Practical Constructions for the Efficient Cryptographic Enforcement of Interval-Based Access Control Policies

Jason Crampton

Information Security Group
Royal Holloway, University of London

20 October 2011
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
 Binary Decomposition
 Multiplicative Decomposition
 Related Work

Extensions to Higher Dimensions

Concluding Remarks
“Traditional” Access Control
“Traditional” Access Control
"Traditional" Access Control
“Traditional” Access Control

![Diagram showing access control policies and enforcement]

1. **Policy Enforcement**
2. **Policy**
3. **SECRET**
Cryptographically-Enforced Access Control
Cryptographically-Enforced Access Control
Graph-Based Authorization Policies
Graph-Based Authorization Policies
Graph-Based Authorization Policies
A Generic Single-Key Enforcement Mechanism

- We treat encryption keys like any other protected resource (that is, we encrypt them)
A Generic Single-Key Enforcement Mechanism

- We treat encryption keys like any other protected resource (that is, we encrypt them)
- For every y that is reachable from x, encrypt $\kappa(y)$ using $\kappa(x)$ (direct key derivation for the end user)
We treat encryption keys like any other protected resource (that is, we encrypt them).

For every y that is reachable from x, encrypt $\kappa(y)$ using $\kappa(x)$ (direct key derivation for the end user).

Alternatively, for every edge (x, y), encrypt $\kappa(y)$ using $\kappa(x)$ (iterative key derivation).
Security Considerations: Key Recovery

- It should be computationally hard for u to derive $\kappa(y)$ if there is no path from $\lambda(u)$ to y
- More generally, it should be computationally hard for a group of users $U_{\text{Collude}} \subseteq U$ to pool key information to obtain $\kappa(y)$ unless there exists $u \in U_{\text{Collude}}$ such that there is a directed path from $\lambda(u)$ to y
- For appropriate choices of encryption function E, edge-based encryption schemes satisfy the above properties
Informally, it should be computationally hard to distinguish between a key \(\kappa(y) \) and a random value.

Edge-based encryption schemes do not satisfy this property (since successful key derivation and object decryption provides a means of distinguishing).

Schemes with key indistinguishability can be constructed (modulo certain assumptions about the attack model).
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
Introduction

- Clearly, there are trade-offs between the number of keys that need to be encrypted and the number of key derivation operations performed by a user
- Let \((x, y) \in E_{enf}\) if and only if \(\kappa(y)\) is encrypted using \(\kappa(x)\)
- Given an authorization graph \(G_{auth} = (V, E_{auth})\), we say \(E_{enf} \subseteq V \times V\) is policy-enforcing if and only if \(E_{auth}^* = E_{enf}^*\)
Clearly, there are trade-offs between the number of keys that need to be encrypted and the number of key derivation operations performed by a user.

Let \((x, y) \in E_{enf}\) if and only if \(\kappa(y)\) is encrypted using \(\kappa(x)\).

Given an authorization graph \(G_{auth} = (V, E_{auth})\), we say \(E_{enf} \subseteq V \times V\) is policy-enforcing if and only if \(E^*_{auth} = E^*_{enf}\).

\[|E_{auth}| = 12; \ diameter = 3\]
Introduction

- Clearly, there are trade-offs between the number of keys that need to be encrypted and the number of key derivation operations performed by a user
- Let $(x, y) \in E_{enf}$ if and only if $\kappa(y)$ is encrypted using $\kappa(x)$
- Given an authorization graph $G_{auth} = (V, E_{auth})$, we say $E_{enf} \subseteq V \times V$ is policy-enforcing if and only if $E_{auth}^* = E_{enf}^*$

\[|E_{auth}| = 12; \text{ diameter } = 3 \]

\[|E_{enf}| = 25; \text{ diameter } = 1 \]
More Complex Trade-Offs

Given an authorization graph $G_{\text{auth}} = (V, E_{\text{auth}})$, we say E_{enf} is (policy-)enforcing if and only if $E^*_{\text{auth}} = E^*_{\text{enf}}$

- In other words, G_{auth} and G_{enf} contain exactly the same paths

Let V be a total order on n elements (V, \leq); then there exist sets of enforcing edges E_{enf} such that

| $|E_{\text{enf}}|$ | $d(G_{\text{enf}})$ |
|-----------------|-------------------|
| $\frac{1}{2}n(n-1)$ | 1 |
| $\Theta(n \log n)$ | 2 |
| $\Theta(n \log \log n)$ | 3 |
| $\Theta(n \log^* n)$ | 4 |
| $n-1$ | $n-1$ |
More Complex Trade-Offs: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme.
More Complex Trade-Offs: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes
More Complex Trade-Offs: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme.

