master-key. However, AI may request public keys and replace public keys with
values of its choice, extract partial private and private keys and make decryption
queries, all for identities of its choice. AI cannot extract the private key for IDch

at any point, nor request the private key for any identifier if the corresponding
public key has already been replaced. AI cannot both replace the public key for
the challenge identifier IDch before the challenge phase and extract the partial
private key for IDch in some phase. Furthermore, in Phase 2, AI cannot make a
decryption query on the challenge ciphertext C∗ for the combination (IDch, Pch)
that was used to encrypt Mb.
CL-PKE Type II IND-CCA Adversary: Adversary AII does have access
to master-key, but may not replace public keys of entities. Adversary AII can



compute partial private keys for itself, given master-key. It can also request public
keys, make private key extraction queries and decryption queries, all for identities
of its choice. The restrictions on this type of adversary are that it cannot replace
public keys at any point, nor extract the private key for IDch at any point.
Additionally, in Phase 2, AII cannot make a decryption query on the challenge
ciphertext C∗ for the combination (IDch, Pch) that was used to encrypt Mb.

Definition 2. A CL-PKE scheme is said to be IND-CCA secure if no polyno-
mially bounded adversary A of Type I or Type II has a non-negligible advantage
in the following game:
Setup: C takes a security parameter k as input and runs the Setup algorithm. It
gives A the resulting system parameters params. If A is of Type I, then C keeps
master-key to itself, otherwise, it gives master-key to A.
Phase 1: A issues a sequence of requests described above. These queries may
be asked adaptively, but are subject to the rules on adversary behaviour defined
above.
Challenge Phase: Once A decides that Phase 1 is over it outputs the challenge
identifier IDch and two equal length plaintexts M0,M1 ∈ M. Again, the adver-
sarial constraints given above apply. C now picks a random bit b ∈ {0, 1} and
computes C∗, the encryption of Mb under the current public key Pch for IDch.
Then C∗ is delivered to A.
Phase 2: Now A issues a second sequence of requests as in Phase 1, again
subject to the rules on adversary behaviour above.
Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if
b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b = b′]− 1

2 |.

2.2 The Concrete Scheme of Al-Riyami and Paterson

In [2], we presented a concrete IND-CCA secure CL-PKE scheme, named FullCL-
PKE. The scheme is an adaptation of the pairing-based IBE scheme of [4]; we do
not replicate it here. Instead we list three drawbacks of the scheme FullCL-PKE:

1. FullCL-PKE requires three pairing calculations for each encryption (though
two of these are required to check the structure of the public key and all
three can be eliminated for any subsequent encryptions to the same party).
It would be preferable to have a less computationally intensive CL-PKE
scheme.

2. Each public key in FullCL-PKE consists of two elements of a groupG1. Shorter
keys would be preferable.

3. The security of FullCL-PKE rests on the hardness of the Generalized Bilinear
Diffie-Hellman Problem (GBDHP). This problem is less well-established and
no harder than the BDHP introduced in [4]. It would be preferable to have
a CL-PKE scheme with a more solid security foundation. We will comment
further on this point in Section 3.3.



3 A New CL-PKE Scheme

In this section we present a new CL-PKE scheme and study its security. The
scheme can be regarded as resulting from the optimization of a double encryption
construction for CL-PKE, using the IBE scheme of [4] and the ElGamal public
key encryption scheme [5] as components. This immediately suggests a generic
construction for a CL-PKE scheme from the combination of an IBE scheme and
a (normal) public key encryption (PKE) scheme. Indeed such a construction is
possible (and was first suggested to us by Boneh), but it seems to be difficult to
prove the resulting scheme secure in the full model of [2] using standard security
assumptions about the component IBE and PKE schemes. For that reason we
have concentrated here on the concrete scheme and its proof of security.

Before we give our new scheme, we provide some background on pairings and
a related computational problem.

3.1 Review of Pairings

Let G1 denote an additive group of prime order q and G2 a multiplicative group
also of order q. We let P denote a generator of G1. A pairing is a map ê :
G1 ×G1 → G2 with the following properties:

1. Bilinear: given any Q,W ∈ G1 and a, b ∈ Zq, we have

ê(aQ, bW ) = ê(Q,W )ab = ê(abQ,W ) etc.

2. Non-degenerate: ê(P, P ) 6= 1G2 .
3. Efficiently computable.

The map ê is usually derived from either the Weil or Tate pairing on an
elliptic curve over a finite field; see [2, 4] for further details and references. The
following computational problem was introduced in [4]:
Bilinear Diffie-Hellman Problem (BDHP): Let G1, G2, P and ê be as
above. The BDHP in 〈G1,G2, ê〉 is as follows: Given 〈P, aP, bP, cP 〉 with uni-
formly random choices of a, b, c ∈ Z∗q , find ê(P, P )abc ∈ G2.
BDH Parameter Generator: As in [4], a randomized algorithm IG is a BDH
parameter generator if IG: (1) takes as input security parameter k ≥ 1, (2) runs
in polynomial time in k, and (3) outputs the description of groups G1, G2 of
prime order q and a pairing ê : G1 × G1 → G2. Formally, the output of the
algorithm IG(1k) is 〈G1,G2, ê〉.

