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A process is a coalgebra

X R !! A⇒ M(B × X )

where

! A— controls
! B — measurements
! X — states
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A process is a coalgebra

A × X R !! M(B × X )

where

! A— controls
! B — measurements
! X — states
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A process is a coalgebra

A × X !R !! B × X

where

! A— controls
! B — measurements
! X — states
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Feedback and stable control

A × X !R !! B × X B × X !φ !! A

A × X !R !! B × X !φ !! A

X !γ=FixA(φ◦R) !!

"〈γ,id〉
""

A

A × X !

R
!! B × X

"φ

##

Coalgebra of
market games

D. Pavlovic

Games

Equilibria

Positions

Conclusion

A game is a coalgebra

A × X !# !! B × X

where

! A =
∏

i∈n Ai — moves
! B =

∏

i∈n Bi — values
! X =

∏

i∈n Xi — positions
! n = {0, 1, . . . , n − 1} — players
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A game is a coalgebra

A × X !# !! B × X

where

! A =
∏

i∈n Ai — moves
! B =

∏

i∈n Bi — values (ordered ring)
! X =

∏

i∈n Xi — positions
! n = {0, 1, . . . , n − 1} — players
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Response strategy and equilibrium

A × X !# !! B × X

A−i × Xi !RSi !! Ai

A × X !RS=〈RSi◦πi 〉i∈m !! A

X !RS•=FixA(RS) !!

#
$$

$$
$

〈RS• ,id〉 $$$$
$$

$

A

A × X

%
&&&&&& RS

%%&&&&&&

where

A−i =
∏

k∈n
k!i

Ak
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Tasks for coalgebra of games

! analyze positions as states in X
! coalgebra homomorphisms between games
! position bisimilarity
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Tasks for coalgebra of games

! analyze positions as states in X
! coalgebra homomorphisms between games
! position bisimilarity

! construct equilibria as fixed points in A

! static 1 !RS• !! A or position-wise X !RS• !! A

! equilibrium at a stationary position 1 !〈RS• ,x〉!! A × X
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Tasks for coalgebra of games

! analyze positions as states in X
! coalgebra homomorphisms between games
! position bisimilarity

! construct equilibria as fixed points in A

! static 1 !RS• !! A or position-wise X !RS• !! A

! equilibrium at a stationary position 1 !〈RS• ,x〉!! A × X
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Standard notions
(Static: X = 1)

A1 - Best response strategy RS = BR

s−i BRi si ⇐⇒ ∀ti ∈ Ai . #i(ti , s−i) ≤ #i(si , s−i)
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Standard notions
(Static: X = 1)

A1 - Best response relation

s BR t ⇐⇒ ∀i ∈ n. s−i BRi ti
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Standard notions
(Static: X = 1)

A2 - Nash equilibrium

BR•s ⇐⇒ s BR s
⇐⇒ ∀i ∈ n. s−i BRi si
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Standard notions
(Static: X = 1)

A3 - Rationalizable (undominated) profile

BR∗s ⇐⇒ ∃t . BR∗t ∧ tBRs
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Standard notions

Upshot

Nash equilibrium is

! a joint result of individual optimizations
! a social solution of a distributed problem
! noone can improve their gain on their own
! it leads beyond the "zero sum" view of the world
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Standard notions

Issues

! existence of equilibrium
! Q: Is BR• empty?

! equilibrium selection
! Q: What if s, t ∈ BR•, and i plays si and j plays tj?

! social benefit of equilibrium
! Q: Is ∑i #

i
B(s) a global maximum (Pareto optimal)?
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Standard notions

Issues

! existence of equilibrium
! A: Kakutani theorem

! equilibrium selection
! A: attractor dynamics

! social benefit of equilibrium
! A: program the notions of response
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Example: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

For

! i ∈ 2 = {0, 1}
! Ai = {retreat , attack}
! Bi = R

the payoff A0 × A1 !# !! B0 × B1 is given by

retreat attack
w
2 0

retreat w
2 w

w w
2 − c

attack 0 w
2 − c
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Example: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

If c < w
2 , the only Nash equilibrium 1 !s !! A0 × A1 is

s = 〈attack, attack〉

with the social gain of
∑

#(s) = w − 2c
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Example: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

The unstable profile

r = 〈retreat, retreat〉

would give the social gain of
∑

#(s) = w
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Static strategies
(X = 1)

B1 - Stable strategy RS = SR

s−i SRi si ⇐⇒ ∀t ∈ A ∀ε > 0.
(1 − ε)#i(ti , s−i) + ε#i(ti , t−i) ≤
(1 − ε)#i(si , s−i) + ε#i(si , t−i)

