
An Analysis of DepenDNS

Nadhem J. AlFardan and Kenneth G. Paterson?

Information Security Group (ISG)
Royal Holloway, University of London
Egham Hill, Egham, TW20 0EX, UK

emails: {nadhem.j.a.alfardan}{kenny.paterson}@rhul.ac.uk

Abstract. Recently, a new scheme to protect clients against DNS cache poisoning attacks was introduced. The
scheme is referred to as DepenDNS and is intended to protect clients against such attacks while being secure,
practical, efficient and conveniently deployable. In our paper we examine the security and the operational aspects
of DepenDNS. We highlight a number of severe operational deficiencies that the scheme has failed to address. We
show that cache poisoning and denial of service attacks are possible against the scheme. We also demonstrate a
high factor amplification attack against DepenDNS, which can lead to a large scale Internet denial of service attack.
Our findings and recommendations have been validated with real data collected over time.

Keywords DNS, DepenDNS, DNS cache poisoning, Denial of Service, Amplfication.

1 Introduction

The Domain Name System (DNS) [8] [9] is critical to the proper operation of the Internet. DNS provides the service
of mapping names to IP addresses (for example, translating www.example.com to 192.0.32.10). This information is
maintained on DNS servers in the form of persistent or cached entries referred to as Resource Records (RRs). DNS can
be thought of as a distributed database with a hierarchal structure that is made of name servers hosting the database.
The root domain (“.”) is at the top of the hierarchy and is served presently by 13 root servers that are distributed
around the world [10]. The second level contains top-level domains (TLDs) that can be classified as generic (gTLD)
such as .com, or country code (ccTLD) such as .uk. Multiple levels exist underneath the TLDs. The domain names
located in the lower levels are generally served by their corresponding organisations. For example IANA would host the
domain, “example.com” [2].

The operation of DNS is based on queries and responses. A client initiates the process by sending a resolution request
for a host name (for example, www.example.com) to its DNS resolver which in return searches its cache entries for the
host being requested. If an entry does not exist, the resolver may go through a recursive DNS look-up process. If the
resolver does not have information about the TLD of the domain in the request, then the look-up process starts from
the root servers and continues all the way down to the authoritative servers responsible for hosting the domain being
requested (for example example.com). Information about domains and their records are contained within DNS zones.
The authoritative servers maintain a DNS zone’s database and reply to requests for hosts that exist in the zone. Upon
receiving an answer from an authoritative server, a resolver will cache and forward the IP address to the requesting
client.

DNS messages, including queries and responses, are communicated in clear using Unreliable Datagram Protocol
(UDP) with no integrity check mechanisms in place [9]. This makes DNS vulnerable to attacks involving unauthorised
data modification, in which an attacker may alter the data in various ways, with an ultimate objective of poisoning
the content of a DNS resolver cache. Such attacks are referred to as DNS cache poisoning and they present potential
security threats to users. A successful cache poisoning attempt can lead users to malicious websites for fraud or phishing
purposes. To successfully poison the cache of a DNS server, an attacker may spoof a DNS reply and deliver it to the
requester ahead of the legitimate one. Subsequent replies for the same DNS request are ignored by the requester. To
be accepted by the requester, the spoofed reply must also pass the standard security controls incorporated within DNS
such as comparing the DNS transaction identifier (TXID) and the randomised UDP source port in requests and replies
[3]. Although each of these fields has 16 bit, some DNS resolver implementations contained flaws in the randomisation
process causing insufficient entropy and hence a higher probability for an attacker to predict the values. This assumes
that the attacker has no access to the DNS query and hence must guess the random variables. Other situations include
the implementation of Network Address Translation (NAT) in front of DNS resolvers. A NAT device may replace the
original random source port with a sequential one of its own, causing the same behaviour described earlier of reducing
the unpredictability of the UDP source port. A more severe scenario is when the attacker acts as a Man-In-The-Middle

? This author’s research supported by an EPSRC Leadership Fellowship, EP/H005455/1.

(MITM). In this case, the attacker has visibility of all DNS data and hence can reply to DNS queries using information
of her choice.

Threats targeting DNS and its cache in particular are not new. They have existed since the day DNS was introduced.
However, the topic gained significant visibility and attention after the publication of Kaminsky’s DNS exploit in summer
2008. Kaminsky discovered a fundamental flaw within DNS implementations that could allow remote attackers to
perform arbitrary cache poisoning within a matter of seconds [7].

Various security techniques have been proposed to protect against DNS cache poisoning attacks. These techniques
can be implemented in the clients, resolvers, authoritative servers, or a combination of them. Examples of such techniques
include Domain Name Cross Referencing (DoX) [15], 0x20-Bit Encoding [4], ConfiDNS [11] and DNS Security Extensions
(DNSSEC) [1].

Unfortunately, the majority of the proposed DNS security techniques have not been adopted in practice. The main
reason behind this is the significant effort required to change the underlying DNS infrastructure to accommodate these
new techniques. A good example is DNSSEC which is one of the most visible initiatives to secure DNS. DNSSEC
deploys cryptographic measures to ensure the authenticity of the DNS data exchanged by digitally signing the DNS
records. However, the challenges associated with the practical implementation of DNSSEC have lead to a significant
delay in deploying the technology [10].