3.2 The New Scheme

The algorithms for our new CL-PKE scheme FullCL-PKE? are:
Setup: This algorithm runs as follows:

1. Run IG on input k to generate output 〈G1,G2, ê〉.
2. Choose an arbitrary generator P ∈ G1.



3. Select a random master-key s ∈ Z∗q and set P0 = sP .
4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗1, H2 : G2 → {0, 1}n,

H3 : {0, 1}n × {0, 1}n → Z∗q , H4 : {0, 1}n → {0, 1}n and H5 : G1 → {0, 1}n.
Here n will be the bit-length of plaintexts.

The system parameters are params= 〈G1,G2, ê, n, P, P0,H1,H2,H3,H4, H5〉.
The master-key is s ∈ Z∗q . The message space is M = {0, 1}n and the ciphertext
space is C = G1 × {0, 1}2n.
Partial-Private-Key-Extract: This algorithm takes as input an identifier IDA ∈
{0, 1}∗ for entity A, and carries out the following steps to construct the partial
private key for A:

1. Compute QA = H1(IDA) ∈ G∗1.
2. Output the partial private key DA = sQA ∈ G∗1.

Set-Secret-Value: This algorithm takes as inputs params and an identifier IDA. It
selects a random xA ∈ Z∗q and outputs xA as A’s secret value.
Set-Private-Key: This algorithm takes as inputs params, entity A’s partial private
key DA and A’s secret value xA ∈ Z∗q . The output of the algorithm is the pair
SA = 〈DA, xA〉. So the private key for A is just the pair consisting of the partial
private key and the secret value.
Set-Public-Key: This algorithm takes params and entity A’s secret value xA ∈ Z∗q
as inputs and constructs A’s public key as PA = xAP .
Encrypt: To encrypt M ∈ M for entity A with identifier IDA ∈ {0, 1}∗ and a
public key PA, perform the following steps:

1. Check that PA is in G∗1, if not output ⊥ .
2. Compute QA = H1(IDA) ∈ G∗1.
3. Choose a random σ ∈ {0, 1}n.
4. Set r = H3(σ,M).
5. Compute and output the ciphertext:

C = 〈rP, σ ⊕H2(ê(QA, P0)r)⊕H5(rPA),M ⊕H4(σ)〉.

Notice that H2(ê(QA, P0)r) is identical to the mask used in the IBE scheme in
[4], while H5(rPA) is a mask computed using the term rPA used in the ElGamal
encryption scheme.
Decrypt: Suppose C = 〈U, V, W 〉 ∈ C. To decrypt this ciphertext using the private
key SA = 〈DA, xA〉:
1. Compute V ⊕H2(ê(DA, U))⊕H5(xAU) = σ′.
2. Compute W ⊕H4(σ′) = M ′.
3. Set r′ = H3(σ′,M ′) and test if U = r′P . If not, output ⊥ and reject the

ciphertext. Otherwise, output M ′ as the decryption of C.

When C is a valid encryption of M using PA and IDA, it is easy to see that
decrypting C will result in an output M ′ = M . This concludes the description
of FullCL-PKE?.



Theorem 1. Let hash functions Hi, 1 ≤ i ≤ 5, be random oracles. Suppose
further that there is no polynomially bounded algorithm that can solve the BDHP
with non-negligible advantage. Then FullCL-PKE? is IND-CCA secure.

A sketch of the proof of this result is given in Appendix A. A full proof can
be found in [1].

3.3 Comparing FullCL-PKE? to FullCL-PKE

The scheme FullCL-PKE of [2] is in many ways superseded by our new scheme
FullCL-PKE?:

1. The new scheme only requires one pairing computation per encryption. The
only test of validity for public keys PA in FullCL-PKE? is a simple group
membership test PA ∈ G∗1, while testing validity in FullCL-PKE requires two
pairing computations. As with FullCL-PKE, the single pairing computation
can be replaced with an exponentiation in G2 if repeated encryption to the
same recipient is performed. Decryption costs for the two schemes are similar.

