
Key Refreshing in Wireless Sensor Networks

January 14, 2008

Abstract

The problem of establishing symmetric keys in wireless sensor networks has been extensively
studied, but other aspects of key management have received comparatively little attention. In
this paper we consider the problem of refreshing keys that are shared among several nodes
in a WSN, in order to provide forward security. We discuss several applications that lead to
sensor networks with very different properties, and we propose key refreshing schemes that are
useful in each of these environments, together with resynchronisation methods that allow nodes
possessing different versions of a key to arrive at a common version.

1 Introduction

A wireless sensor network (WSN) consists of a number of small, battery-powered sensing devices
(known as sensor nodes) that employ wireless communication to form a network in order to dis-
tribute and manipulate the sensed data. As public-key cryptographic techniques are regarded as
being undesirably costly for these highly constrained devices it is necessary for nodes to share sym-
metric keys for the purposes of providing authentication, data integrity or confidentiality. Much
research has been done on the problem of establishing shared keys in such networks (see [3, 8, 14] for
surveys of this area); less attention has been paid to the ongoing key management requirements that
arise after a network has been deployed. One such requirement, recognised in the cryptographic
community since the 1980s (see [5]), is forward security : if a node is captured and its secret material
compromised, an adversary should not be able to decrypt messages that were intercepted by the
adversary in the past. In a network environment, we may weaken this requirement to insisting
that the adversary cannot decrypt messages that were broadcast more than a very short time ago.
Forward security is of particular significance in a WSN, as the nodes operate in an uncontrolled
environment and lack tamper proof hardware, and hence are vulnerable to adversarial compromise.
Moreover, the difficulty of distinguishing node compromise from routine node failure adds to the
security challenges of such an environment.

Schemes for refreshing keys (updating keys using a one-way function) in order to provide forward
security in a WSN setting have so far been restricted to networks in which there are no group keys
and where nodes are capable of storing a separate key for each of their neighbours (this is the case for
the schemes proposed by Klonowski et al. [6] and Mauw et al. [9]). But these restrictions are often
not valid: group keys (which could be shared by many nodes) are needed in many applications; even
when keys are only used to secure pairwise links, a node might use the same key to communicate
with more than one of its neighbours because of limited storage capabilities. (For example, this
will often be the case if key predistribution techniques such as those of Eschenauer and Gligor [4]

1



or Lee and Stinson [7] are used.) Indeed, when a network is dense, the number of secure links a
node might want to establish might exceed the number of keys it is able to store. In this paper
we consider how to provide forward security by key refreshing in networks with these more general
patterns of key sharing.

In Section 2 we consider definitions of forward security appearing in the literature, and examine
standard techniques for refreshing pairwise keys, as well as those that have been proposed for a
sensor network context.

In Section 3 we discuss several applications for sensor networks that give rise to five distinct
categories of networks with differing properties. As suggested by the examples given in [13] by
Römer and Mattern, the properties of sensors and their communication patterns can vary much
more widely than is acknowledged in much of the sensor network literature. The network environ-
ments we describe encompass a wide range of possible WSNs: sensors may be fixed or mobile, the
network may be dense or sparse, the amount of communication within the network may be steady,
or it may fluctuate. In fact, the schemes we propose are not restricted to sensor networks, but may
find application in any network in which symmetric keys are shared by more than two entities.
We assume that each node stores a number of symmetric keys from some key pool, and that each
key is potentially stored by a number of different nodes. We further suppose that a node is able
to determine its neighbours: nodes with which it shares at least one key, and which are within its
communication range.

In Section 4 we propose schemes for updating keys to provide forward security in the first two
environments we have identified.

In Section 5 we discuss a scheme appropriate for the remaining three environments, and provide
schemes for resynchronising the versions of keys possessed by nodes in cases where the nodes hold
differing versions of the same key. We conclude with a discussion of some further issues relating to
key refreshing in WSNs.

2 Forward Security through Pairwise Key Refreshing

In this section we describe standard techniques for achieving forward security for a single pairwise
key, as well as two schemes that have been proposed in a sensor network context. We then point
out the problems of extending pairwise schemes to the setting where a key is shared by more than
one node in a network.

