

# Example: Minority game (static: X = 1)

The static equilibrium  $1 \stackrel{\$}{\longrightarrow} A$  is again

$$s_i = \frac{1}{2} + \frac{1}{2}$$

with the expected social gain of

$$\mathbb{E}\left(\sum \varrho(s)\right) = \sum_{k=1}^{m} \frac{\binom{2m+1}{k}}{2^{2m+1}} k$$
$$= \frac{m}{2}$$

<□> <∰> <≅> <≅> = •9<@

# Example: Minority game

(static: X = 1)

Coalgebra of market games

D. Pavlovic

Coalgebra of market games

D. Pavlovic

Coalgebra of market games

D. Pavlovic

Equilibria

Equilibria

► Even with the maximal gain of  $\sum \varrho(s) = m$ , there are m+1 players with  $\varrho^i(s) = 0$ .

D. Pavlovic

Games

Equilibria

Positions
Coordination
Competition

40 > 40 > 45 > 45 > 6 > 99 (P)

# Example: Minority game

(static: X = 1)

- ► Even with the maximal gain of  $\sum \varrho(s) = m$ , there are m+1 players with  $\varrho^i(s) = 0$ .
- There is always a majority with an incentive to disturb the current state.

←□ → ←₫ → ← 분 → ← 분 → りへ(\*)

# Example: Minority game

(static: X = 1)

- ► Even with the maximal gain of  $\sum \varrho(s) = m$ , there are m+1 players with  $\varrho^i(s) = 0$ .
- ► There is always a majority with an incentive to disturb the current state.
- ► This leads from equilibrium to evolution.

Equilibria
Positions
Coordination
Competition
Conclusion

←□→ ←□→ ← □→ ← □→ □ ← → ○

# Positions for stabilization: Minority game (with $\ell$ -step memory and d ideas)

Suppose that the player *i* sees the positions from

$$X_i = M \times S^{1+d} \times \ell$$

where

- ▶  $M = S = \{ \blacktriangleleft, \blacktriangleright \}^{\ell}$  memory, strategies, ideas
- ▶  $d = \{0, 1, ..., d 1\}$  number of ideas
- $\ell = \{0, 1, \dots, \ell 1\}$  length of the memory

# Positions for stabilization: Minority game (with $\ell$ -step memory and d ideas)

A position

 $\mathbf{x}_i = \langle \mu, \sigma^{i0}, \sigma^{i1}, \dots, \sigma^{id}, \mathbf{k} \rangle \in \mathbf{M} \times \mathbf{S}^{1+d} \times \ell = \mathbf{X}_i$ 

records

- $\blacktriangleright \ \mu$  the recent  $\ell$  minority (winning) choices
- $\sigma^{i0}$  i's current strategy ( $\ell$ -tuple of choices)
- $ightharpoonup \sigma^{i1}, \sigma^{i2}, \dots, \sigma^{id} i$ 's bag of ideas for strategies
- k the current moment in the  $\ell$ -cycle history

Coalgebra of market games

D. Pavlovic

Equilibria
Positions
Coordination

Conclusion

4 D > 4 B > 4 E > 4 B > 4 D > 4 C >

<□> <□> <≥> <≥> ≥ <0<</br>

## Positions for stabilization: Minority game

For

- ▶  $i \in 2m + 1 = \{0, 1, ... 2m\}$  players
- ▶  $A_i = \{ \blacktriangleleft, \blacktriangleright \}$  moves
- ▶  $B_i = \{0, 1\}$  values
- ▶  $X_i = M \times S^{1+d} \times \ell$  positions
  - $\xi^i \in X_i$  initialized randomly

the payoff  $A \times X \xrightarrow{\varrho_B} B$  remains

$$\varrho_B^i(s,x) = \begin{cases}
1 & \text{if } \#\{j \mid s_j = s_i\} \leq m \\
0 & \text{otherwise}
\end{cases}$$



## Positions for stabilization: Minority game

... while the position update  $A \times X_i \xrightarrow{\varrho_X^i} X_i$  maps

$$\varrho_X^i(s, \langle \mu, \sigma^{i*}, k \rangle) = \langle \tilde{\mu}, \tilde{\sigma}^{i*}, \tilde{k} \rangle$$

so that

D. Pavlovic

- $\tilde{k} = k + 1 \mod \ell$
- $\blacktriangleright \ \widetilde{\mu} = \langle \diamondsuit, \mu_0, \mu_1, \dots, \mu_{\ell-2} \rangle$ 
  - ▶ where  $\diamondsuit$  is the minority choice, i.e.  $\#\{j \mid s_i = \diamondsuit\} \le m$
- $\tilde{\sigma}^{i*}$  is obtained by reordering
  - $\quad \quad \hat{\sigma}^{i*} = \langle \sigma^{i*}_{\ell-1}, \sigma^{i*}_0, \sigma^{i*}_1, \dots, \sigma^{i*}_{\ell-2} \rangle$
  - ▶ to maintain the invariant

$$\Delta(\tilde{\sigma}^{i0}, \tilde{\mu}) \leq \Delta(\tilde{\sigma}^{i1}, \tilde{\mu}) \leq \cdots \leq \Delta(\tilde{\sigma}^{id}, \tilde{\mu})$$