2. Public keys in FullCL-PKE? consist of only one element of G1 rather than
the two required in FullCL-PKE.

3. FullCL-PKE? has better security guarantees as its security is related to the
BDHP, rather than the GBDHP (in which the output is a pair 〈Q, ê(P, Q)abc〉
for input aP , bP , cP ). The GBDHP is an easier problem than the BDHP, in
that an algorithm to solve the latter can be used to solve the former simply
by setting Q = P . Note also that there do exist triples 〈G1,G2, ê〉 for which
the GBDHP is trivial, but the BDGHP is presumed to be hard. For example,
if the order q of G1 and G2 is not prime, but instead divisible by a small
prime q0, then to solve the GBDHP with non-negligible probability 1/q0, we
can select Q = q

q0
P and guess a solution 〈Q, ê(P, Q)x〉, where x is picked at

random from {0, 1, . . . , q0 − 1}. It would be interesting to determine if the
BDHP and GBDHP are of equal hardness of in the groups of prime order
usually selected for applications.

There is one further difference between FullCL-PKE and FullCL-PKE? that
we note here. The public keys in the scheme FullCL-PKE, being of the form
〈XA = xAP, YA = xP0〉, are constructed with reference to a specific P0 and hence
a particular KGC. Therefore, the decrypting party can mandate a particular
centralised point of control (that is, a particular KGC) from whom its partial
private keys will be obtained. On the other hand, the public keys in the scheme
FullCL-PKE? do not have this restriction. This means that an encrypting party
can select an arbitrary KGC (so long as it uses the same group G1 in its params
as the decrypting party does – though this restriction can be removed using
a slightly less efficient scheme) and force the decrypting party to obtain its
partial private key from that KGC. The merits and demerits of this property
are discussed further in [1].



4 Certificate-Based Encryption

We now turn to a discussion of Certificate-Based Encryption (CBE), as intro-
duced in [7]. In certificate-updating CBE, a Certification Authority (CA) is re-
sponsible for pushing fresh certificates to clients in each time period. Informally,
a client needs to be in possession of its current certificate in order to be able to
decrypt ciphertexts sent to it by other parties during that time period.

We begin by noting some incompatibilities between the generic definition of
CBE and the concrete CBE schemes in [7]. We then present a simplified and
corrected definition for CBE.

1. As can be seen from the first property in [7, Definition 1], combining an IBE
scheme with a standard public key encryption (PKE) scheme is explicitly
required when building a CBE scheme. This limits the ways in which CBE
schemes can be constructed and, as we shall see, is an unnecessary restriction.

2. The first property of [7, Definition 1] requires that PKIBE be an identifiable
element of the IBE scheme’s parameters that can be labelled as a public key
(notice that PKIBE is also used as a distinct computational element during
encryption). Given that not every IBE scheme need have this property, this
definition limits the IBE schemes that can be used to build CBE schemes.
Again, the limitation is unnecessary.

3. Although the combination of IBE and PKE is required by the generic defini-
tion of CBE, none of the concrete CBE schemes in [7] actually makes use of
explicitly defined IBE or PKE schemes in their construction. It is fairly clear
how the concrete CBE schemes have evolved from the IBE scheme of [4], but
strictly speaking, none of them meet the generic definition in [7, Definition
1].

4. The generic definition of CBE in [7, Definition 1] uses six algorithms GenIBE,
GenPKE, Upd1, Upd2, Enc and Dec, while the concrete schemes in [7, Section
3] use instead five algorithms Setup, Certification, Encryption and Decryption.
Essentially algorithms Upd1 and Upd2 are combined to yield algorithm Cer-
tification, but there are no explicit key generation algorithms in the concrete
schemes.

To summarize, there are incompatibilities in [7] between the definition of
CBE on the one hand and the concrete CBE schemes on the other, as well as
a number of unnecessary restrictions in the CBE definition. We now provide an
alternative definition for CBE. The concrete schemes in [7] are compatible with
our simplified definition.

Definition 3. A (certificate-updating) CBE scheme is defined by six algorithms
(Setup, Set-Key-Pair, Certify, Consolidate, Enc, Dec) such that:

– Setup is a probabilistic algorithm taking as input a security parameter k. It
returns SKCA (the certifier’s master-key) and public parameters params that
include the description of a string space Λ. Usually, this algorithm is run by
the CA.



– Set-Key-Pair is a probabilistic algorithm that takes params as input. When
run by a client, it returns a public key PK and a private key SK.

– Certify is a deterministic certification algorithm that takes as input 〈SKCA,
params, τ , λ ∈ Λ, PK〉. It returns Cert′τ , which is sent to the client. Here
τ is a string identifying a time period, while λ contains other information
needed to certify the client such as the client’s identifying information, and
PK is a public key.

– Consolidate is a deterministic certificate consolidation algorithm taking as
input 〈params, τ , λ, Cert′τ 〉, and optionally Certτ−1. It returns Certτ , the
certificate used by a client in time period τ .