2.1 Notions of Forward Security

Provably secure refreshing In [1], Bellare and Yee describe how symmetric keys can be refreshed
using a stateful generator: a pseudorandom bit generator that takes a state as input, then produces
an output block and a new state, which is used as the input for the next iteration of the generator.
Such a generator is defined to be forward secure if an adversary who is given access to the state of the
generator at a time of its choice cannot feasibly distinguish the sequence of bits previously output
by the generator from a random sequence. A stateful generator can be used for key refreshing
in the following manner. Let g : {0, 1}s → {0, 1}b+s be a pseudorandom generator (such as the
Blum-Blum-Shub generator [2], for example) and let s0 be a randomly chosen s-bit initial state.
The first b bits of g(s0) are output as an initial key k1, and the remaining s bits are stored as the
state s1. A sequence of keys ki can then be produced by applying g to the state si−1, updating the

2



state using the output of g each time. Bellare and Yee prove that this stateful generator is forward
secure, provided that g is pseudorandom. As this process is deterministic, two entities who share
an initial common state can use this method to produce a forward-secure sequence of shared keys
without any communication overheads.

In the constrained environment of a WSN, however, the use of a provably secure generator is
likely to prove too computationally expensive. Also, the need to store the generator’s internal state
as well as the current key represents an additional overhead. In order to realise a significant gain in
efficiency, it may therefore be deemed acceptable in a sensor network context to consider a weaker
form of forward security, namely: given a version of a key, it should be computationally infeasible
to decrypt any ciphertexts produced with prior versions of the key. This can be achieved by the
use of a one-way function. This is a standard technique that can be described as follows.

Standard refreshing Suppose that nodes Alice and Bob share a symmetric key k taken from
a key space K. Let f : K → K be a public one-way function (so f can be efficiently computed, but
it is difficult to find an inverse image under f). In practice, we may build a one-way function f

from a secure hash function.
Define the ith version ki of the key k by k0 = k and ki = f(ki−1) for i ≥ 1. Initially, both Alice

and Bob store version 0 of the key. Whenever they exchange an encrypted message, they use the
current version of the key. After exchanging the message, they replace their key ki by ki+1 = f(ki),
and destroy the original key ki. This process is known as refreshing the key. Note that if Alice
or Bob are compromised, the adversary only comes into possession of the most up-to-date version
ki of the key. The adversary is unable to compute any previous version kj of the key, where
j < i, because f is one-way, and so cannot decrypt any ciphertexts intercepted before the node
compromise. This method therefore satisfies the restricted notion of forward security (although
it does not acheive Bellare and Yee’s indistinguishability property, as the function f can be used
to distinguish a sequence of keys from a random sequence). Both standard and provably secure
refreshing require no communication overhead. The former technique is a little more efficient, but
the latter technique has the advantage of a more precisely defined security model. In our schemes,
which we describe in Sections 4 and 5, either technique can be used.

2.2 Forward Security in Sensor Networks

The literature contains examples of schemes for refreshing pairwise keys that have been proposed
specifically for WSNs. In [9], Mauw, van Vessem and Bos consider a network in which each node
communicates directly with a base station. Each node n shares a unique initial key x0

n with the
base station, and the standard refreshing technique described in Subsection 2.1 is used, with key
xi

n being generated as H(xi−1
n ), where H is a one-way hash function (the authors suggest the use

of SHA-1).
Klonowski, Kuty lowski, Ren and Rybarczyk consider the scenario in which every node “shares

a separate pairwise key with each neighbour” [6]. Their scheme also employs a one-way function F

but, based on a key distribution mechanism in [11], incorporates an element of randomness. In their
scheme, if nodes A and B share key kAB and A wants to send a message to B, then A encrypts the
message using a key k′ = F (kAB , i), where i is chosen uniformly at random from the set {0, 1, . . . , l}
for some small l. Node B then has to perform several trial decryptions in order to determine the
precise value of i and hence k′ that was used. This is more computationally expensive than the
standard pairwise refreshing technique, and has the complication that B must succeed in receiving
and decrypting the message in order for key refreshing to occur successfully. The presence of the

3



randomness does, however, provide the additional property that an adversary that possesses an
old version of a key will eventually be unable to determine newer versions of the key unless it has
continued to monitor all the messages sent using intermediate versions of that key. Note that real
randomness, rather than pseudorandomness, must be used for this additional property to hold (as
we may assume that node compromise reveals the state of any pseudorandom generator used by
the node). This limits the applicability of the scheme. Note also that the computational burden of
trial decryptions may be eliminated from this scheme at the expense of a little more communication
complexity by appending the random bits used in key refresh to the message from A to B.