A recently published DNS security technique is DepenDNS [13]. DepenDNS is proposed as a client-based DNS
implementation designed to protect clients from cache posisoning attacks. The fundamental concept behind DepnDNS
is sending the same DNS query to multiple resolvers and then evaluating the responses. The evaluation is based on an
algorithm referred to as π in [13]. DepenDNS is supposed to be practical, efficient and secure according to [13].

The authors of [13] position DepenDNS as a comprehensive solution against cache poisoning attacks. Therefore, the
scheme should be able to protect clients from various DNS cache poisoning attacks including the following three generic
spoofing attack scenarios:

– Scenario 1: A spoofing attack against a client in which the attacker sends spoofed DNS replies to the client.
We assume that the attacker has no access to the DNS requests and hence is not aware of the host names being
requested. Let us suppose that this attack has a success probability of p1 when DepenDNS is not deployed.

– Scenario 2: A spoofing attack against the DNS resolver. We assume that the attacker has no access to DNS
requests and hence is not aware of the host names being requested. In this scenario, the attacker tries to poison the
resolver’s DNS cache for an arbitrary host name at any point in time. Let us assume that the attack has a success
probability of p2. The impact of this attack is higher compared to scenario 1 since it can affect all clients served by
the targeted resolver when requesting entries that have been poisoned.

– Scenario 3: The attacker has control over the DNS resolver and hence has visibility of the DNS requests. The
probability of success of a spoofing attack is 1 when DepenDNS is not deployed.

The reader can think of the above scenarios from an abstract point of view, in which the exact implementation
is irrelevant. For example, a random 16 bit TXID may or may not be in use. The objective of using this approach
is to evaluate the effectiveness of the scheme regardless of the underlying implementation. In addition, the spoofing
approaches discussed above can also be used to conduct other types of attacks than cache poisoning, as we demonstrate
in this paper.

When DepenDNS is deployed, clients should be able to detect and prevent the above three generic attacks and
hence decrease their success probabilities to a minimal value. This is supposed to be achieved by queering multiple DNS
resolvers and evaluating the responses against a set of pre-defined conditions.

Our Contribution

We analyse DepenDNS and highlight the scheme’s shortcomings. We reveal some conditions under which we have
been able to circumvent the scheme to perform cache poisoning, denial of service and amplification attacks. We have
performed cache poisoning attacks while maintaining the same success probabilities of p1, p2 and 1 as described in
scenarios 1, 2 and 3 respectively, making DepenDNS ineffective. In addition, we have executed a successful denial of
service attack agains the scheme by forcing it to reject the IP addresses contained in all the DNS replies for the host
name being requested. Although the objective of a denial of service attack is different from the goal of the three attack
scenarios discussed in Section 1, we are able to demonstrate the following:

– The same approaches of spoofing responses can be used to achieve the denial of service goal, while maintaing the
same success probabilities, making DepenDNS ineffective.

– The controls implemented by the scheme introduce a new category of attacks.

We also demonstrate how an attacker can turn an implementation of DepenDNS into a serious denial of service tool as
a result of a simple amplification attack.

We focus on evaluating the security and deployability aspects of DepenDNS. Our approach consists of analysing
the proposed scheme, investigating the existence of vulnerabilities and eventually attacking the scheme. First, we start
with an explanation of the operation of DepenDNS and how algorithm π’s calculations are performed. The reader will
find that our explanation of algorithm π and the symbols we use differ slightly from the original DepenDNS paper [13].
Our aim is to give the reader a concise and clear description of the algorithm. Second, we provide a review of the
scheme and highlight a number of unclear assumptions made in [13]. We also consider a number practical deployment
issues that should have been addressed in [13]. Third, we analyse if DepenDNS is vulnerable to cache poisoning, Denial
of Service (DoS) and amplification attacks. We have discovered scenarios in which we were able to successfully exploit
the scheme. The attacks that we have performed against DepenDNS are based on a full implementation of the scheme
and the use of real data collected over a period of time. We clearly highlight any assumptions made for our attacks to
be successful. Fourth, we study the performance and accuracy of DepenDNS. We conclude the paper with a summary
of our findings.

2 DepenDNS

DepenDNS has been recently proposed as a protection scheme against DNS cache poisoning attacks. The fundamental
security objective of DepenDNS is to protect clients from bogus IP address sent by DNS resolvers. These bogus IP
address would have either arrived from an already poisoned resolver’s cache or as a result of a spoofed DNS reply
message directed against the client. The former is the more likely scenario. An attacker would target a DNS resolver
serving a large number of clients in order to achieve a higher impact. The scheme proposed in [13] describes how a
client running DepenDNS can detect and reject such bogus IP addresses.

The scheme relies on forwarding the same DNS query to multiple resolvers and then evaluating the replies using
an algorithm π. Algorithm π runs on the client’s machine and accepts or rejects each IP address suggested by the
resolvers. The decision is based on comparing a number of parameters against a set of pre-defined thresholds. Accepted
IP addresses are passed to the client and are saved in a history table maintained by DepenDNS. The resolvers and
authoritative servers are not involved in the IP addresses selection process done by DepenDNS.

The concept of invoking multiple resolvers in the DNS resolution process has been proposed by other DNS security
schemes. For example, DoX [15] deploys a collaborative network of peers to protect against DNS cache poisoning.
The motivation behind using multiple resolvers is that the probability of poisoning several resolvers at the same time
should be much lower than that of poisoning one resolver. Although DepenDNS makes use of the same approach, the
parameters defined and the calculations carried out by its algorithm π are different.