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes.

Step 2 Repeat for each chain of length 8.
More Complex Trade-Offs: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes

Step 2 Repeat for each chain of length 8

Step 3 Repeat for each chain of length 4
More Complex Trade-Offs: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes

Step 2 Repeat for each chain of length 8

Step 3 Repeat for each chain of length 4

Step 4 Repeat for each chain of length 2
More Complex Trade-Offs: An Illustration

Consider a total order of 16 elements, for which we will construct a two-hop scheme

Step 1 Connect the top eight nodes to a “median node” and connect that node to the remaining nodes

Step 2 Repeat for each chain of length 8

Step 3 Repeat for each chain of length 4

Step 4 Repeat for each chain of length 2

For a chain of n elements there are $\log n$ rounds; each round adds fewer than n edges; the diameter of the resulting graph is 2
References

M.J. Atallah, M. Blanton, and K.B. Frikken.
Key management for non-tree access hierarchies.

H.L. Bodlaender, G. Tel, and N. Santoro.
Trade-offs in non-reversing diameter.

J. Crampton, K.M. Martin, and P. Wild.
On key assignment for hierarchical access control.

A.C.-C. Yao.
Space-time tradeoff for answering range queries.
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
Introduction

Protected data is released periodically

- Each period is regarded as a time point
- An interval is a consecutive sequence of time points
- Each user is authorized for some interval
- The authorization graph resembles a triangular mesh

One possible application is subscription-based services
The Naïve Approach

We could just apply the iterative cryptographic enforcement method to the triangular mesh

- We require $m(m - 1)$ edges
- Key derivation requires no more than $m - 1$ hops
The Naïve Approach Or Not?

We could just apply the iterative cryptographic enforcement method to the triangular mesh

- We require $m(m - 1)$ edges
- Key derivation requires no more than $m - 1$ hops

Alternatively, we could ask what trade-offs are possible for this particular authorization graph and this particular application?

- Solutions to the problem have either adapted methods for total orders or for arbitrary graphs
- We tackle the problem in a more direct way
A Crucial Observation

Protected objects are associated with a particular time point, not an interval

- The key for time point \(i \) is assigned label \([i, i]\)
- No object is assigned a label \([i, j]\) with \(i < j \)

A user only needs to derive keys for labels of the form \([i, i]\)

This assertion is not true in general for authorization graphs
Problem Summary

Given \(V = \{ [i, j] : 1 \leq i \leq j \leq m \} \), find an edge set \(E \subseteq V \times V \) such that
1. there exists a path from \([i, j]\) to \([k, k]\) for all \(k \in [i, j]\)
2. \(|E|\) is small
3. the diameter of the graph \((V, E)\) is small
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
 Binary Decomposition
 Multiplicative Decomposition
 Related Work

Extensions to Higher Dimensions

Concluding Remarks
The One-Hop Scheme

- The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-“leaf” node is connected to the appropriate “leaf” nodes
 - The diameter of the graph is 1
The One-Hop Scheme

- The one-hop scheme is useful as a base scheme in more complex recursive constructions
 - Every non-"leaf" node is connected to the appropriate "leaf" nodes
 - The diameter of the graph is 1
- We require \(\frac{1}{6} m(m - 1)(m + 4) \) edges
 - \(e_m - e_{m-1} = (t_m - 1) \), where \(t_m = \frac{1}{2} m(m + 1) \)
 - whence \(e_m = \sum_{i=1}^{m} (t_m - 1) = \ldots \)
Two Results

Let T_m denote the set of intervals $\{[i,j] : 1 \leq i \leq j \leq m\}$

Proposition

Let E be an enforcing set of edges for T_m. Then $|E| \geq m(m-1)$.
Two Results

Let T_m denote the set of intervals $\{[i, j] : 1 \leq i \leq j \leq m\}$

Proposition
Let E be an enforcing set of edges for T_m. Then $|E| \geq m(m - 1)$.