Since randomness is not needed for forward security, and a security model where the randomness
has benefits must involve a weakening of the standard model considered for sensor networks (in
which an adversary is capable of intercepting all communication), we do not consider randomness
in the schemes we present later in the paper.

The schemes we have considered so far all involve refreshing keys that are shared by exactly two
entities. As discussed in the introduction, however, many sensor network applications involve keys
that are shared by more than two participants. Refreshing keys in this situation becomes more
complicated; in the following subsection we discuss some of the issues that arise.

2.3 Problems that Arise when Widely Shared Keys are Refreshed

When seeking to maintain forward security when a key k is shared by more than two nodes, a
pairwise key refreshing scheme cannot be used without some modifications. If user X is currently
storing version i of the key k, we write vnk(X) = i. In the standard two node schemes discussed in
Subsection 2.1, it is clear that vnk(Alice) = vnk(Bob) at all times, whereas this will not usually be
the case if more than two nodes use the same key. If communicating nodes simply refresh their keys
after each message, other nodes using the same key will not necessarily be aware that a message
has been transmitted and so will not refresh their key appropriately. This causes two problems:

• (Undecipherable messages) If users X and Y are such that vnk(X) < vnk(Y ), we have a
problem if X sends a message to Y using version vnk(X) of k (since Y cannot decrypt). So
we need to have a mechanism to ensure that the version numbers of X and Y are synchronised.

• (Degradation of forward security) Suppose some node Z has refreshed its key less than com-
municating nodes X and Y , so vnk(Z) < vnk(X) = vnk(Y ). Then the compromise of Z

allows an adversary to decipher any messages exchanged by X and Y using versions of the
key lying between vnk(Z) and vnk(X). So we need to have a mechanism to ensure that no
node stores a “very old” version of a key.

The first problem could be solved by requiring nodes to use a different version number of the key
for each pairwise communication link they maintain. A node would have to store a set of version
numbers (one for each link) together with the version of the key corresponding to the lowest of
these version numbers. But this causes a proliferation of version numbers and so this solution is
often unrealistic because of storage constraints in the WSN model. Moreover, the second problem
becomes worse.

In this paper we propose two alternative classes of solutions. In Section 4 we address the prob-
lems of undecipherable messages and degradation of forward security by describing mechanisms to
ensure that all nodes update their copy of k at essentially the same time (synchronised key refresh-
ing). However, in some applications this approach is unrealistic, and so in Section 5 we describe a

4



method whereby a pair of communicating nodes determines which version number of the key to use
(asynchronous key refreshing, addressing the first problem) and then describe several mechanisms
to ensure that no node stores a low version number of a key (key resynchronisation, addressing the
second problem). First, however, we discuss several applications for sensor networks. These give
rise to five categories of network environment, in which our different schemes are appropriate.

3 Sensor Network Environments and Applications

The vast array of applications that have been proposed for WSNs leads to networks with widely
varying properties. In order to provide a context for the key refreshing schemes we propose in this
paper, we consider five distinct sensor network application environments. The differing character-
istics of these situations mean that the most appropriate method of key refreshing varies between
examples. Here we describe these environments, and give examples of possible applications for
which they are appropriate.

1. (Synchronised clocks) In many applications, the nodes in the network have synchronised
clocks. As discussed in Römer et al. [12], clock synchronisation comes at a cost. However,
in networks where it is provided for the purposes of the application, we can exploit clock
synchronisation for performing key refreshing. Examples of applications for which clock
synchronisation is necessary include an intruder detection system in which records of events
are timestamped by individual sensors, or a system for monitoring volcanic activity in which
the network is used to provide a global picture of a volcano’s behaviour at a given time.

2. (Frequent flooding) Many environments do not require nodes to have synchronised clocks,
but frequent flooding of messages through the network should take place. This might be
the case, for example, in a disaster recovery scenario in which sensors attached to medical
personnel flood real-time updates on their status to others in the area.