In this section we describe the decision making process used by DepenDNS. We also analyse the proposed scheme
and highlight some unclear assumptions and unsupported claims made in [13].

2.1 DepenDNS Algorithm π

The decision making process of DepenDNS is carried out by algorithm π. This algorithm expects the following inputs:

– The IP addresses returned by all the resolvers being queried for the given host name.
– Access to the history table containing the previously accepted IP addresses for the given host name. This is a

separate table that is maintained by DepenDNS and is different from the client’s DNS cache table. In Section 2.2
we further analyse the suggestions made in [13] on how to build and maintain the history data.

The output of algorithm π is a set of IP addresses that are supposed to be legitimate for the host name being requested.
The output is used to update the history table and is forwarded to the requesting entity on the client’s machine. An
example of a requesting entity is a web browser. It is important to highlight that DepenDNS does not maintain history
information about rejected IP addresses. Algorithm π defines the following parameters:

– t is the number of the resolvers to which the client is configured to send its DNS request messages.
– Rj is the set of IP addresses returned by the jth resolver, where 1 ≤ j ≤ t. We write Rj = {IP1j

, IP2j
, ..., IPlj}

where lj is the number of IP addresses returned by the jth resolver. In practice, a DNS reply may contain duplicate
IP addresses. DepenDNS normalises the reply by removing the repeated IP addresses and including a single copy
of each IP address in Rj .

– R is the set that contains all the distinct IP addresses in the replies from t resolvers, i.e. R = R1 ∪R2 ∪ ...∪Rt. We
write R = {IP1, IP2, ..., IPm} where m is the number of the distinct IP addresses returned by the t resolvers.

– nij is a variable that is set to 1 if IPi ∈ Rj and 0 otherwise.
– ni is the number of times IPi appears across all Rj , i.e. ni =

∑t
j=1 n

j
i .

– nmax = max(n1, n2, ..., nm).

– ckcurrent is a variable with value between 0 and 1. ckcurrent is calculated by dividing the number of occurrences of
IP addresses in all Rj that share the same leftmost 16 bit (represented by the integer k) by the total number of IP
addresses returned by the t resolvers. IP addresses that share the same leftmost 16 bit are considered to be part of
the same class, k.

– H is the history data maintained by DepenDNS. H contains the IP addresses that have been accepted by algorithm
π for each host name.

– ckhistory is a variable parameter with value between 0 and 1. ckhistory is calculated in a similar way as ckcurrent but
uses the information in H for the host name being requested as input for calculation.

– A is the set of IP addresses that are accepted by algorithm π for a specific DNS request. Each run of algorithm π
generates a new A.

In general, algorithm π makes the decision to accept or reject an IP address after examining data related to the
number of occurrences, history information and the leftmost 16 bit of that IP address. For each address IPi, algorithm
π calculates the variables αi, βi, and γi as follows:

1. αi can be thought of as an indicator for the distance between ni and nmax. αi is determined by comparing ni to
nmax along with a tolerance variable that is set to 20% in [13].

αi =

{
1, if ni ≥ (0.8 · nmax);
0, otherwise.

2. βi is related to the history data of DepenDNS. βi is set to 1 if the IP address for the host name under evaluation
exists in H. This indicates that the IP address has passed the evaluation process at some earlier point in time.

βi =

{
1, if IPi exists in the history data, H;
0, otherwise.

3. γi is related to the leftmost 16 bit of the IP address and is determined by comparing ckcurrent and ckhistory. γi is set
to 1 if the absolute difference between ckcurrent and ckhistory is at most 0.1.

γi =


1, if IPi belongs to kth class and
−0.1 ≤ ckcurrent − ckhistory ≤ 0.1;

0, otherwise.

Once αi, βi, and γi are calculated for each IPi, algorithm π constructs the following sets:

– Rα which contains the IP addresses in R with αi = 1. Rα = {IPi ∈ R : αi = 1}
– Rβ which contains the IP addresses in R with βi = 1. Rβ = {IPi ∈ R : βi = 1}
– Rγ which contains the IP addresses in R with γi = 1. Rγ = {IPi ∈ R : γi = 1}

Algorithm π then calculates N , which is referred to as the dispersion strength in [13]. N is calculated as follows:

N =
|Rα ∪Rβ ∪Rγ |

Mode(|R1|, |R2|, ..., |Rt|)

Upon calculating N , algorithm π proceeds to calculate the grade, Gi, for each address IPi. The value of Gi determines
whether an IP address is accepted or not. Gi is calculated as follows:

Gi = αi · (Gα − 10 · (N − 1)) +
1
2
· (βi + γi)(Gβγ + 10 · (N − 1)),

where Gα and Gβγ represent the weights given to α and βγ and are set to 60 and 40 respectively in [13]. Note that N
is the only variable in the above equation, since the values of Gα and Gβγ are fixed. IP addresses with grades higher
than or equal to 60 are accepted and are used to update A and H.

2.2 Scheme Review

According to [13], a good percentage of end-points should be able to make use of DepenDNS, since it is a client-based
scheme. This may result in a large number of clients running DepenDNS. Such a potential large deployment of a scheme
should not only consider the security aspects of the scheme but should also study the deployment challenges and the
expected practical impacts.

In the previous section we described the calculations performed by algorithm π along with the decision making
process. To reach a decision on whether to accept or reject an IP address, the scheme makes a number of explicit and
implicit assumptions. Unfortunately, some of these assumptions in [13] have not been justified or backed by supporting
information. In addition, the scheme has not addressed some important operational aspects of DNS. In this section we
examine the validity of some of the assumptions made in [13]. We also highlight some of the characteristics of DNS that
the proposal in [13] has failed to recognise.