Coalgebra of
market games

D. Pavlovic

Games

Equilibria

Positions

Conclusion

Static strategies
(X = 1)

B1 - Stable strategy RS = SR

s−i SRi si ⇐⇒ ∀ti ∈ Ai . #i(ti , s−i) ≤ #i(si , s−i) ∧
(#i(ti , s−i) = #i(si , s−i)⇒
∀t−i ∈ A−i . #i(ti , t−i) ≤ #i(si , t−i))
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Static strategies
(X = 1)

B1 - Stable response relation

s SR t ⇐⇒ ∀i ∈ n. s−i SRi ti
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Static strategies
(X = 1)

B2 - Stable equilibrium

SR•s ⇐⇒ ∀i ∈ n. s−i SRi si
⇐⇒ ∀t ∈ A.∀i ∈ n. #i(ti , s−i) ≤ #i(si , s−i) ∧

#i(si , t−i) = #i(si , s−i)⇒
∀t−i ∈ A−i . #i(ti , t−i) ≤ #i(si , t−i)
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Static strategies
(X = 1)

B3 - Stable (admissible) profile

SR∗s ⇐⇒ ∃t .SR∗t ∧ tSRs
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Example: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

If c < w
2 , the only stable profile 1 !s !! A0 × A1 is

s = 〈attack, attack〉

with the social gain of
∑

#(s) = w − 2c
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Static strategies
(X = 1)

C1 - Uniform strategy RS = UR

s−i URi si ⇐⇒ s−i BRi si ∧
∀t−i ∈ A−i . si BR−i t−i ⇒ t−i BRi si
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Static strategies
(X = 1)

C2 - Uniform equilibrium

UR• s ⇐⇒ ∀i ∈ n. s−i URi si
⇐⇒ BR• s ∧

∀i ∈ n. ∀t−i ∈ A−i . si BR−i t−i ⇒ t−i BRi si
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Static strategies
(X = 1)

C3 - Uniform profile

UR∗ s ⇐⇒ ∃t .UR∗t ∧ tURs
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Example: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

If c < w
2 , there is no uniform equilibrium for Bird Politics

(neither pure nor mixed).

Coalgebra of
market games

D. Pavlovic

Games

Equilibria

Positions

Conclusion

Example: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

If c < w
2 , there is no uniform equilibrium for Bird Politics

(neither pure nor mixed).

The Kakutani theorem does not apply because the
uniform response relation is not convex.
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Static strategies
(X = 1)

D1 - Constructive strategy RS = CR

s−i CRi si ⇐⇒ ∀ti ∈ Ai . #i(si , s−i) < #i(ti , s−i)⇒
∃t−i ∈ A−i . #−i(ti , t−i) > #−i(ti , s−i) ∧

#i(ti , t−i) < #i(si , s−i)
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Static strategies
(X = 1)

D2 - Constructive equilibrium

CR• s ⇐⇒ ∀i .s−iCRisi
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Static strategies
(X = 1)

D3 - Uniform profile

CR∗ s ⇐⇒ ∃t .CR∗t ∧ tCRs

Coalgebra of
market games

D. Pavlovic

Games

Equilibria

Positions

Conclusion

Example: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

There is a constructive equilibrium, consisting of the
mixed strategies favoring the Pareto optimal solution
〈retreat , retreat〉.
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Outline

Coalgebra of games

Equilibrium programming

Position analysis

Problem of coordination

Problem of competition
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Tasks for coalgebra of games

! analyze positions as states in X
! coalgebra homomorphisms between games
! position bisimilarity

! construct equilibria as fixed points in A

! static 1 !RS• !! A or position-wise X !RS• !! A

! equilibrium at a stationary position 1 !〈RS• ,x〉!! A × X
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Types-as-positions: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

For

! i ∈ 2 = {0, 1}
! Ai = {retreat , attack}
! Bi = R
! Xi = [0, 1]

! x0 = Prob(a1 = retreat)
! x1 = Prob(a0 = retreat)

the payoff Ai × Xi !#
i
B !! Bi is given by

#iB(retreat, xi) = xi
w
2

#iB(attack, xi) = xi
w + 2c

2 +
w − 2c
2



Coalgebra of
market games

D. Pavlovic

Games

Equilibria

Positions
Coordination
Competition

Conclusion

Types-as-positions: Bird Politics
(Chicken, Missile Crisis, Prisoners’ Dilemma. . . )

[. . . ]
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Example: Majority game
(static: X = 1)

For

! i ∈ 2m + 1 = {0, 1, . . .2m}— players
! Ai = {",!}— moves
! Bi = {0, 1}— values

the payoff A !# !! B is

#i(s) =















1 if #{j | sj = si } > m
0 otherwise
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Example: Majority game
(static: X = 1)