3. (Infrequent network-wide events) Some applications call for networks in which synchro-
nised clocks and regular flooding are not present, but in which there is an occasional event
that can be detected by the entire network. For example, the data sink could consist of a
helicopter that flies over the network occasionally and broadcasts a request to retrieve data
to the entire network. In some applications an infrequent flooding of the network might take
place (for example, an intruder detection system in a warehouse might be armed or disarmed
by a flooded message that is triggered by the locking or unlocking of a door).

4. (Infrequent local events) Our fourth category consists of networks in which no global
events occur with sufficient frequency or regularity and no regular flooding takes place, but
whose communication capacity can support an occasional flooded message. This is the case in
networks measuring events that occur locally, and in which there is a low amount of (mostly
local) communication between nodes.

5. (Regular disconnection) The final network environment that we address consists of net-
works that have a high likelihood of becoming disconnected, but in which the separate compo-
nents continue functioning independently until the network is later reconnected. This might
occur in sparse networks in which nodes are sited at the very edge of their communication
capacities, or networks in which clusters of nodes are associated with moving objects, such
as vehicles.

5



4 Schemes to Synchronise Key Refreshing

This section contains two schemes that can be used to synchronise key refreshing throughout a
network; they can be applied in the first two application environments respectively. The schemes
can either be used to refresh a fixed key from the keypool, or a subset of keys.

4.1 Synchronous Event-Driven Key Refreshing

The simplest means of maintaining sychronicity of key version numbers is:

Scheme 1. (Event-driven refreshing) Nodes refresh their keys in response to some event that
can be observed by the whole network.

In our first application scenario, in which nodes have synchronised clocks, the network can
simply refresh their keys every five minutes, say, thus providing forward security for messages more
than five minutes old. Alternatively, if nodes are capable of detecting some network-wide event
that happens with sufficient frequency, then they can refresh their keys every time such an event is
detected, thus removing the requirement that their internal clocks be strictly synchronised. Finally,
in networks possessing a base station capable of broadcasting directly to each node, the base station
can simply send regular messages prompting the nodes to refresh their keys.

This scheme is very desirable in that there are no communication overheads. The existence
of a suitable network-wide event is a strong (but widely satisfied) requirement: the more complex
schemes discussed in subsequent sections are intended to be used when this requirement is not met.

4.2 Flooded Refreshing

Another solution to the problem of version number synchronisation is for a node to flood a key
refresh signal throughout the network each time a key needs to be refreshed. The resulting commu-
nication overhead makes this infeasible in many instances; however, in our second scenario where
much of the traffic involves messages being flooded throughout the entire network, the refresh signal
can be ‘piggy-backed’ onto a flooded message. Each such flood then acts as a signal for all keys
to be updated (hence the same version number is maintained for each key). The following scheme
illustrates how this can be carried out, taking into account the fact that the flooding of separate
messages may be simultaneously initiated at differing points of the network. The only communica-
tion overhead associated with refreshing in this manner is the need to append the version number
to the encrypted message. (Even this overhead could be eliminated at the cost of nodes potentially
having to perform several trial decryptions to determine the correct version number.)

Scheme 2. (Flooded refreshing)

1. Before initiating the flooding of a message, a node first updates all its keys. It then encrypts
the message under the new version of its keys before broadcasting it.

2. A node X receiving a flooded message encrypted with a version i > vnk(X) of key k must
update k in order to decrypt the message; it similarly updates the rest of its keys, then encrypts
the message under these new versions before forwarding it. (Note that a node only forwards
each message once; if it receives additional copies of the same message it simply ignores them.)

6



3. A node keeps a particular version of its keys until after it has broadcast a message using a
higher version number. If a node receives several messages encrypted with different version
numbers before it is able to forward them, it encrypts all the messages using the highest of
these version numbers before rebroadcasting them. Once the messages have been sent it deletes
all older versions of its keys.

This scheme ensures that nodes only have to store multiple versions of the same key for the
brief time between receiving a message and rebroadcasting it. If we assume that the media access
control employed by the WSN prevents two neighbouring nodes from broadcasting simultaneously,
then this manner of key updating prevents problems arising from nodes needing to use old versions
of keys that they have already deleted. (Note that because of the small distances involved, we
suppose that a message sent directly to a node by its neighbour is received instantaneously.)

Theorem 4.1. If synchronous key refreshing is performed using Scheme 2 then no node receives a
message encrypted with a version of a key that it has already deleted.