System Initialisation: A client running DepenDNS needs to be configured with the IP addresses of the DNS resolvers
that it needs to query. The method by which the resolvers’ IP addresses are set on the client is not discussed in [13].
This might seems to be a minor issue but we believe that it has a great operational impact in the case of large scale
deployments. Manual configuration of the resolvers’ IP addresses is impractical and hence an automated IP assignment
approach should be considered. Specifying the IP assignment method is out of this paper’s scope, but a network protocol
such as DHCP would be needed.

Managing the History Data of DepenDNS: Variables that are related to the history data maintained by DNS
have a significant influence on the decisions made by the scheme. The values of βi and γi are determined by the existence
of history data and are part of the grade calculation. The values of βi and γi are set to 0 in case no information exists
in the history for the host name being requested. This clearly introduces an operational challenge since the history is
expected to be empty initially. To address this challenge, [13] proposes either deploying a centralised database that
can be used when new domains are queried, or adjusting the values of Gα and Gβγ accordingly. The first option is
unrealistic and cannot be practically deployed: there are more than 180 million domain names [5] and there exists
no centralised database that contains information about all the domains; even if one existed, it would be impossible
to maintain such a database and track changes in domains’ information around the world. The second option can be
implemented. However, the proposed changes in the values of Gα and Gβγ are not included in [13] and there is no
assurance provided that such changes will not negatively impact the security properties of the scheme.

Tolerance Value Used to Calculate α: The value of αi is set to 1 if ni ≥ (0.8 · nmax) for IPi. Else, αi is set to
0. The use of a 20% tolerance level is not justified, nor is any guideline on how to select a suitable value is given. We
would have expected more detailed discussion of how to select such critical systems parameters.

Tolerance Value Used to Calculate γ: The value of γi is set to 1 if −0.1 ≤ ckcurrent − ckhistory ≤ 0.1 for IPi. Else,
γi is set to 0. As we α, the use of a 10% tolerance level for γ should have been justified.

Class Consideration by γ: Algorithm π determines the value of γi based on the leftmost 16 bit of IPi. The authors
of [13] claim that a domain name may have several IP addresses but these IP addresses usually share the same leftmost
16 bit. However, no evidence or experimental data to support such a claim is offered in [13].

Number of Resolvers: The proposed implementation of the scheme considers the use of 20 resolvers. However, the
proposal does not explain the reasons behind choosing this number of resolvers. We use this number when analysing the
scheme’s behaviour in the coming sections. On the other hand, enterprise networks generally deploy a small number of
resolvers internally, typically 2 or 3. Adding 20 resolvers for the sake of implementing DepenDNS is clearly an expensive
exercise. Although service providers deploy a larger number of servers compared to enterprises, only few might employ
such a number of resolvers. This introduces another challenge, which is the method through which the DNS resolvers
are selected.

2.3 DepenDNS and Content Delivery Networks

Content Delivery Networks (CDNs) are built to enhance the user’s experience when trying to access an Internet resource
like a website. A Content Delivery Network consists of a set of surrogate servers distributed around the world. The
surrogate servers are deployed in multiple locations in order to optimise the end user experience by choosing the nearest
surrogate server to the user [14]. For example, web requests generated by a UK-based end user for a website hosted
by a CDN will generally be served by a surrogate server that is located in the UK. Most CDN providers deploy DNS
redirection to forward the client’s request to the closest server containing the resource being requested. One of the
characteristics of DNS records served by CDNs is that they have a low Time To Live (TTL) value. By way of example,
the following shows the TTL value for “134.g.akamai.net”, which is the Canonical Name (CNAME) record corresponding
to “www.live.com”. It can be seen that the TTL value is set to only 20 seconds.

$ dig www.live.com
...
www.live.com. 1216 IN CNAME search.msn.com.edgesuite.net.
search.msn.com.edgesuite.net. 2382 IN CNAME a134.g.akamai.net.
a134.g.akamai.net. 20 IN A 88.221.94.72
a134.g.akamai.net. 20 IN A 88.221.94.34
...

CDNs have proven lately to be a very attractive option for hoting rich web content such as video. In fact, high
profile websites such as YouTube, CNN and BBC are making use of commercial CDNs such as Akamai and Limelight
[12].

Solutions which attempt to address security or performance challenges related to DNS must consider the character-
istics of CDNs. In this paper we analyse the behaviour of DepenDNS when the domain name being requested is served
by a CDN. We have been able to attack an implementation of DepenDNS when the host names being requested are
hosted by CDNs.

3 Attacking DepenDNS

The implementation of DepenDNS is supposed to provide a good level of protection against DNS cache poisoning
attacks. In Section 1 we referred to three attack scenarios that clients running DepenDNS should be able to detect and
prevent. Each attack has its own probability of success. In this section, we explore how the scheme behaves under a
number of conditions with the intention of trying to find and exploit vulnerabilities in the scheme. We were able to find
conditions under which we can poison the cache of DepenDNS, perform a denial of service attack against the scheme
and execute amplification attacks that can trigger the generation of high volume of network traffic. Our cache poisoning
and DoS attacks show that implementing DepenDNS had no effect in lowering the probability of success of our three
attack scenarios identified in Section 1. We state any assumptions we make for our attacks to be successful.