– Enc is a probabilistic algorithm taking as inputs 〈τ , λ, params, PK, M〉,
where M ∈M is a message. It returns a ciphertext C ∈ C for message M3.

– Dec is a deterministic algorithm taking 〈params, Certτ , SK, C〉 as input in
time period τ . It returns either a message M ∈ M or the special symbol ⊥
indicating a decryption failure.

Naturally, we require that if C is the result of applying algorithm Enc with input
〈τ , λ, params, PK, M〉 and 〈SK, PK〉 is a valid key-pair, then M is the result
of applying algorithm Dec on input 〈params, Certτ , SK, C〉, where Certτ is the
output of the Certify and Consolidate algorithms on input 〈SKCA, params, τ ,
λ ∈ Λ, PK〉. We write:

DecCertτ ,SK(Encτ,λ,PK(M)) = M.

We note that a concrete CBE scheme need not involve certificate consolida-
tion – see [7, Section 3] for examples. In this situation, algorithm Consolidate
will simply output Certτ = Cert′τ .

4.1 Security Model for CBE

In this section, we present an amended security model for CBE, in accordance
with our new definition for CBE. We will comment later on how this model
can be further strengthened; however it is not our intention here to completely
overhaul the work of [7].

As in [7], security for CBE is defined using two different games and the
adversary chooses which game to play. In Game 1, the adversary models an
uncertified entity and in Game 2, the adversary models the certifier in possession
of the master-key SKCA attacking a fixed entity’s public key.
CBE Game 1: The challenger runs Setup, gives params to the adversary A1 and
keeps SKCA to itself. The adversary then interleaves certification and decryption
queries with a single challenge query. These queries are answered as follows:

– On certification query 〈τ, λ, PK, SK〉, the challenger checks that λ ∈ Λ and
that 〈PK, SK〉 is a valid key-pair. If so, it runs Certify on input 〈SKCA,
params, τ , λ, PK〉 and returns Cert′τ ; else it returns ⊥ .

3 We assume that Enc might also output ⊥ if PK is not a valid public key.



– On decryption query 〈τ, λ, PK, SK, C〉, the challenger checks that λ ∈ Λ
and that 〈PK,SK〉 is a valid key-pair. If so, it generates Certτ by using
algorithms Certify and Consolidate with inputs 〈SKCA, params, τ , λ, PK〉,
and outputs DecCertτ ,SK(C); else it returns ⊥ .

– On challenge query 〈τch, λch, PKch, SKch,M0,M1〉, where M0,M1 ∈ M are
of equal length, the challenger checks that λch ∈ Λ and that 〈PKch, SKch〉
is a valid key-pair. If so, it chooses a random bit b and returns C∗ =
Encτch,λch,PKch(Mb); else it returns ⊥ .

Finally, A1 outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′

and 〈τch, λch, PKch, SKch, C∗〉 was not the subject of a decryption query after
the challenge, and 〈τch, λch, PKch, SKch〉 was not the subject of any certification
query. We define A1’s advantage in this game to be Adv(A1) := 2|Pr[b = b′]− 1

2 |.
CBE Game 2: The challenger runs Setup, gives params and SKCA to the adver-
saryA2. The challenger then runs Set-Key-Pair to obtain a key-pair 〈PKch, SKch〉
and gives PKch to the adversary A2. The adversary then interleaves certification
and decryption queries with a single challenge query. These queries are answered
as follows:

– On decryption query 〈τ, λ, C〉, the challenger checks that λ ∈ Λ. If not, it re-
turns ⊥ . If so, it generates Certτ by using algorithms Certify and Consolidate
with inputs 〈SKCA, params, τ , λ, PKch〉. It then outputs DecCertτ ,SKch

(C).
– On challenge query 〈τch, λch,M0,M1〉, the challenger checks that λch ∈ Λ.

If so, it chooses random bit b and returns C∗ = Encτch,λch,PKch(Mb); else it
returns ⊥ .

Finally, A2 outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′

and 〈τch, λch, C∗〉 was not the subject of a decryption query after the challenge.
We define A2’s advantage in this game to be Adv(A2) := 2|Pr[b = b′]− 1

2 |.
Definition 4. A certificate-updating CBE scheme is said to be secure against
adaptive chosen ciphertext attack (or IND-CBE-CCA secure) if no probabilistic
polynomial-time adversary has non-negligible advantage in either CBE Game 1
or CBE Game 2.

