A Replay Attack in the TCG Specification and a Solution

Danilo Bruschi Lorenzo Cavallaro Andrea Lanzi Mattia Monga

Università degli Studi di Milano
Dipartimento di Informatica e Comunicazione
{bruschi, sullivan, andrew, monga}@security.dico.unimi.it

Annual Computer Security Applications Conference 2005
Table of Contents

1 Trusted Computing Platforms
 - Authorization Protocols

2 Replay Attack
 - Attack Schema

3 Model Checking

4 Proposed Solution

5 Conclusion and Future Works
According to the Trusted Computing Group (TCG) Specification, a Trusted Computing Platform (TP) is:

- a Computing Platforms with built-in *trusted* hardware components endorsed by trusted third parties.

These components, called *Roots of Trust*, provide secure services such as:

- secure boot
- software integrity checking
- digital signatures
- …
A TP is composed by two main **trusted** hardware components.

Core Root of Trust for Measurement (CRTM)

It starts the initial integrity check of every hardware and software components.

Trusted Platform Module (TPM)

It provides cryptographic and protected storage facilities.
TCG-based Trusted Computing Platforms

Main Functionalities

- **Identity**: any TP has an identity that cannot be forged
- **Measurement**: a TP can compute a complete integrity check of its software and hardware components
- **Protected Storage**: a TP can provide protection to sensitive data (i.e., passwords, cryptographic keys, passphrases, . . .)
Every time Alice wants to use a TPM-protected resource, she needs to use an Authorization Protocol. Thus, she must

- know the secret bound to the resource
- provide a proof of this knowledge to the TPM, during an existing authorization session

⇒ Authorization Protocols manage authorization sessions and verify subject’s clearances for this purpose
The TCG Specification defines two main Authorization Protocols.

Object-Independent Authorization Protocol (OIAP)
A command can potentially be issued several times, in a single authorization session, acting on different protected resources.

Object-Specific Authorization Protocol (OSAP)
Different commands can potentially be issued several times, in a single authorization session, acting on the same protected resource.
According to the TCG Specification, Authorization Protocols have been designed in order to prevent the following threats:

Replay Attack

⇒ use of pseudo-random numbers, *nonces*, to provide a *freshness* property

Packet Mangling Attack

⇒ use of HMAC to provide authentication and integrity
Object-Independent Authorization Protocol
A Simple Protocol Sketch

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
Object-Independent Authorization Protocol
A Simple Protocol Sketch

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
Object-Independent Authorization Protocol
A Simple Protocol Sketch

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
Object-Independent Authorization Protocol
A Simple Protocol Sketch

Alice

TPM

TPM_OIAP()

ACK(SessionHandle1, NonceEven1)

CMD(SessionHandle1, NonceEven1, NonceOdd1)

ANS(SessionHandle1, NonceEven2, NonceOdd1)

SH_1

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
A Replay Attack in the TCG Specification and a Solution

Object-Independent Authorization Protocol
A Simple Protocol Sketch

TPM_OIAP()
ACK(SessionHandle1, NonceEven1)
CMD(SessionHandle1, NonceEven1, NonceOdd1)
ANS(SessionHandle1, NonceEven2, NonceOdd1)
According to the TCG Specification, an authorization session is kept open indefinitely by a TPM, unless:

- an erroneous message is received on an existing authorization session, i.e., wrong command arguments or invalid HMAC.
A Replay Attack in the TCG Specification and a Solution

Message Storing Phase

Alice

Mallory

TPM

TPM_OIAP()

TPM_OIAP()

ACK(SessionHandle1, NonceEven1)

ACK(SessionHandle1, NonceEven1)

CMD(SessionHandle1, NonceEven1, NonceOdd1)

ANS(SessionHandle1, NonceEven2, NonceOdd1, "reset")
A Replay Attack in the TCG Specification and a Solution

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

Message Storing Phase

Alice

Mallory

TPM

TPM_OIAP()

TPM_OIAP()

ACK(SessionHandle1, NonceEven1)

ACK(SessionHandle1, NonceEven1)

CMD(SessionHandle1, NonceEven1, NonceOdd1)

ANS(SessionHandle1, NonceEven2, NonceOdd1, "reset")

SH_1
A Replay Attack in the TCG Specification and a Solution
Message Storing Phase

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

A Replay Attack in the TCG Specification and a Solution
A Replay Attack in the TCG Specification and a Solution

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

A Replay Attack in the TCG Specification and a Solution
Message Resending Phase

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

A Replay Attack in the TCG Specification and a Solution
A Replay Attack in the TCG Specification and a Solution

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
Replay Attack Phase

Alice

Mallory

TPM

SH_1

SH_2

CMD(SessionHandle1, NonceEven1, NonceOdd1)

ANS(SessionHandle1, NonceEven2, NonceOdd1, "OK")

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

A Replay Attack in the TCG Specification and a Solution
Model Checking techniques have been used to better understand the attack properties

- We modeled Alice, Mallory and the TPM using the SPIN model checker
- We noticed that a coherent and consistent session knowledge shared between the parties is missing from the TCG Specification

⇒ Hints about a solution just came up. . . :-)

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

A Replay Attack in the TCG Specification and a Solution
We propose to patch the hardware component TPM, by introducing a HMAC-protected **bitmask** in any authorized exchanged message, where

- the i-th bit is 0 if the i-th authorization session is considered either **open** or in an **unknown** state;
- the i-th bit is 1 if the i-th authorization session is considered **failed**

\Rightarrow coherent and consistent shared session knowledge
Proposed Solution

Solution Sketch (1)

A Replay Attack in the TCG Specification and a Solution
A Replay Attack in the TCG Specification and a Solution

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
Proposed Solution

Solution Sketch (1)

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

A Replay Attack in the TCG Specification and a Solution
Proposed Solution
Solution Sketch (1)

A Replay Attack in the TCG Specification and a Solution
A Replay Attack in the TCG Specification and a Solution
Replay Attack
Solution Sketch (2)

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga

A Replay Attack in the TCG Specification and a Solution
Replay Attack
Solution Sketch (2)

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
Trusted Computing Platforms
Replay Attack
Model Checking
Proposed Solution
Conclusion and Future Works

Replay Attack
Solution Sketch (2)

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
Replay Attack
Solution Sketch (3)

D. Bruschi, L. Cavallaro, A. Lanzi and M. Monga
A Replay Attack in the TCG Specification and a Solution
A Replay Attack in the TCG Specification and a Solution
We recall TCG-based Trusted Computing Platforms
Focus on TCG-based TPs *Authorization Protocols*
We show a **Straight Replay Attack** against the Open-Independent Authorization Protocol, formally proved with the **SPIN** Model Checker
We propose a solution based on the concept of **shared session knowledge**
We are investigating a formal proof of the proposed solution
THANK YOU! :-}