3.1 General Assumptions

Our general assumptions are as follows:

Assumption 1 The attacker knows the IP address of one of the t resolvers that the client communicates with.

Assumption 2 We bound the attack to a single resolver. This assumption is made to make our attack model realistic
and also considers a worst case scenario for the attacker: If an attack against DepenDNS is successful when a message
from a single resolver is bogus, then it will certainly be successful when two or more resolvers are targeted.

Assumption 3 The client is configured to use 20 resolvers as suggested in [13], i.e we set t = 20. Our attacks can still
be successful for other values of t.

The above general assumptions apply across all our attacks. However, some of the attacks we conduct might require
meeting extra conditions. We will clearly highlight any additional assumptions we make.

3.2 DNS Cache Poisoning Attack

The fundamental security objective of DepenDNS is to protect clients from bogus IP addresses received from DNS
resolvers. Detecting these bogus IP addresses is based on the calculations performed by algorithm π and the rejection
is based on comparing the grade of each IP address to 60. IP addresses having grades, Gi with Gi ≥ 60 are accepted
and are added to A and H. In this attack we attempt to circumvent the scheme by trying to achieve a grade of 60 or
higher and eventually inject bogus IP addresses for a host name into the history data of DepenDNS.

Assumption 4 The history table of DepenDNS contains IP addresses for the host name being requested.

The attacker’s goal is to bypass the security controls implemented by DepenDNS and have algorithm π accept false
information in the form of bogus IP addresses. Assumption 4 implies that the value of β is 0 for every bogus IP address,
IPbogus, and αbogus is likely to be 0. The reason for this is that nbogus is 1 since the attacker would target a single
resolver as per Assumption 2, making it difficult for nbogus to be above the threshold of nmax. This leaves the attacker
with one variable, γbogus, to focus on. The attacker needs to make sure that γbogus for IPbogus is 1. To achieve this, the
following conditions must be met:

– The leftmost 16 bit of the bogus IP address is the same as the legitimate IP addresses for the host name, i.e. IPbogus
belongs to a valid kth class IP address for the host name being requested.

– ckcurrent − ckhistory is within the pre-defined threshold, i.e. −0.1 ≤ ckcurrent − ckhistory ≤ 0.1

Since the values αbogus and βbogus are 0, then the grade for IPbogus can be calculated as

Gbogus =
1
2

(Gβγ + 10 · (N − 1)),

assuming γbogus is 1. For IPbogus to be accepted, the value of Gbogus must be 60 or higher, i.e. the following condition
must be met:

1
2

(Gβγ + 10 · (N − 1)) ≥ 60.

Since Gβγ is 40, then the condition that N ≥ 9 will guarantee that IPbogus achieves the passing grade.
Our experiments have shown that the value of N is 1 or less for most host names. However, this is not the case

when the host name is served by a CDN. We have noticed that the value of N is within a range that would allow
attackers to inject bogus IP addresses using the technique we have explained in this section. For example, Figure 1
shows that the average value of N for “www.live.com” is 13.5. We have found similar results for other host names such
as “maps.live.com”, “www.youtube.com” and “www.vmware.com”. The results are shown in Appendix B.

0 200 400 600 800 1000
0

5

10

15

20

DNS Query

N

Fig. 1: Value of N over time for www.live.com

Section 4 shows the results of our experiments on DepenDNS. Table 1 provides the percentage of runs when N ≥ 9.
A run is defined as the execution of algorithm π against R and H when a host name is being requested. The table shows
that a high percentage of runs had N ≥ 9 for the host names listed earlier. This gives the attacker an opportunity to
launch her attack during the majority of runs. Please note that this is based on real data collected over time and hence
includes situations when there are no reply messages due to network connectivity issues causing the value of N to be 0.

Table 1: Percentage of runs with N ≥ 9

Host name Number of runs % of runs with N ≥ 9

www.live.com 1100 98.3

maps.live.com 1100 98.2

www.youtube.com 1100 98.5

www.vmware.com 1100 80.3

www.hsbc.com 1100 0

We have simulated the attack by injecting a bogus IP address, 96.17.222.222, into the cache of one of the resolvers
for the host name “www.live.com”. Our attack was successful and the bogus IP address has been accepted by algorithm
π and has been added to the history data.

...
PASS 0 0 1 100 96.17.222.222 Adding 96.17.222.222 to history
...

Impact: An attacker can inject a bogus IP address that points to a malicious website or inject IP addresses that can
make the host being requested unreachable. This is applicable when the host name is hosted by a CDN and the client is
running DepenDNS.

3.3 Denial of Service Attack

Unlike a network based Denial of Service (DoS) attack, our work targets the layer where DepenDNS would operate and
where the decision of accepting or rejecting an IP address takes place. In our attack we try to force algorithm π into

rejecting all IP addresses in R for a host name, hence making the host unreachable by clients running DepenDNS. The
same spoofing attack scenarios listed in Section 1 can be used by the attacker with the same success probabilities of p1,
p2 and 1 respectively.

Assumption 5 The history data of DepenDNS does not contain information about the host name being requested.

Consider a run of the algorithm π on a set of sets of returned IP addresses Rj , 1 ≤ j ≤ t. The above assumption
implies that the value of both βi and γi is 0 for each IPi in R. As a result, Rβ = ∅, Rβ = ∅ and Gi = αi ·(Gα−10·(N−1)).
For our attack to succeed, all IPi in R should have a grade value, Gi , of less than 60. Therefore, the following condition
must be met to fail each IPi:

αi · (Gα − 10 · (N − 1)) < 60.