Proposition
There exists an enforcing set of edges E such that $|E| = m(m - 1)$ and the diameter of (T_m, E) is $\lceil \log m \rceil$.

Practical Constructions.../Jason Crampton/ISG/October 2011
An Explicit Construction for T_7
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
 Binary Decomposition
 Multiplicative Decomposition
 Related Work

Extensions to Higher Dimensions

Concluding Remarks
Nodes and Supernodes

If $m = ab$, then T_m can be regarded as a copy of T_b in which the “supernodes” are copies of T_a and D_a

- Each interval in D_a is the disjoint union of no more than b intervals in copies of T_a
- Given an interval in D_a add edges to appropriate nodes in copies of T_a
A Two-Hop Scheme

- Divide T_m into a^2 blocks so that each block contains a single node from each D_a
- Each node in a block occupies the same relative position within D_a

![Diagram of two-hop scheme]

- Construct a^2 copies of a 1-hop scheme for T_b and a 1-hop scheme for each copy of T_a
- In total, the number of edges required is

$$\frac{1}{6}ab(a(b - 1)(b + 4) + (a - 1)(a + 4))$$
Generalizing the Two-Hop Construction

Writing $36 = 3 \cdot 3 \cdot 4$ we obtain the following decomposition of T_{36}
Generalizing the Two-Hop Construction

Writing $36 = 3 \cdot 3 \cdot 4$ we obtain the following decomposition of T_{36}
Generalizing the Two-Hop Construction

Writing $36 = 3 \cdot 3 \cdot 4$ we obtain the following decomposition of T_{36}
Generalizing the Two-Hop Construction

Theorem

Let \(m = \prod_{i=1}^{d} a_i \), where \(a_i \) is an integer and \(2 \leq a_i \leq a_{i+1} \) for all \(i \). Then there exists an enforcing set of edges \(E \) such that the diameter of \((T_m, E) \) is \(d \) and

\[
|E| = \frac{m^2}{6} \sum_{i=1}^{d} \frac{(a_i - 1)(a_i + 4)}{\pi_i},
\]

where \(\pi_i = a_1 \ldots a_i \).
Some Remarks

- Successive terms in the summation are approximately equal when \(a_{i+1} \approx a_i^2 \) (minimize \(d \))
- The \(i \)th term in the summation is minimized when \(a_i = 2 \) (minimize \(|E| \))
- For \(m = 36 \) we have

\[
\begin{align*}
\text{Factors} & & |E| & & d \\
6.6 & & 36^2 \cdot \frac{175}{108} & & 2 \\
4.9 & & 36^2 \cdot \frac{153}{108} & & 2 \\
3.3.4 & & 36^2 \cdot \frac{124}{108} & & 3 \\
2.2.3.3 & & 36^2 \cdot \frac{109}{108} & & 4 \\
\end{align*}
\]

\[
\frac{(a_i - 1)(a_i + 4)}{\pi_i}
\]
Corollary 1

Theorem

...there exists an enforcing set of edges E such that the diameter of (T_m, E) is d and

$$|E| = \frac{m^2}{6} \sum_{i=1}^{d} \frac{(a_i - 1)(a_i + 4)}{\pi_i}$$

Corollary

If $m = a^d$, then there exists an enforcing edge set E such that

$$|E| = \frac{1}{6} m(m - 1)(a + 4)$$ and the diameter of (T_m, E) is $d = \log_a m$.
Corollary 2

Theorem

...there exists an enforcing set of edges E such that the diameter of (T_m, E) is d and

$$|E| = \frac{m^2}{6} \sum_{i=1}^{d} \frac{(a_i - 1)(a_i + 4)}{\pi_i}$$

Corollary

Let $m = 2^{2^d}$ for some integer $d \geq 2$. Then there exists an enforcing edge set E such that

$$|E| < m^2 \left(1 + \frac{1}{6} \log \log m\right)$$

and the diameter of (T_m, E) is $\log \log m$.

Practical Constructions.../Jason Crampton/ISG/October 2011
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control
 Binary Decomposition
 Multiplicative Decomposition
 Related Work

Extensions to Higher Dimensions

Concluding Remarks
Related Work

M.J. Atallah, M. Blanton, and K.B. Frikken.
Incorporating temporal capabilities in existing key management schemes.