Let us now analyse the CBE security model, and compare it to Gentry’s
original model in [7]. The only technical difference between our CBE security
model and that of [7] is in Game 2. In Gentry’s model, the Game 2 adversary
is allowed to specify a fresh params in each of its queries. It also supplies the
CBE master-key SKCA in decryption queries, so that the challenger is able to
provide decryptions. In our model, params and the master-key SKCA are fixed
at the beginning of Game 2, and are supplied to the adversary. In both models,
the Game 2 adversary attacks a fixed key-pair that is specified by the challenger.
We argue that, while the model of [7] is more flexible in Game 2, our adaptation
accurately models the kinds of attacks that might be attempted by a CA. One
would not expect a CA to change its public parameters on a frequent basis;
rather it is more natural to model a CA with fixed public parameters and in
possession of the master-key.



In the next section, we will show a generic conversion from CL-PKE to CBE
that preserves security. Essentially, this conversion maps CL-PKE to CBE by
using extended identifiers in the CL-PKE scheme, while the certificates in the
CBE scheme are obtained from the partial private keys in the CL-PKE scheme.
The conversion process naturally highlights some strengths and weaknesses in
the CBE security model of [7]:

1. A CBE Game 1 adversary must provide a private key SK along with the
corresponding public key PK in all of its queries. This enables the challenger
to handle decryption queries. By contrast, in CL-PKE, a Type I adversary is
allowed to change an entity’s public key without needing to show the private
key. This gives the adversary more flexibility. For example, the adversary can
replace the public key of one entity with that of another (without knowing
the corresponding private key). The proofs of security for CL-PKE schemes
in [3] and the full version of this paper handle decryption queries using special
purpose knowledge extractors. The proof of security for the concrete scheme
FullCBE in [7] is also able to remove the requirement of showing the private
key.

2. A CBE Game 2 adversary does not get to choose a challenge public key
to attack. Instead, it is given a specific public key by the challenger at the
start of the game. This is unlike a CL-PKE Type II adversary, who has the
freedom to work with multiple public keys and to select any one of them for
the challenge query.

3. By contrast, the CBE Game 2 adversary in [7] is allowed to work with
multiple values of params and the master-key. So this adversary can change
the CBE scheme in each query. Both our CBE Game 2 adversary and a
Type II CL-PKE adversary are given a fixed params and the master-key
at the start of the game. This allows the adversary to ‘break’ that part of
the scheme which the trusted third party is always able to break. We have
already justified our making this restriction in CBE above.

5 CBE from CL-PKE

In this section, we present a construction for a CBE scheme using the algorithms
of a generic CL-PKE scheme as components. After providing the construction,
we prove that the resulting CBE scheme is IND-CBE-CCA secure (according to
Definition 4), provided the CL-PKE scheme is IND-CCA secure (in the sense of
Definition 2).

Suppose then that ΠCL is a CL-PKE scheme with algorithms SetupCL,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, En-
crypt and Decrypt. We define a CBE scheme ΠCBE by defining the six CBE al-
gorithms (SetupCBE, Set-Key-Pair, Certify, Consolidate, Enc, Dec) in terms of the
CL-PKE algorithms.

– SetupCBE: This algorithm takes a security parameter k and returns SKCA

and public parameters paramsCBE that includes the description of a string



space Λ. We run algorithm SetupCL to obtain master-keyCL and paramsCL.
We set SKCA of ΠCBE to be master-keyCL. We allow Λ to be any subset
of {0, 1}∗. We then define paramsCBE by extending paramsCL to include a
description of Λ.

– Set-Key-Pair: For a client A, this algorithm takes paramsCBE as input. We
extract paramsCL from paramsCBE then run Set-Secret-Value and then Set-
Public-Key of ΠCL to obtain values xA and then PA. The output 〈PK, SK〉
is defined to be the pair 〈PA, xA〉.

– Certify: This algorithm takes as input 〈SKCA, paramsCBE, τ, λ, PK〉. We ex-
tract paramsCL from paramsCBE and obtain master-keyCL from SKCA. We
then set ID′A = paramsCBE‖τ‖λ‖PK and run algorithm Partial-Private-Key-
Extract of ΠCL on input 〈paramsCL,master-keyCL, ID′A〉 to obtain a partial
private key DA. The output Cert′τ is defined to be DA.

– Consolidate: This algorithm takes as input 〈paramsCBE, τ, λ, Cert′τ 〉. It simply
outputs the value Cert′τ .

– Enc: This algorithm takes 〈τ, λ, paramsCBE, PK, M〉 as input. Here, we as-
sume M ∈ M, the message space for ΠCL. We extract paramsCL from
paramsCBE. We set ID′A = paramsCBE‖τ‖λ‖PK and use the Encrypt algo-
rithm of ΠCL with input 〈paramsCL,M, PK, ID′A〉 to obtain a ciphertext
C ∈ C. The output of Enc is defined to be C.