Since Gα is known to be 60, then N must be higher than 1 for all IPi to be rejected. N can be calculated as:

N =
|Rα|

Mode(|R1|, |R2|, ..., |Rt|)
,

since Rβ = ∅ and Rβ = ∅.
To increase the value of N , an attacker would need to focus on increasing the size of Rα or decrease the modal value

of |Rj |. Decreasing the modal value proved to be very difficult since we assumed that the attacker would target one
resolver only as per Assumption 2.

Our experimental results presented in Section 4.1 shows the value of N for a number of host names queried over a
period of time. For example, the average value of N for “www.live.com” is 3.5 causing a self denial of service. Figure 2
shows that no IP addresses have been accepted during the vast majority of runs.

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

Fig. 2: Number of IP addresses accepted over time for www.live.com

On the other hand, we have noticed that the value of N can be easily influenced in the case when the host name
being requested is hosted by a CDN. Therefore, rather than injecting bogus IP addresses in the DNS cache of a resolver,
an attacker would include a good number of correct IP addresses that correspond to the host name. The goal is to
maximise the number of IP addresses that pass the α test and hence increase the value of |Rα|.

We have simulated the attack using real data collected from querying the 20 DNS resolvers for “www.youtube.com”
and we have been able to force algorithm π into rejecting all IP addresses received from all the 20 resolvers. We have
tested this for six consecutive runs and the attack was successful during each run. Before the attack, a total of six IP
addresses would have been accepted as shown in Appendix A. After injecting a number of valid IP addresses as per the
technique described in this section we have found that algorithm π starts rejecting all the IP addresses received from
the 20 resolvers. Figures 3a and 3b show the number of accepted and rejected IP addresses during the six runs.

Impact: An attacker can perform a DoS attack against a specific host name when it is hosted by a CDN and when
the client is running DepenDNS.

3.4 Amplification Attack

In this attack we try to exploit the fact that DepenDNS employs a number of resolvers, t. The success of an amplification
attack relies on the ability of the attacker to trigger the generation of large volume of traffic by sending requests of
negligible size. The higher the amplification factor, the more severe the attack is. Such attacks are not new to DNS.
In fact, DNS has been the target of various DNS amplification attacks [6], which rely on the fact that DNS response
messages are significantly larger than reply messages causing the consumption of network bandwidth. In practice, an
attacker will employ a set of machines under her control, like a botnet, to perform such attacks [6].

1 2 3 4 5 6
0

1

2

3

4

5

6

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(a) Number of IP addresses accepted during
the six runs

1 2 3 4 5 6
0

10

20

30

40

50

60

70

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of IP addresses rejected during the
six runs

Fig. 3: Results of the attack against “www.youtube.com”

Assumption 6 In our attack, we take the average size of a DNS request message to be 60 bytes and of a DNS reply
message to be 124 bytes. These numbers are based on the data collected during our experiments. This takes into account
the TCP/IP headers.

Our attack uses clients running DepenDNS and does not require the use of a botnet. We show how an implementation
of DepenDNS can cause such attacks with a high amplification factor. We also show a sample code for performing the
amplification attack.

Our attack is contained in web page’s Hyper Text Markup Language (HTML) code. The sample code that we
show in this section does not install any software on the client’s machine and can be automatically executed by any
application which can interpret HTML or JavaScript. The HTML code can be delivered to clients by email or can be
published to a website which the client visits. To ensure a large scale effect, the attacker would publish this code on a
popular website with thousands of concurrent visitors. Uploading the code onto social networking websites would be
an attractive choice to the attacker. The following is an example of an HTML code that employs JavaScript:

<html>
<head>
<meta http-equiv="refresh" content="5">
</head>
<body>
<script>
for (i=1;i<=10;i++)
{
s1= String.fromCharCode(97+Math.round(Math.random()*25));
s2= String.fromCharCode(97+Math.round(Math.random()*25));
document.write(’’);
}
</script>
</body>
</html>

In the above example, we use the image object, “img”, to force the web browser to perform DNS look-up. The size
of the above code is 306 bytes. The code generates two random strings, s1 and s2. These strings are then concatenated
to build the host name in the image, “img”, HTML tag. The attacker can change the number of host names being
requested by increasing the number of loops. In the above example, the variable “i” is incremented by one in every loop
until reaching 10. Although changing the number of loops in the JavaScript to a higher value has a negligible effect
on the size of the code, it has a significant impact on the amplification factor. For example, changing the number of
loops to 100 will increase the code size by only 1 byte, but will cause the generation of at least 736 kbytes of DNS
request and reply messages taking into consideration Assumption 6. This number will be multiplied by the number of
search domains the client is configured for. For example, the expected traffic will be at least 1.58 Mbytes if the client
is configured for one search domain such as “example.com”.

Impact: Although, this attack applies to the standard DNS implementation, DepenDNS amplifies it by a factor of

20 which makes it more attractive to attackers. Hence, an attacker can turn clients running DepenDNS into a source of
a serious DoS attack. For example, an attacker can post this code to a popular website causing a storm of DNS traffic
on the Internet.