 Key management for non-tree access hierarchies.

New constructions for provably-secure time-bound hierarchical key assignment schemes.

- B. Dushnik and E.W. Miller.
 Partially ordered sets.
 American Journal of Mathematics, 1941.

- M. Thorup.
 Shortcutting planar digraphs.
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Public Storage</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atallah et al., 2007</td>
<td>$\mathcal{O}(m^2 \log m)$</td>
<td>$\mathcal{O}(\log^* m)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{O}(m^2)$</td>
<td></td>
</tr>
<tr>
<td>De Santis et al., 2008</td>
<td>$\mathcal{O}(m^2)$</td>
<td>$\mathcal{O}(\log m \log^* m)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{O}(m^2 \log m)$</td>
<td>$\mathcal{O}(\log^* m)$</td>
</tr>
<tr>
<td></td>
<td>$\mathcal{O}(m^2 \log m \log \log m)$</td>
<td></td>
</tr>
<tr>
<td>Crampton, 2009</td>
<td>$m(m-1)$</td>
<td>$\lceil \log m \rceil$</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{6} m(m-1)(\sqrt{m} + 4)$</td>
<td>2</td>
</tr>
<tr>
<td>Crampton, 2010</td>
<td>$m^2 \left(1 + \frac{1}{6} \lceil \log \log m \rceil \right)$</td>
<td>$\lceil \log \log m \rceil$</td>
</tr>
</tbody>
</table>
My approach attacks the problem directly and makes use of specific characteristics of the application.

My constructions yield explicit formulae (rather than asymptotic behaviour) for the number of edges and the number of hops required.

My schemes can be implemented directly using existing iterative key encrypting schemes.
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
“Geo-Spatial” Access Control Policies

- Data objects are associated with a point in a two-dimensional grid
- Users are authorized for rectangles covering a set of points in the grid
- The set of rectangles ordered by subset inclusion forms a partially ordered set
- The set of nodes in the authorization graph is $T_m \times T_n$
- We will write $T_{m,n}$ to denote $T_m \times T_n$
The Main Results

Theorem
There exists an enforcing set of edges E such that the diameter of the graph $(T_{n,n}, E)$ is bounded by $\lceil \log n \rceil$ and

$$|E| = \frac{1}{3}n^2(n - 1)(2n + 5) < \frac{8}{3} |T_{n,n}|.$$

Theorem
There exists an enforcing sets of edges E such that the diameter of $(T_{m,km}, E)$ is $\log m + \log k = \log km$ and

$$|E| = \frac{1}{6} km^2 (3(k - 1)m(m + 1) + 2(m - 1)(2m + 5)).$$

Corollary
For $k \geq 1,$ there exists an enforcing set of edges E such that the diameter of $(T_{m,km}, E)$ is $\log km$ and

$$|E| < 2 |T_{m,km}| \left(1 + \frac{1}{3k}\right) \leq \frac{8}{3} |T_{m,km}|.$$
Define $T_n^k = T_n \times \cdots \times T_n$ \(k\) times

Theorem

There exists a set of enforcing edges E for T_n^k such that the diameter of (T_n^k, E) is $\log n$ and

$$|E| = \frac{n^k}{2^k} \sum_{i=1}^{k} \binom{k}{i} \frac{(3^i - 1)(n^i - 1)}{2^i - 1}.$$

Corollary

$|E|$ is $\Theta \left(\left(\frac{3}{2} \right)^k |T_n^k| \right)$.

Practical Constructions.../Jason Crampton/ISG/October 2011
Sketch Proof: \(k = 1 \)

Consider \([x, y], 1 \leq x \leq y \leq 2m\)

- \(x\) and \(y\) can be regarded as the “corners” of the interval \([x, y]\)
- Each corner can be labelled with a binary digit, where 0 indicates it is less than or equal to \(m\) and 1 indicates it is greater than \(m\)
- If \(x\) and \(y\)’s labels are the same, then the interval \([x, y]\) is completely contained in a subinterval of length \(m\)
Sketch Proof: \(k = 2 \)

- We only need to add (two) edges in the recursive step if the corner labels are different.

```
1  x  m  y  2m
```

- Hence, the recurrence relation for the number of edges has the form:

\[
e(2m) = 2a + 2e(m)
\]

where \(a \) is the number of intervals whose corner labels are different.