Proof. Suppose a node A receives a message m rebroadcast by a neighbouring node B encrypted
with version vnk(B) of a key k possessed by A. Then A has version vnk(A), and vnk(A) ≤
vnk(B), unless A has already rebroadcast some message using a version number higher than vnk(B).
However, in that case, A’s neighbour B would have received that message prior to sending m, and
thus vnk(B) ≥ vnk(A), which is a contradiction.

In environments where a significant proportion of communication is local, Scheme 2 would incur
an undesirable communication overhead. So we need to find schemes that flood the network less
frequently.

5 The Asynchronous Case

The synchronous schemes discussed in Section 4 all have the advantage of ensuring that nodes
sharing a given key maintain the same numbered version of that key. In our last three network
environments, however, there are no sufficiently frequent network-wide events that would enable
these schemes to be employed. In Subsection 5.1, we discuss an asynchronous scheme that can be
used in these environments. The nature of the scheme means that we need to resynchronise the
version numbers across the network occasionally, to prevent undue degradation of forward security.
Subsections 5.2, 5.3 and 5.4 discuss methods for resynchronisation appropriate in environments 3, 4
and 5 respectively.

5.1 Asynchronous key refreshing

A simple method of asynchronous key refreshing, in which different nodes refresh their keys at
different rates, is described as follows:

Scheme 3. (Message-driven refreshing)

1. When two neighbouring nodes X and Y want to communicate using key k, X sends vnk(X)
to Y and Y sends vnk(Y ) to X.

2. X and Y each compute
newvn = 1 + max{vnk(X), vnk(Y )}.

7



3. X and Y each update their copy of k by applying f an appropriate number of times, so that

vnk(X) = vnk(Y ) = newvn.

Then they use the updated key k to encrypt any information they wish to send to each other.

This scheme works well if all the nodes are more-or-less equally active, and hence update k

at similar rate1. Even so, it is still possible that relatively inactive nodes do not update k very
often. Thus, to avoid the degradation of forward security, a resynchronisation scheme must be
deployed. Again, the method employed will depend on the network environment: we now discuss
some possible methods.

5.2 Periodic Resynchronisation

The third category of networks discussed in Section 3 consists of those that experience regular
events (such as a helicopter fly-past) that would be suitable for event-based key refreshing except
that they do not happen with sufficient frequency. In such a context, the asynchronous refreshing
Scheme 3 can be applied, but with the version numbers held by nodes being resynchronised each
time the infrequent event is observed. A simple resynchronisation scheme requires all nodes to
update their keys to a pre-specified version number upon detection of the event. For example,
the jth occurrence of the regular event could trigger each node to update their version number to
the value 100j (assuming that no node will transmit more than 100 times between events). Thus
less active nodes will “catch up” with highly active nodes once a day, maintaining some level of
sychronicity on a regular basis. This technique is suitable as long as the amount of traffic likely to
occur between consecutive occurrences of the event in question does not vary greatly and can be
reasonably estimated. It has the advantage of incurring no communication overheads.

5.3 Resynchronisation by a flood

In applications where there are no network-wide events and the network can only support occasional
flooding (see our fourth environment), a flooding technique could be used for resynchronisation
rather than key refresh. So whenever a node has refreshed its key 100 times (say), it uses the
flooded key refresh scheme from Section 4 to flood the network with a message requiring all nodes
to update their keys to its version number. Flooding places an extra communication burden on the
network, but this can be made manageable since the frequency of the floods is much lower than
the frequency of key refresh operations. This scheme trades a degradation of forward security for
an improvement in communication complexity.

5.4 Resynchronisation via a Leader Election

A third approach towards resynchronising keys in the absence of an appropriate network-wide event
would be to periodically execute a protocol to resynchronise the network, by determining which
node has the highest version number of a key k. (This is similar to the leader election problem that

1Due to the broadcast nature of wireless communication, it is also possible for any neighbours of the nodes involved
in this exchange to learn the version number reached and refresh their own keys if necessary.

8



is studied in distributed systems.) Then every node would update their keys to this version2. This
technique is useful in the fifth application environment of Section 3, in which the network may be
temporarily disconnected. If the amount of traffic in each component varies then the key versions
possessed by nodes in different components will differ. In order to resynchronise these versions once
the components are reconnected, it will be necessary to excute a protocol of this nature.