4 Experimental Results

In this section we evaluate the operation of DepenDNS under a number of scenarios using real life data collected over
a period of time. We queried 20 resolvers, all located in the US, for the following host names every five minutes, with
a total of 1100 queries for each host name:

– “www.live.com”. This host name has a CNAME of “a134.g.akamai.net” and is served by a CDN.
– “maps.live.com”. This host name has a CNAME of “a1234.g.akamai.net” and is served by a CDN.
– “www.youtube.com”. This host name has a CNAME of “youtube-ui.l.google.com” and is served by a CDN.
– “www.vmware.com”. This host name has a CNAME of ‘e508.g.akamaiedge.net‘” and is served by a CDN.
– “www.hsbc.com”.

We have developed a perl script that implements DepenDNS. The script takes DNS response messages from the 20
resolvers and runs them through algorithm π. The script also maintains a history table as described in Section 2.1.

We have collected the following set of information for each host name listed above:

– The value of N for each run.
– The number of accepted and rejected unique IP addresses for each run.

A run is defined as the execution of algorithm π against R and H when a host name is being requested.
The results shown in this section validate the findings presented earlier in the paper. We divide our experiments

into two categories based on the availability of history information about the host name being requested.

4.1 Experimenting with no History Information

In this section we present the results of running DepenDNS without existing history information about the host name
being requested. The results of all the runs show the following trends:

– A large percentage of valid replies are rejected by DepenDNS when the host name being requested is hosted by a
CDN. For example, Table 2 shows that 98.6% of the unique IP addresses for “www.live.com” have been rejected
after 1100 runs.

– A large number of runs had no accepted IP addresses when the host name being requested is hosted by a CDN.
During these runs, the host name being requested is considered unreachable by the client.

– IP addresses for host names that are not hosted by CDNs were accepted in all of the runs.
– The value of N varies depending on the host name being requested.

Table 2 shows the results of running DepenDNS against the five host names. More detailed information about the
results can be found in Appendix A. Appendix A presents the value of N over time along with the number of accepted
and rejected IP addresses in each run for the host names that we have queried.

Table 2: Summary results for all host names

Host name After run Number of distinct
accepted IP addresses

% Number of distinct re-
jected IP addresses

%

www.live.com 1100 8 1.4 567 98.6

maps.live.com 1100 7 2.7 251 97.3

www.youtube.com 1100 6 5.2 110 94.8

www.vmware.com 1100 16 19.5 66 80.5

www.hsbc.com 1100 1 100 0 0

4.2 Experimenting with Existing History Information

In this section we evaluate DepenDNS when history information exists for the host name being requested. The data
used to initialise the history of DepenDNS has been collected at different points of time. We evaluate DepenDNS using
history data collected in the following different ways:

– The first set of replies received from the t resolvers.
– The collection of replies received from the t resolvers after one hour.
– The collection of replies received from the t resolvers after twelve hours.
– The collection replies received from the t resolvers after twenty four hours.

The results of all the runs show the following trends:

– A good percentage of valid replies are rejected by DepenDNS. The percentages are listed in Table 3 for the five
host names we have queried.

– The value of N is high for host names hosted by CDNs. For example the value of N is around 13.5 for “www.live.com”
and 10 for “www.vmware.com”.

Table 3: Summary results for all host names

Host name Age of history After run Number of ac-
cepted IP ad-
dress

% Number of re-
jected IP ad-
dress

%

www.live.com 1st run 1100 209 36.3 366 63.7

www.live.com 1 hour 1100 285 49.6 290 50.4

www.live.com 12 hours 1100 342 59.5 233 40.5

www.live.com 24 hours 1100 393 68.3 182 31.7

maps.live.com 1st run 1100 72 27.9 186 72.1

maps.live.com 1 hour 1100 105 40.7 153 59.3

maps.live.com 12 hours 1100 127 49.2 131 50.8

maps.live.com 24 hours 1100 156 60.5 102 39.5

www.youtube.com 1st run 1100 105 90.5 11 9.5

www.youtube.com 1 hour 1100 105 90.5 11 9.5

www.youtube.com 12 hours 1100 105 90.5 11 9.5

www.youtube.com 24 hours 1100 108 93.1 8 6.9

www.vmware.com 1st run 1100 47 57.3 35 42.7

www.vmware.com 1 hour 1100 63 76.8 19 23.2

www.vmware.com 12 hours 1100 70 85.4 12 14.6

www.vmware.com 24 hours 1100 74 90.2 8 9.8

www.hsbc.com 1st run 1100 1 100 0 0

www.hsbc.com 1 hour 1100 1 100 0 0

www.hsbc.com 12 hours 1100 1 100 0 0

www.hsbc.com 24 hours 1100 1 100 0 0

Appendix B presents the value of N over time along with the number of accepted and rejected IP addresses in each
run for the host names that we have queried. The values presented in Appendix B are the results of running the scheme
using as history that data collected from the first set of replies from the 20 resolvers.

4.3 Location of the t Resolvers

We have also conducted experiments that evaluate DepenDNS when the t resolvers are distributed over multiple
geographical locations. The objective has been to compare the results of theses experiments to the ones we have
presented earlier. The overall results have shown a lower number of accepted IP addresses in each run. This applies to
host names that are served by CDNs. Host names that are not served by CDNs such as “www.hsbc.com” exhibited the
same behaviour that we have seen when using DNS resolvers located in the same geography.