- If the corner labels are different we have \(m \) choices for each of \(x \) and \(y \); therefore, \(a = m^2 \).
Sketch Proof: $k = 2$

- The bottom left-hand and top right-hand corners of a rectangle can each be associated with a pair in $\{0, 1\}^2$
- Moreover, if the two corners are represented by (b_1, b_2) and (t_1, t_2) then $b_1 \leq t_1$ and $b_2 \leq t_2$
- A rectangle straddles 2^d squares of side m, where $0 \leq d \leq 2$ is the Hamming distance between these corners
 - The Hamming distance is the number of places in which the two pairs differ
 - For $d > 0$, 2^d is the number of edges required from that rectangle in the recursive step
Sketch Proof: \(k = 2 \)

- The number of choices for the co-ordinates of the corners is also determined by the Hamming distance

\[
\left(\frac{1}{2} m(m + 1) \right)^{(2-d)} (m^2)^d
\]

- If \(b_i = t_i \) then there are \(\frac{1}{2} m(m + 1) \) choices for the endpoints of the \(i \)-th interval
- If \(b_i < t_i \) then there are \(m^2 \) choices

- Finally, the number of corner pairs with Hamming distance \(d \) is given by \(2^{2-d} \binom{2}{d} \)
 - If \(b_i = t_i \) then there are two choices for \(b_i \)
 - If \(b_i < t_i \) then there is only once choice for \(b_i \)
 - There are \(\binom{2}{d} \) ways in which we can choose corners with Hamming distance \(d \)
Sketch Proof: $k = 2$

- We deduce the recurrence relation

\[e(2m) = 4e(m) + \sum_{d=1}^{2} \alpha(d)\beta(d)\gamma(d) \]

- $\alpha(d) = 2^d$ is the number of edges required to connect a rectangle with Hamming distance d to sub-rectangles contained with copies of a square of side m
- $\beta(d) = \left(\frac{m+1}{2}\right)^{2-d} m^{d+2}$ is the number of rectangles with Hamming distance d
- $\gamma(d) = 2^{2-d}\binom{d}{2}$ is the number of ways of fitting rectangles with Hamming distance d in a square of side $2m$

- That is

\[e(2m) = 4e(m) + m^2 \sum_{d=1}^{2} (2m)^d (m + 1)^{2-d} \binom{2}{d} \]
Sketch Proof: The General Case

- Any “hyperinterval” \(I \) in \(T_{2^m}^k \) can be represented as the union of at most \(2^k \) hyperintervals in copies of the hypercube \([1, m]^k\)
- \(I \) is associated with two \(k \)-tuples in \(\{0, 1\}^k \), which identify the bottom left-hand and top right-hand “hypercorners” of \(I \)
- The Hamming distance \(0 \leq d \leq k \) determines the number of:
 - copies of \([1, m]^k\) that \(I \) straddles (and hence the out-degree of \(I \)), which equals \(2^d \)
 - choices for the co-ordinates of \(I \), which equals \(\left(\frac{1}{2}m(m+1)\right)^{k-d}(m^2)^d \)
 - choices for hypercubes containing the hypercorners, which equals \(2^{k-d}\binom{k}{d} \)
- We deduce the following recurrence relation

\[
e(2m, k) = 2^k e(m, k) + m^k \sum_{d=1}^{k} (2m)^d (m+1)^{k-d} \binom{k}{d}
\]
Cryptographic Access Control

Space-Time Trade-Offs

Temporal Access Control

Extensions to Higher Dimensions

Concluding Remarks
Contributions

- First work in this area to develop techniques tailored for the problem
- First work to provide exact (and better) bounds for the number of edges
- First work to retain the simplicity of existing iterative schemes
 - Other constructions require auxiliary data structures
 - Other constructions require more complex key derivation algorithms
- First work to provide explicit constructions for higher dimensions that are natural extensions of those for lower dimensions
References

J. Crampton.
Trade-offs in cryptographic implementations of temporal access control.
In *Proceedings of NordSec 2009*.

J. Crampton.
Practical constructions for the efficient cryptographic enforcement of interval-based access control policies.
ACM Transactions on Information and System Security, 2011.

J. Crampton.
Time-storage trade-offs for cryptographically-enforced access control.
In *Proceedings of ESORICS 2011*.