The equilibrium 1 !s !! A consists of the mixed strategies

si =
1
2"+

1
2!

with the expected social gain of

E

(
∑

#(s)
)

= 2
2m+1
∑

k=m+1

(2m+1
k
)

22m+1 k

= m +
1
2
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Positions for coordination: Majority game
(with 1-step memory)

For

! i ∈ 2m + 1 = {0, 1, . . .2m}— players
! Ai = {",!}— moves
! Bi = {0, 1}— values
! Xi = {",!}— positions

! ξ ∈ X =
∏Xi — initialized randomly

the game A × X !# !! B × X becomes

#iB(s, x) =















1 if #{j | sj = si } > m
0 otherwise

#iX (s, x) = " such that #{j | sj = "} > m
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Positions for coordination: Majority game

The equilibria X !s !! A are the coordination policies

si(x) = x
s′i (x) = ¬x

which assure the social gain of
∑

#(s) = 2m + 1
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Example: Minority game
(static: X = 1)

For

! i ∈ 2m + 1 = {0, 1, . . .2m}— players
! Ai = {",!}— moves
! Bi = {0, 1}— values

the payoff A !# !! B is

#i(s) =















1 if #{j | sj = si } ≤ m
0 otherwise
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Example: Minority game
(static: X = 1)

The static equilibrium 1 !s !! A is again

si =
1
2"+

1
2!

with the expected social gain of

E

(
∑

#(s)
)

=
m
∑

k=1

(2m+1
k
)

22m+1 k

=
m
2
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Example: Minority game
(static: X = 1)

! Even with the maximal gain of ∑ #(s) = m,
there are m + 1 players with #i(s) = 0.
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Example: Minority game
(static: X = 1)

! Even with the maximal gain of ∑ #(s) = m,
there are m + 1 players with #i(s) = 0.

! There is always a majority with an incentive
to disturb the current state.
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Example: Minority game
(static: X = 1)

! Even with the maximal gain of ∑ #(s) = m,
there are m + 1 players with #i(s) = 0.

! There is always a majority with an incentive
to disturb the current state.

! This leads from equilibrium to evolution.
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Positions for stabilization: Minority game
(with '-step memory and d ideas)

Suppose that the player i sees the positions from

Xi = M × S1+d × '

where

! M = S = {",!}' — memory, strategies, ideas
! d = {0, 1, . . . , d − 1}— number of ideas
! ' = {0, 1, . . . , ' − 1}— length of the memory
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Positions for stabilization: Minority game
(with '-step memory and d ideas)

A position

xi = 〈µ,σi0,σi1, . . . ,σid , k〉 ∈ M × S1+d × ' = Xi

records

! µ— the recent ' minority (winning) choices
! σi0 — i ’s current strategy ('-tuple of choices)
! σi1,σi2, . . . ,σid — i ’s bag of ideas for strategies
! k — the current moment in the '-cycle history
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Positions for stabilization: Minority game

For

! i ∈ 2m + 1 = {0, 1, . . .2m}— players
! Ai = {",!}— moves
! Bi = {0, 1}— values
! Xi = M × S1+d × '— positions

! ξi ∈ Xi — initialized randomly

the payoff A × X !#B !! B remains

#iB(s, x) =















1 if #{j | sj = si } ≤ m
0 otherwise
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Positions for stabilization: Minority game

. . . while the position update A × Xi !#
i
X !! Xi maps

#iX (s, 〈µ,σ
i∗, k〉) = 〈µ̃, σ̃i∗, k̃〉

so that

! k̃ = k + 1 mod '
! µ̃ = 〈", µ0, µ1, . . . , µ'−2〉

! where " is the minority choice, i.e. #{j | sj = "} ≤ m

! σ̃i∗ is obtained by reordering
! σ̂i∗ = 〈σi∗

'−1,σ
i∗
0 ,σ

i∗
1 , . . . ,σ

i∗
'−2〉

! to maintain the invariant
∆(σ̃i0, µ̃) ≤ ∆(σ̃i1, µ̃) ≤ · · · ≤ ∆(σ̃id , µ̃)
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Positions for stabilization: Minority game

. . . while the position update A × Xi !#
i
X !! Xi maps

#iX (s, 〈µ,σ
i∗, k〉) = 〈µ̃, σ̃i∗, k̃〉

so that

! k̃ = k + 1 mod '
! µ̃ = 〈", µ0, µ1, . . . , µ'−2〉

! where " is the minority choice, i.e. #{j | sj = "} ≤ m

! σ̃i∗ is obtained by reordering
! σ̂i∗ = 〈σi∗

'−1,σ
i∗
0 ,σ

i∗
1 , . . . ,σ

i∗
'−2〉

! to maintain the invariant
∆(σ̃i0, µ̃) ≤ ∆(σ̃i1, µ̃) ≤ · · · ≤ ∆(σ̃id , µ̃)