– Dec: This algorithm takes 〈paramsCBE, Certτ , SK, C〉 as input in time period
τ . We extract paramsCL from paramsCBE, set DA = Certτ , set xA = SK,
and run algorithm Set-Private-Key of ΠCL on input 〈paramsCL, DA, xA〉 to
obtain a private key SA. Finally, we run algorithm Decrypt of ΠCL on input
〈paramsCL, C, SA〉 to obtain the output of algorithm Dec.

It is evident from the construction that the message and ciphertext spaces of
ΠCBE are the same as those of ΠCL. It’s also clear that partial private keys in
ΠCL are (roughly speaking) transformed into certificates in ΠCBE. In the CBE
scheme, we allow Λ to be any subset of {0, 1}∗ for maximum flexibility, while
identifiers of the form paramsCBE‖τ‖λ‖PK where λ ∈ Λ are used in the CL-PKE
scheme.

Next is our main theorem about the IND-CBE-CCA security of the CBE
scheme constructed using a CL-PKE scheme as above.

Theorem 2. Suppose that ΠCL is an IND-CCA secure CL-PKE scheme, and
suppose that ΠCL is used to build a CBE scheme ΠCBE as above. Then ΠCBE

is IND-CBE-CCA secure.

Proof. The proof can be found in Appendix B. The proof demonstrates a tight
relationship between the advantage of a CBE adversary against ΠCBE and that
of a CL-PKE adversary against ΠCL.

It can be seen from examining Appendix B that the security argument used
there to prove the CBE scheme secure does not require the use of private keys
SK from the CBE scheme in answering any queries. It is therefore possible to
prove that ΠCBE is secure in a somewhat stronger security model than we have



developed in Section 4.1. In the stronger model, the adversary is not required to
show any private keys when making queries. As well as being stronger, this seems
like a more natural model of real adversarial behaviour. The original model of
[7] can also be strengthened in the same way. Thus we see that the CL-PKE
concept can lead to improvements in the security of CBE schemes.

5.1 CL-PKE from CBE?

By composing the generic constructions of an IBE scheme from a CBE scheme
and a CL-PKE scheme from an IBE scheme in [12], it is possible to use the six
algorithms of a generic CBE scheme to construct a CL-PKE scheme. The overall
construction uses the encryption and decryption algorithms of the IBE scheme
twice in defining the corresponding algorithms of the CL-PKE scheme. The KGC
is responsible for setting the keys and parameters for one pair of encryption and
decryption algorithms, while individual users control the setting for the other
pair. This ensures that the key-escrow property of the IBE scheme is overcome.
Note, however, that the security results of [12] only establish the security of the
CL-PKE scheme in a security model that is significantly weaker than the full
CL-PKE security model developed in [2] and reproduced here in Section 2.1.
So the generic construction of a secure CL-PKE scheme from a CBE scheme
remains an open problem.

One might consider the direct construction of a CL-PKE scheme from a single
instance of a generic CBE scheme, that is, without going via an intermediate IBE
scheme and using the algorithms of the CBE scheme only once in defining the CL-
PKE scheme. In a generic construction, the Partial-Private-Key-Extract algorithm
of the CL-PKE scheme would presumably need to be constructed from the Certify
algorithm of the CBE scheme. Then one obstacle to a generic construction is that
a CBE scheme requires certain parameters (namely τ and PK) to be included
in the inputs to the Certify algorithm, while these are not provided as inputs
to the Partial-Private-Key-Extract algorithm in a CL-PKE scheme. This would
mean that the necessary parameters would not in general be available as inputs
to the Certify algorithm. This implies an important functional difference between
the CBE and CL-PKE concepts: in CBE, the algorithm Set-Key-Pair needs to
be run before Certify, while in CL-PKE, the corresponding algorithm Partial-
Private-Key-Extract can be run before or after algorithm Set-Public-Key. In this
respect, CL-PKE is more flexible than CBE.

We note that if one is prepared to consider only the special class of CL-PKE
schemes in which identifiers include public keys, then one can construct a (spe-
cial) CL-PKE scheme generically from a single instance of a CBE scheme. One
trick needed in the construction is to set τ to a fixed value for every CBE certi-
fication query. This kind of CL-PKE scheme was considered in [2], where it was
shown that the binding technique allows the CL-PKE scheme to attain a level
of trust closer to that of a traditional PKI. Even so, to prove this scheme secure,
one must further modify the CBE security model to remove the requirement on
the adversary to supply private keys SK in queries. One must also restrict the



CL-PKE Type I adversary to not extract the partial private key for the chal-
lenge identifier, to prevent a corresponding CBE adversary from having to make
a disallowed certification query. This means that the proof would not be in the
full security model of [2].