D. Pavlovic

# Positions for stabilization: Minority game

... while the position update  $A \times X_i \xrightarrow{\varrho_X^i} X_i$  maps

$$\varrho_{\mathbf{Y}}^{i}(\mathbf{s}, \langle \mu, \sigma^{i*}, \mathbf{k} \rangle) = \langle \tilde{\mu}, \tilde{\sigma}^{i*}, \tilde{\mathbf{k}} \rangle$$

so that

- $\tilde{k} = k + 1 \mod \ell$
- $\blacktriangleright \ \widetilde{\mu} = \langle \diamondsuit, \mu_0, \mu_1, \dots, \mu_{\ell-2} \rangle$ 
  - where  $\diamondsuit$  is the minority choice, i.e.  $\#\{j \mid s_j = \diamondsuit\} \le m$
- $\tilde{\sigma}^{i*}$  is obtained by reordering
  - $\quad \bullet \ \hat{\sigma}^{i*} = \langle \sigma^{i*}_{\ell-1}, \sigma^{i*}_0, \sigma^{i*}_1, \dots, \sigma^{i*}_{\ell-2} \rangle$
  - ► to maintain the invariant

$$\Delta(\tilde{\sigma}^{i0}, \tilde{\mu}) \leq \Delta(\tilde{\sigma}^{i1}, \tilde{\mu}) \leq \cdots \leq \Delta(\tilde{\sigma}^{id}, \tilde{\mu})$$

— thus  $\tilde{\sigma}^{\text{i0}}$  is the best and  $\tilde{\sigma}^{\text{id}}$  the worst strategy w.r.t.  $\tilde{\mu}$ 



4 D > 4 D > 4 E > 4 E > E 9900

Coalgebra of market games

### Positions for stabilization: Minority game

Let the profile  $X \stackrel{s}{\longrightarrow} A$  be defined by

 $s_i(\mu, \sigma^{i*}, k) = \sigma_k^{i0}$ 

i.e., each player plays his currently best strategy.

10 > 10 > 10 > 12 > 12 > 12 > 12 + 10 < C

#### Positions for stabilization: Minority game

# Evolution: refine $A \times X_i \xrightarrow{\varrho_X^i} X_i$

- Each player randomly mutates her state by
  - ▶ dropping her worst idea  $\sigma^{i(\ell-1)} \in \{\blacktriangleleft, \blacktriangleright\}^{\ell}$
  - ▶ adding a random idea  $\sigma' \in \{\blacktriangleleft, \blacktriangleright\}^{\ell}$ .

at chosen intervals, or triggered by bad scores.

# Positions for stabilization: Minority game

# Evolution: refine $A \times X_i \xrightarrow{\varrho_X^i} X_i$

- ► Each player randomly mutates her state by
  - ▶ dropping her worst idea  $\sigma^{i(\ell-1)} \in \{\blacktriangleleft, \blacktriangleright\}^{\ell}$
  - ▶ adding a random idea  $\sigma' \in \{\blacktriangleleft, \blacktriangleright\}^{\ell}$ .

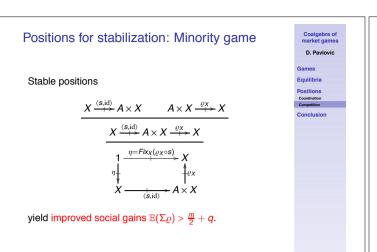
at chosen intervals, or triggered by bad scores.

► This leads to jointly stable populations of players.

4 D > 4 B > 4 E > 4 E > E 9900

Coalgebra of market games

quilibria





For

- ▶  $i \in n = \{0, 1, ..., n-1\}$  players (sellers, producers)
- $A_i = B_i = \mathbb{R}$  moves, values

the payoff  $A \xrightarrow{\varrho} B$  is

$$\varrho^{i}(s) = \begin{cases}
s_{i} - c_{i} & \text{if } \forall j_{\in n \setminus \{i\}}. \ s_{i} < s_{j} \\
0 & \text{otherwise}
\end{cases}$$

Coalgebra of market games
D. Pavlovic
Games
Equilibria
Positions
Coordination

4 D > 4 B > 4 E > 4 B > 4 B > 990

# Example: Market game

(static: X = 1)

For

- $i \in n = \{0, 1, \dots n-1\}$  players (sellers, producers)
- ▶  $A_i = B_i = \mathbb{R}$  moves, values

the payoff  $A \xrightarrow{\varrho} B$  is

$$\varrho^{i}(s) = \begin{cases}
s_{i} - c_{i} & \text{if } \forall j_{\in n \setminus \{i\}}. \ s_{i} < s_{j} \\
0 & \text{otherwise}
\end{cases}$$

where

- $ightharpoonup s_i$  is the market price offered by the producer i,
- $\triangleright$   $c_i$  is the production cost of i

←□→←□→←□→←□→□□→○□

←□ > ←₫ > ←≥ > ←≥ > −≥ − 9 へ ⊙

4D>4B>4B>4B>4B>4B

# Example: Market game

(static: X = 1)

The equilibria  $1 \stackrel{s}{\longrightarrow} A$  consist of the strategies

 $s_i = c_i + \varepsilon_i$ 

where  $\varepsilon_i \in [p_i, q_i]$  is the desired profit.