There is a large literature describing algorithms for leader election in different settings. For our
purposes, a variation of the algorithms described in Peleg [10] is appropriate, and we describe this
algorithm below (Algorithm 1). This approach to resynchronisation is appropriate in situations
when the network needs to run a protocol to establish some of its global properties (such as the
shortest path to a sink node) in cases when the network is dynamic.

The algorithm has time complexity O(D) and message complexity O(DE), where D is the
diameter of the network and E is the number of edges in the network. We describe an algorithm
for leader election that can be initiated by any node x. The algorithm does not require that message
transmissions be synchronised. The number of rounds (or pulses) is determined by the maximum
distance of a node from the initiating node x, which we denote by dmax. The value of dmax does
not have to be known ahead of time; indeed, the algorithm will compute it. We do not require that
nodes have any knowledge of the structure of the network, except for the requirement that every
node is assumed to know who all of its neighbours are. Note that if two nodes initiate the protocol
simultaneously, it is easy to avoid any resulting conflicts by enforcing a standard rule for deciding
which algorithm to drop.

Every node i has a value vi; at the end of the algorithm, every node should know the value

vmax = max{vi}.

In this algorithm, nodes broadcast tuples of the form (s, y, d, v), whose components are defined
as follows:

• s is the node who is broadcasting the tuple, (s = 0 denotes a termination condition for the
algorithm)

• y is the node at maximum distance (which is denoted by d) from the initiating node x,
according to the current knowledge of s,

• v is the value of vmax, according to the current knowledge of s.

Algorithm 1.

1. The first time node s receives a broadcast from any of its neighbours, it increments d by one
and specifies itself as the node of maximum distance from x. It sets the value of v to be
the maximum of vs and the received value of v, then it broadcasts the tuple (s, s, d, v). This
represents the first pulse for node s.

2. In subsequent pulses, the node s waits until it receives broadcasts from all of its neighbours
(subsequent to its last broadcast). Then it updates d and v (and y, if necessary) based on the
most recent set of tuples received, and broadcasts an updated tuple.

2In general, it is not necessary for the refreshing of two distinct keys to be synchronised. For the sort of applications
we are considering, however, it simplifies matters if all keys are refreshed at the same time. In particular this avoids
any problems arising when the set of nodes that share a given key is disconnected.

9



8
v1

6
v2

17
v3

11
v4

12
v5

17
v6

Figure 1: A network in which the nodes possess different versions of a key

3. The initialising node x terminates the algorithm once there are two consecutive pulses in
which the maximum received d-value does not change. This allows x to conclude that it has
received information from every other node. It broadcasts the terminating condition (s = 0)
in the form of the tuple (0, y, d, v) in which d = dmax, v = vmax, and y has distance dmax

from x.

4. Whenever a node receives a broadcasted tuple with s = 0, it rebroadcasts this tuple and ter-
minates.

Algorithm 1 can be used in conjunction with our asynchronous key refreshing scheme (Scheme 3).
As it requires a substantial amount of communication between nodes it is perhaps most useful when
performed occasionally, in response to a change in network conditions. For example, in the context
of our fifth application environment, if the network becomes disconnected then Algorithm 1 can be
applied in order to resynchronise key version numbers once connectivity is restored. We now give
an example that demonstrates its behaviour.

Example 1. We present an example illustrating Algorithm 1. We use the graph in vertex set
{1, . . . , 6} with edges 12, 15, 23, 24, 25, 34, 46 (Figure 1). The values stored in the nodes are
v1 = 8, v2 = 6, v3 = 17, v4 = 11, v1 = 12, v1 = 17, and the initialising node is x = 1.

The tuples that will be broadcast during the execution of the algorithm are shown in Table 1.
During the first pulse node 1 broadcasts the tuple (1, 1, 0, 8) to initiate the algorithm. This is
received by its neighbours, nodes 2 and 5. Node 2 has a lower version number than node 1, so
it broadcasts the tuple (2, 2, 1, 8). The first 2 denotes that the tuple is being sent by node 2, the
second 2 and the 1 indicate that node 2 is at distance 1 from the initiating node, and that as yet it
does not know of any nodes located further away. The 8 is the highest version number that node 2
has encountered so far. Similarly, during this second pulse node 5 broadcasts (5, 5, 1, 12) to indicate
that it is at distance 1 from node 1, including its own value for v as it is higher than that of node
1. This process continues until node 1 has received tuples with d = 3 in two consecutive pulses.
Node 1 now knows that node 6 is the farthest node, and that the highest version number in the
network is 17. It thus broadcasts the termination message (0, 6, 3, 17), which is then rebroadcast
by the other nodes in the network, until all nodes have received and rebroadcast this message.