It may well be possible to modify any particular concrete CBE scheme to
produce a CL-PKE scheme that can be proven secure. For example, one might
omit certain inputs to the Certify and Consolidate algorithms in order to define
Partial-Private-Key-Extract. This is certainly true of the scheme FullCBE of [7].
However, this is not the same as obtaining a truly generic, security-preserving
construction of one primitive from the other. Our discussion in this section points
to the fact that, while similar in many respects, CBE and CL-PKE are not
equivalent concepts. Indeed, we suspect that the generic construction of a fully
secure CL-PKE scheme from a CBE scheme may be impossible. We reiterate
that this does not contradict the result of Yum and Lee in [12], because they
did not use the full security model of [2] when studying the security of their
CL-PKE constructions.

5.2 A New CBE Scheme

Our generic construction in Section 5 applies to any CL-PKE scheme and pro-
duces an IND-CBE-CCA secure CBE scheme. For example, it can be applied to
FullCL-PKE of [2] or to the scheme FullCL-PKE? developed in Section 3. Let us
denote the CBE scheme obtained from FullCL-PKE? by FullCBE?. We do not give
this scheme explicitly here. Instead we merely note that FullCBE? is more com-
putationally efficient than the scheme FullCBE of [7], requiring only one pairing
computation for encryption compared to the two needed in FullCBE.

6 Summary

In this paper, we have examined the relationship between the separate but re-
lated concepts of CBE [7] and CL-PKE [2]. We have given a generic construction
producing a secure CBE scheme from a secure CL-PKE scheme. In order to ob-
tain this construction, we have had to analyze and repair the CBE definition
and security model. We have also given a new, secure CL-PKE scheme FullCL-
PKE? that improves on the scheme FullCL-PKE of [2]. The generic construction
applied to FullCL-PKE? produces the scheme FullCBE?, which is computationally
superior to the scheme FullCBE of [7].
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A Sketch Proof of Theorem 1

We provide a sketch of the main ideas in the proof of Theorem 1; the details can
be found in [1]. We need to introduce five intermediate encryption schemes. The
first, BasicCL-PKE?, is a simpler version of FullCL-PKE? which omits the Fujisaki-
Okamoto hybridisation technique [6]. We also make use of the schemes BasicPub
and BasicPubhy from [4], and we introduce two ElGamal-like schemes called ElG-
BasicPub and ElG-HybridPub. The second of these is obtained from the first by
applying the technique of [6]. A key-pair in ElG-BasicPub is of the form 〈PA, xA〉
and the encryption of message M is defined to be C = 〈rP, M ⊕H5(rPA)〉 for r
selected at random from Z∗q .

As in [3], the proof of the theorem is performed in two parts. We relate
the advantage of a Type I or Type II attacker against FullCL-PKE? to that of
an algorithm to solve BDHP or CDHP respectively. We first consider a Type I
adversary.
Type I adversary: We provide a reduction relating the IND-CCA security
of FullCL-PKE? to the IND-CPA security of the standard PKE schemes ElG-
HybridPub and BasicPubhy. The reduction is similar to the one provided in [3],
but simulates H5 in a special way to ensure that it behaves consistently in
the course of the attack. This reduction also makes use of a special-purpose
knowledge extraction algorithm to handle decryption queries. Furthermore, in
order for this knowledge extractor to have a high success probability, we require



(and prove) that the scheme BasicCL-PKE is OWE secure if the BDHP is hard.
Thereafter, we use a series of fairly standard results to reduce the security of
ElG-HybridPub and BasicPubhy to the hardness of the CDHP in G1 or BDHP in
〈G1,G2, ê〉, respectively.
Type II adversary: We show that the IND-CCA security of FullCL-PKE? can
be reduced to the usual IND-CCA security of a related (normal) public key
encryption scheme ElG-HybridPub. The security of ElG-HybridPub is reduced to
that of a second public key encryption scheme ElG-BasicPub against OWE ad-
versaries using results of [6]. Finally, we relate the security of ElG-BasicPub to
the hardness of the CDHP in G1.

Since any algorithm to solve the CDHP in G1 (output by IG(k)) can be used
to solve the BDHP in 〈G1,G2, ê〉, we finally have that the security of FullCL-
PKE? is related to the hardness of the BDHP. For the concrete relationship we
refer the reader to the full version of this paper.

B Proof of Theorem 2

We begin by considering in detail the case of a Game 1 adversary against ΠCBE.
Let A1 be a Game 1 IND-CCA adversary against ΠCBE with advantage ε.

We show how to construct from A1 a Type I IND-CCA adversary BI against
ΠCL. Let C denote a ΠCL-challenger against BI . C begins by supplying BI with
the parameters of ΠCL. BI mounts an IND-CCA attack on ΠCL using help from
A1 as follows.