Coordination
Competition
Conclusion

D. Pavlovic

Equilibria

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Example: Market game

(with memory and tactics)

#### Marketing tactics (equilibrium selection)

▶ to win, find  $\varepsilon$  such that  $c_i + \varepsilon < c_j + \varepsilon_j$  for all  $j \neq i$ 

Coalgebra of market games
D. Paviovic
Sames
Equilibria
Positions
Coordination
Competition

Conclusion

Coalgebra of market games

D. Pavlovic

Equilibria

#### Example: Market game

(with memory and tactics)

#### Marketing tactics (equilibrium selection)

- ▶ to win, find  $\varepsilon$  such that  $c_i + \varepsilon < c_j + \varepsilon_j$  for all  $j \neq i$ 
  - to profit, maximize among such  $\varepsilon$

Coalgebra of market games

D. Pavlovic

Games

Competition

<□> <₫> <≥> <≥> ≥ 9<€



#### Marketing tactics (equilibrium selection)

- ▶ to win, find  $\varepsilon$  such that  $c_i + \varepsilon < c_i + \varepsilon_i$  for all  $j \neq i$ 
  - to profit, maximize among such  $\varepsilon$
- ► change the game:
  - sway the buyer to pay more than the lowest price
    - lock in, bundling, price discrimination...
  - manipulate the market information
    - advertising, branding...

40 > 40 > 45 > 45 > 6 > 99 (P)

#### Stable solution: Second price market game (Static: X = 1)

D. Pavlovic

D. Pavlovic

Coalgebra of market games

Equilibria

Equilibria

- ▶  $i \in n = \{0, 1, ..., n-1\}$  players
- ▶  $A_i = B_i = \mathbb{R}$  moves, values

the payoff  $A \stackrel{\varrho}{\longrightarrow} B$  is

$$\varrho^{i}(s) = \begin{cases} \lceil s_{i} \rceil^{s} - s_{i} & \text{if } \forall j_{\in n \setminus \{i\}}. \ s_{i} < s_{j} \\ 0 & \text{otherwise} \end{cases}$$

D. Pavlovic

Equilibria

40 > 40 > 45 > 45 > 6 99 @

#### Stable solution: Second price market game (Static: *X* = 1)

For

- ▶  $i \in n = \{0, 1, ..., n-1\}$  players
- ▶  $A_i = B_i = \mathbb{R}$  moves, values

the payoff  $A \xrightarrow{\varrho} B$  is

$$\varrho^{i}(s) = \begin{cases} \lceil s_{i} \rceil^{s} - s_{i} & \text{if } \forall j_{\in n \setminus \{i\}}. \ s_{i} < s_{j} \\ 0 & \text{otherwise} \end{cases}$$

where

$$\lceil a \rceil^{\beta} = \bigwedge \{ b \in \beta \mid a < b \}$$

4 D > 4 D > 4 E > 4 E > E + 9 Q (\*)

4 D > 4 D > 4 E > 4 E > E 9 9 C

#### Stable solution: Second price market game (Static: X = 1)

The unique equilibrium  $1 \xrightarrow{s} A$  consists of the strategies

Coalgebra of market games D. Pavlovic Equilibria

10 > 10 > 10 > 12 > 12 > 12 > 12 + 10 < C

# Stable solution: Second price market game

(Static, stable, unimplementable)

The unique equilibrium  $1 \stackrel{s}{\longrightarrow} A$  consists of the strategies

 $s_i = c_i$ 

i.e.,

- each player announces her production cost
- ▶ the lowest cost wins the market
- ▶ the profit is  $\lceil c_i \rceil^c c_i$ 
  - ▶ the second lowest cost the lowest cost

#### Outline

Conclusion

Coalgebra of market games D Paylovic

4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m > 4 m >

## Conclusion: Tasks for coalgebra of games

- ▶ analyze positions as states in X
  - ► coalgebra homomorphisms between games
  - position bisimilarity
- ► construct equilibria as fixed points in A
  - static 1  $\xrightarrow{s}$  A or position-wise  $X \xrightarrow{s}$  A
  - equilibrium at a stationary position  $1 \xrightarrow{\langle s, x \rangle} A \times X$

Coalgebra of market games
D. Pavlovic
Games
Equillibria
Positions
Conclusion

<□> <□> <∃> <≥> <≥> <≥ <>><€