— thus σ̃i0 is the best and σ̃id the worst strategy w.r.t. µ̃
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Positions for stabilization: Minority game

Let the profile X !s !! A be defined by

si(µ,σi∗, k) = σi0k

i.e., each player plays his currently best strategy.
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Positions for stabilization: Minority game

Evolution: refine A × Xi !#
i
X !! Xi

! Each player randomly mutates her state by
! dropping her worst idea σi('−1) ∈ {",!}'
! adding a random idea σ′ ∈ {",!}'.

at chosen intervals, or triggered by bad scores.
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Positions for stabilization: Minority game

Evolution: refine A × Xi !#
i
X !! Xi

! Each player randomly mutates her state by
! dropping her worst idea σi('−1) ∈ {",!}'
! adding a random idea σ′ ∈ {",!}'.

at chosen intervals, or triggered by bad scores.

! This leads to jointly stable populations of players.
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Positions for stabilization: Minority game

Stable positions

X !〈s,id〉 !! A × X A × X !#X !! X

X !〈s,id〉 !! A × X !#X !! X

1 !η=FixX (#X ◦s) !!

"η
""

X

X !

〈s,id〉
!! A × X

"#X

##

yield improved social gains E(Σ#) > m
2 + q.
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Example: Market game
(static: X = 1)

For

! i ∈ n = {0, 1, . . .n − 1}— players (sellers, producers)
! Ai = Bi = R— moves, values

the payoff A !# !! B is

#i(s) =















si − ci if ∀j∈n\{i}. si < sj
0 otherwise
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Example: Market game
(static: X = 1)

For

! i ∈ n = {0, 1, . . .n − 1}— players (sellers, producers)
! Ai = Bi = R— moves, values

the payoff A !# !! B is

#i(s) =















si − ci if ∀j∈n\{i}. si < sj
0 otherwise

where

! si is the market price offered by the producer i,
! ci is the production cost of i

Coalgebra of
market games

D. Pavlovic

Games

Equilibria

Positions
Coordination
Competition

Conclusion

Example: Market game
(static: X = 1)

The equilibria 1 !s !! A consist of the strategies

si = ci + εi

where εi ∈ [pi , qi ] is the desired profit.
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Example: Market game
(with memory and tactics)

Marketing tactics (equilibrium selection)

! to win, find ε such that ci + ε < cj + εj for all j ! i
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Example: Market game
(with memory and tactics)

Marketing tactics (equilibrium selection)

! to win, find ε such that ci + ε < cj + εj for all j ! i
! to profit, maximize among such ε
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Example: Market game
(with memory and tactics)

Marketing tactics (equilibrium selection)

! to win, find ε such that ci + ε < cj + εj for all j ! i
! to profit, maximize among such ε

! change the game:
! sway the buyer to pay more than the lowest price

! lock in, bundling, price discrimination. . .
! manipulate the market information

! advertising, branding. . .
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Stable solution: Second price market game
(Static: X = 1)

For

! i ∈ n = {0, 1, . . .n − 1}— players
! Ai = Bi = R— moves, values

the payoff A !# !! B is

#i(s) =















/si0s − si if ∀j∈n\{i}. si < sj
0 otherwise
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Stable solution: Second price market game
(Static: X = 1)

For

! i ∈ n = {0, 1, . . .n − 1}— players
! Ai = Bi = R— moves, values

the payoff A !# !! B is

#i(s) =















/si0s − si if ∀j∈n\{i}. si < sj
0 otherwise

where

/a0β =
∧

{b ∈ β | a < b}
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Stable solution: Second price market game
(Static: X = 1)

The unique equilibrium 1 !s !! A consists of the
strategies

si = ci
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Stable solution: Second price market game
(Static, stable, unimplementable)

The unique equilibrium 1 !s !! A consists of the
strategies

si = ci

i.e.,

! each player announces her production cost
! the lowest cost wins the market
! the profit is /ci 0c − ci

! the second lowest cost – the lowest cost
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Conclusion: Tasks for coalgebra of games

! analyze positions as states in X
! coalgebra homomorphisms between games
! position bisimilarity

! construct equilibria as fixed points in A

! static 1 !s !! A or position-wise X !s !! A

! equilibrium at a stationary position 1 !〈s,x〉 !! A × X