5 Conclusion

Proposals which attempt to address challenges in critical infrastructures should carefully study the impact of their
implementations. Our analysis of DepenDNS has revealed a set of deficiencies in both the security controls and the

operational related aspects of the scheme. Although the protection controls implemented by DepenDNS have shown
to work for general web sites, domains that are hosted by CDNs have proven to be more of a challenge. There are
various assumptions made by the proposed scheme that have not been justified nor backed up by scientific evidence. On
the other hand, we have found conditions under which denial of service and cache poisoning attacks can be launched
against DepenDNS. We have also shown that the implementation of DepenDNS can be exploited by an amplification
attack which can cause a large scale unsolicited denial of service attack. As a result, we do not recommend adopting
DepenDNS with its current proposed design.

References

1. D. Eastlake 3rd. Domain Name System Security Extensions. RFC 2535, Internet Engineering Task Force, March 1999.

2. D. Eastlake 3rd and A. Panitz. Reserved Top Level DNS Names. RFC 2606, Internet Engineering Task Force, June 1999.

3. D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS). RFC 3833, Internet Engineering Task Force,
August 2004.

4. David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee. Increased DNS forgery resistance through
0x20-bit encoding: security via leet queries. In ACM Conference on Computer and Communications Security, pages 211–222,
2008.

5. VeriSign Inc. The domain name industry brief. Technical report, http://www.verisign.com/domain-name-services/domain-
information-center/domain-name-resources/domain-name-report-june09.pdf. June 2009.

6. Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos Gritzalis. A fair solution to DNS amplification
attacks. In WDFIA ’07: Proceedings of the Second International Workshop on Digital Forensics and Incident Analysis, pages
38–47, 2007.

7. D. Kaminsky. Its the end of the cache as we know it, 2008.

8. P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034, Internet Engineering Task Force, November 1987.

9. P.V. Mockapetris. Domain names - implementation and specification. RFC 1035, Internet Engineering Task Force, November
1987.

10. Root Servers Technical Operations. http://www.root-servers.org.

11. Lindsey Poole and Vivek S. Pai. ConfiDNS: leveraging scale and history to improve DNS security. In WORLDS’06: Proceedings
of the 3rd conference on USENIX Workshop on Real, Large Distributed Systems, 2006.

12. K. Stamos, G. Pallis, A. Vakali, and M.D. Dikaiakos. Evaluating the utility of content delivery networks. In Proceedings of
the 4th edition of the UPGRADE-CN workshop on Use of P2P, GRID and agents for the development of content networks,
pages 11–20. ACM New York, NY, USA, 2009.

13. Hung-Min Sun, Wen-Hsuan Chang, Shih-Ying Chang, and Yue-Hsun Lin. DepenDNS: Dependable mechanism against DNS
cache poisoning. In CANS ’09: Proceedings of the 8th International Conference on Cryptology and Network Security, pages
174–188, 2009.

14. Athena Vakali and George Pallis. Content delivery networks: Status and trends. IEEE Internet Computing, 7(6):68–74, 2003.

15. Lihua Yuan and Krishna Kant. DoX: A peer-to-peer antidote for DNS cache poisoning attacks. In IEEE ICC: Proceedings
of the International Conference on Communications, pages 2345–2350, 2006.

A DepenDNS with no History Information

We have collected the following set of information for each host name we evaluated when there is no information
available in the history of DepenDNS:

– The value of N for each run.
– The number of accepted and rejected unique IP addresses for each run.

The reader might notice some dips in the graphs shown in the appendix. These are due to loss of network connectivity.

0 200 400 600 800 1000
0

2

4

6

8

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
0

10

20

30

40

50

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 4: Results for “www.live.com”

0 200 400 600 800 1000
0

1

2

3

4

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0

1

2

3

4

5

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
0

5

10

15

20

25

30

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 5: Results for “maps.live.com”

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0

1

2

3

4

5

6

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
0

10

20

30

40

50

60

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 6: Results for “www.youtube.com”

0 200 400 600 800 1000
0

2

4

6

8

10

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0

1

2

3

4

5

6

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
0

5

10

15

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 7: Results for “www.vmware.com”

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
-1.0

-0.5

0.0

0.5

1.0

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 8: Results for “www.hsbc.com”

B DepenDNS with with Existing History Information

We have collected the following set of information for each host name we evaluated when the history of DepenDNS is
populated from the information received as a result of the first DNS resolution requests sent to the t resolvers.

– The value of N for each run.
– The number of accepted and rejected unique IP addresses for each run.

The reader might notice some dips in the graphs shown in the appendix. These are due to loss of network connectivity.

0 200 400 600 800 1000
0

5

10

15

20

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0

10

20

30

40

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
0

5

10

15

20

25

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 9: Results for “www.live.com”

0 200 400 600 800 1000
0

5

10

15

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0

5

10

15

20

25

30

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 100 200 300 400
0

2

4

6

8

10

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 10: Results for “www.maps.com”

0 200 400 600 800 1000
0

2

4

6

8

10

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0

10

20

30

40

50

60

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
0

10

20

30

40

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 11: Results for “www.youtube.com”

0 200 400 600 800 1000
0

5

10

15

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0

5

10

15

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 12: Results for “www.vmware.com”

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

DNS Query

N

(a) Value of N over time

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

DNS Query

N
um

be
r

of
A

cc
ep

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(b) Number of accepted IP addresses

0 200 400 600 800 1000
-1.0

-0.5

0.0

0.5

1.0

DNS Query

N
um

be
r

of
R

ej
ec

te
d

IP
ad

dr
es

se
s

pe
r

ru
n

(c) Number of rejected IP addresses

Fig. 13: Results for “www.hsbc.com”