Adversary BI simulates the algorithm SetupCBE of ΠCBE for A1. This is
done by BI setting Λ to be an arbitrary subset of {0, 1}∗ and paramsCBE to
be an extension of paramsCL which includes a description of Λ. BI then gives
paramsCBE to A1. Now A1 launches its attack, and BI launches Phase 1 of its
attack. AI interleaves queries of three types, during which BI transitions from
Phase 1 to the Challenge Phase and on to Phase 2 in a manner to be specified
below. These queries are handled by BI as follows:

– On certification query 〈τ, λ, PK, SK〉, adversary BI makes a replace public
key query for the entity with identifier ID′A = paramsCBE‖τ‖λ‖PK, replacing
the public key with the value PK. Then BI makes a partial-private-key
extract query to C for the identifier ID′A and returns the resulting partial
private key to BI .

– On decryption query 〈τ, λ, PK, SK, C〉, BI makes a replace public key query
for the entity with identifier ID′A = paramsCBE‖τ‖λ‖PK, replacing the public
key with the value PK. Then BI makes a decryption query on ciphertext C
for the entity with identifier ID′A to C. BI relays C’s response to A1.

– On receiving a challenge query 〈τch, λch, PKch, SKch,M0,M1〉, adversary
BI makes a replace public key query for the entity with identifier ID′ch =
paramsCBE‖τch‖λch‖PKch, replacing the public key with the value PKch.
Then BI terminates Phase 1 of its attack and enters the challenge phase,
sending ID′ch and messages M0, M1 to C. Challenger C responds with a chal-
lenge ciphertext C∗ which is the encryption of message Mb (for some bit b)



for identifier ID′ch and public key PKch in the scheme ΠCL. Then BI forwards
C∗ to A1 as the response to A1’s challenge query and begins Phase 2 of its
attack. It is easy to see from the definition of ΠCBE that C∗ is equal to the
output of algorithm Enc of ΠCBE on input 〈τch, λch, paramsCBE, PKch,Mb〉.

We further insist that, if BI is forced during the course of its simulation to replace
the public key for ID′ch before the challenge phase and make a partial-private-key
extract query on ID′ch in some phase, then BI aborts. Likewise, we insist that if
BI is in Phase 2 and is forced to relay a decryption query on ciphertext C∗ for
identifier ID′ch and public key PKch, then BI aborts. Since ID′ch is the challenge
identifier relayed to BI ’s challenger and C∗ is the challenge ciphertext, these
abort conditions ensure that BI is a well-behaved CL-PKE Type I adversary
whenever it does not abort.
Guess: Eventually, A1 should make a guess b′ for b. Then BI outputs b′ as its
guess for b.
Analysis: We now analyze the behaviour of BI and A1 in this simulation. We
claim that if algorithm BI does not abort during the simulation then algorithm
A1’s view is identical to its view in the real attack. Moreover, if BI does not
abort then 2|Pr[b = b′] − 1

2 | = ε. We justify this claim as follows. Adversary
BI ’s responses to decryption and certification queries are as seen by A1 in a real
attack, provided of course that BI does not abort. Furthermore, the challenge
ciphertext C∗ is a valid ΠCBE encryption of Mb where b ∈ {0, 1} is random.
Thus, by definition of algorithm A1 we have that 2|Pr[b = b′]− 1

2 | = ε.
The probability that BI does not abort during the simulation remains to be

calculated. BI can abort for two reasons. The first reason is that BI may be
forced to replace the public key for ID′ch before the challenge phase and make
a partial-private-key extract query on ID′ch in some phase. This combination of
replace public key query and partial-private-key extract query can only arise
from A1 making a Certify query on an input 〈τch, λch, PKch, SKch〉. But this is
exactly the certification query which A1 is forbidden from making. So this event
never occurs in BI ’s simulation. The second reason is that BI may be forced to
relay a decryption query on ciphertext C∗ for identifier ID′ch and public key PKch

in Phase 2. Because of the way that BI relays ciphertexts, this event happens
only if A1 makes a decryption query on input 〈τch, λch, PKch, SKch, C∗〉 after
having received its challenge ciphertext. However, A1 is forbidden from making
precisely this decryption query. So this event never occurs in BI ’s simulation.

To summarize, Algorithm BI never aborts, provides a perfect simulation of
A1’s challenger and has an advantage ε in guessing bit b. Thus we have shown
that a Game 1 CBE adversary against ΠCBE with advantage ε can be used to
construct a CL-PKE Type I adversary against ΠCL with an identical advantage.
Since ΠCL is secure against CL-PKE Type I adversaries, we can deduce the
ΠCBE is secure against CBE Game 1 adversaries.

Using similar ideas, we can also show that a CBE Game 2 adversary against
ΠCBE can be used to construct a CL-PKE Type II adversary against ΠCL. Since
ΠCL is secure against CL-PKE Type II adversaries, we can deduce that ΠCBE

is secure against CBE Game 2 adversaries. This completes the proof.