6 Discussion

We have seen that the behaviour of a key refreshing scheme depends on the network environment in
which it is to be applied. In Table 2 we summarise the properties of the schemes we have proposed
for key refreshing and resynchronisation, as well as prior schemes appearing in the literature. The

10



Table 1: Example of the Leader Election Algorithm

1 2 3 4 5 6

send (1, 1, 0, 8)

receive (1, 1, 0, 8) (1, 1, 0, 8)
send (2, 2, 1, 8) (5, 5, 1, 12)

receive (2, 2, 1, 8) (5, 5, 1, 12) (2, 2, 1, 8) (2, 2, 1, 8) (2, 2, 1, 8)
(5, 5, 1, 12)

send (1, 2, 1, 12) (3, 3, 2, 17) (4, 4, 2, 11)

receive (1, 2, 1, 12) (4, 4, 2, 11) (3, 3, 2, 17) (1, 2, 1, 12) (4, 4, 2, 11)
(3, 3, 2, 17)
(4, 4, 2, 11)

send (2, 3, 2, 17) (5, 2, 1, 12) (6, 6, 3, 11)

receive (2, 3, 2, 17) (5, 2, 1, 12) (2, 3, 2, 17) (2, 3, 2, 17) (2, 3, 2, 17)
(5, 2, 1, 12) (6, 6, 3, 11)

send (1, 3, 2, 17) (3, 3, 2, 17) (4, 6, 3, 17)

receive (1, 3, 2, 17) (4, 6, 3, 17) (3, 3, 2, 17) (1, 3, 2, 17) (4, 6, 3, 17)
(3, 3, 2, 17)
(4, 6, 3, 17)

send (2, 6, 3, 17) (5, 3, 2, 17) (6, 6, 3, 17)

receive (2, 6, 3, 17) (5, 3, 2, 17) (2, 6, 3, 17) (2, 6, 3, 17) (2, 6, 3, 17)
(5, 3, 2, 17) (6, 6, 3, 17)

send (1, 6, 3, 17) (3, 6, 3, 17) (4, 6, 3, 17)

receive (1, 6, 3, 17) (4, 6, 3, 17) (3, 6, 3, 17) (1, 6, 3, 17) (4, 6, 3, 17)
(3, 6, 3, 17)
(4, 6, 3, 17)

send (2, 6, 3, 17) (5, 6, 3, 17) (6, 6, 3, 17)

receive (2, 6, 3, 17) (5, 6, 3, 17) (2, 6, 3, 17) (2, 6, 3, 17) (2, 6, 3, 17)
(5, 6, 3, 17) (6, 6, 3, 17)

send (0, 6, 3, 17) (3, 6, 3, 17) (4, 6, 3, 17)

receive (0, 6, 3, 17) (4, 6, 3, 17) (3, 6, 3, 17) (0, 6, 3, 17) (4, 6, 3, 17)
send (0, 6, 3, 17) (0, 6, 3, 17)

receive (0, 6, 3, 17) (0, 6, 3, 17) (0, 6, 3, 17)
send (0, 6, 3, 17) (0, 6, 3, 17)

receive (0, 6, 3, 17)

11



Scheme Communication Required Network Suitable Application

Overhead Properties Environments

Key Refreshing

[9] - nodes communicate directly with
the base station

[6] - keys are shared by pairs of nodes

1. Event-driven - frequent occurrence of a network-
wide event

synchronised clocks

2. Flooded +vn frequent flooding of messages frequent flooding

3. Message-driven 2× vn - any

Resynchronisation

Periodic - occasional network-wide event infrequent network-wide events

Flooded O(n) capable of supporting occasional
flooded messages

infrequent local events

Leader Election O(DE) - regular disconnection

Table 2: A comparison of key refreshing and resynchronisation schemes. +vn=key version number

appended to each message; x × vn=x additional transmissions of vn per message; n=number of nodes;

D=diameter of network; E=number of edges in network graph; for description of applications, see Section 3

first four schemes have the advantage of incurring no communication overheads, although the
scheme of [6] does involve a slight computational overhead, due to the need for trial decryptions.
In the case of a network where there is pairwise communication with a base station, our event-
driven scheme essentially reduces to the scheme of [9]; however, it is applicable in a wider range of
environments, particularly any network where the nodes have synchronised clocks.

The remaining schemes do require extra communication, but are applicable in environments
in which the first four schemes cannot be used. In the case of the flooded scheme this overhead
is slight, as it is only necessary to append a key version number to each message that is flooded
through the network. The final refreshing scheme (message-driven refreshing) is more costly, as two
version numbers have to be transmitted before each message is sent. However, it can be used in
any network environment, and hence can be employed in networks that do not have the necessary
properties for the other schemes to be applied. Similar observations can be made regarding the
resynchronisation schemes.

There are several issues concerning key refreshing in a WSN context that merit further research.
In some WSNs it is customary to deploy an excess of nodes that then spend part of their time
in a ‘sleep’ state. Such nodes have the potential to degrade forward security if they are asleep
through several key refresh events. One solution might be to mandate that nodes refresh their
keys numerous times before entering the sleep state, however overall network-wide management
of this process requires further investigation. Also, nodes in a WSN have relatively high failure
probabilities, whether due to battery exhaustion, destruction, or simple malfunction. It would be
interesting to investigate ways of limiting the degradation of forward security due to the results of
node failure. Finally, many WSNs have specific topologies (such as hierarchal networks) for which
it may be possible to devise dedicated key refreshing schemes that perform more efficiently than
the general ones proposed in this paper.

12



References

[1] M. Bellare and B. Yee. Forward-Security in Private-Key Cryptography. Topics in Cryptology
– CT-RSA ’03, LNCS 2612, Springer-Verlag, (2003), 1–18.

[2] L. Blum, M. Blum, M. Shub. A simple unpredictable pseudo-random number generator. SIAM
Journal on Computing, 15(2) (1986), 364–383.

[3] S.A. Çamtepe and B. Yener. Key distribution mechanisms for wireless sensor networks: a
survey. Rensselaer Polytechnic Inst. Tech. Rep. TR-05-07, (2005).

[4] L. Eschenauer and V.D. Gligor. A key-management scheme for distributed sensor networks,
Proceedings of the 9th ACM conference on Computer and Communications Security, (2002),
41–47.

[5] C.G. Günter. An identity-based key-exchange protocol, Advances in Cryptology — Eurocrypt
’89, LNCS 435, Springer-Verlag, (1990) 29–37.

[6] M. Klonowski, M. Kuty lowski, M. Ren and K. Rybarczyk. Forward-secure key evolution in
wireless sensor networks. Cryptology and Network Security 6th International Conferences —
CANS 2007, LNCS 4856, Springer-Verlag, (2007), 102–120.

[7] J. Lee and D.R. Stinson. On the construction of practical key predistribution schemes for
distributed sensor networks using combinatorial designs. To appear in ACM Transactions on
Information and System Security.

[8] K. M. Martin and M. B. Paterson. An application-oriented framework for wireless sensor
network key establishment. WCAN 2007, to appear in ENTCS (2007).

[9] S. Mauw, I. van Vessen and B. Bos. Forward secure communication in wireless sensor net-
works. SPC 2006, (2006), 32–43.

[10] D. Peleg. Time-optimal leader election in general networks, Journal of Parallel and Distributed
Computing, 8 (1990), 96–99.

[11] M. Ren, T.K. Das and Jianying. Diverging keys in wireless sensor networks. ISC 2006,
LNCS 4176, Springer-Verlag, (2006), 257–269.

[12] K. Römer, P. Blum and L. Meier. Time synchronization and calibration in wireless sensor net-
works. In I. Stojmenovic (Ed.): Handbook of Sensor Networks: Algorithms and Architectures,
Wiley and Sons, (2005), 199–237.

[13] K. Römer and F. Mattern. The design space of wireless sensor networks. IEEE Wireless
Communications Magazine, 11(6) (2004), 54–61.

[14] Y. Xiao, V.K. Rayi, B. Sun, X. Du, F. Hu and M. Galloway. A survey of key management
schemes in wireless sensor networks. Computer Communications, 30 (2007), 2314–2341.

13


