Key Refreshing in Wireless Sensor Networks

Simon R. Blackburn¹ Keith M. Martin¹ Maura B. Paterson¹ Douglas R. Stinson²

> ¹Information Security Group Royal Holloway, University of London

²David R. Cheriton School of Computer Science University of Waterloo

ICITS 2008

Forward Security Through Key refreshing Key Refreshing Schemes Resynchronisation Schemes

Outline

Forward Security Through Key Refreshing

Key Refreshing Schemes

Resynchronisation Schemes

Maura Paterson -Royal Holloway, University of London Key Refreshing in Wireless Sensor Networks

(ロ) (同) (E) (E) (E)

Forward Security in Sensor Networks

- Forward security: An adversary who captures a key at time t should not be able to decrypt messages sent with earlier versions of that key.
- ► Forward security can be obtained through key refreshing.
- Klonowski, Kutyłowski, Ren, Rybarczyk (2007); Mauw, van Vessen, Bos (2006) studied key refreshing for networks in which each key is shared by a pair of nodes.
- Keys used in sensor networks may be shared by more than two nodes.

・ロン ・回 と ・ ヨ と ・ ヨ と

A Standard Technique for Key Refreshing

 \mathcal{K} keyspace $f: \mathcal{K} \to \mathcal{K}$ one-way function $k \in \mathcal{K}$ key

 $k \mapsto f(k)$

- Define $vn_k(X) = i$ if user X possesses the key $f^i(k)$.
- Alice and Bob can update a shared key k every time a message is sent, so that vnk(Alice) = vnk(Bob) at all times.

What happens when other users possess the same key?

Forward Security Through Key refreshing Key Refreshing Schemes Resynchronisation Schemes

Difficulties in Refreshing Widely Shared Keys

undecipherable messages

A

$$\operatorname{B}$$
 $\operatorname{ENC}_{f^{13}(k)}(m)$
 C
 $\operatorname{vn}_{k}(\operatorname{Alice}) = 13$
 $\operatorname{vn}_{k}(\operatorname{Bob}) = 13$
 $\operatorname{vn}_{k}(\operatorname{Cedric}) = 17$

degradation of forward security

$$E \xrightarrow{ENC_{f^{15}(k)}(m)}$$

vn_k(Daisy) = 10 vn_k(Eric) = 15 vn_k(Francis) = 15

・ロン ・回 と ・ 回 と ・ 回 と

э

Schemes to Synchronise Key Refreshing

Appropriate techniques will depend on the network environment.

- Synchronous key refreshing
 - event-driven
 - flooded
- Asynchronous
 - periodic resynchronisation
 - resynchronisation by a flood
 - resynchronisation via a leader election

Networks with Synchronised Clocks

Scheme (Event-driven refreshing)

Nodes refresh their keys in response to some event that can be observed by the whole network

- Clock synchronisation comes at a cost, but may be required by the application. *e.g.* intruder detection, volcano monitoring
- This form of refreshing incurs no overheads.

Networks with Frequent Flooding

Scheme (Flooded refreshing)

- 1. Before initiating a flood, a node updates its keys.
- **2.** A node that receives a flooded message must update the appropriate key in order to decrypt it; it similarly updates all its keys before forwarding the message.
- **3.** A node keeps a given version of each key until it broadcasts a message using a higher version number.
 - As long as neighbours do not broadcast simultaneously this prevents undecipherable messages.
 - Most appropriate for networks in which flooding is frequent. e.g. a disaster recovery scenario in which real-time updates are flooded to sensors attached to medical personnel

・ロン ・回 と ・ ヨ と ・ ヨ と

Asynchronous Key Refreshing

Scheme (Message-driven refreshing)

Alice and Bob exchange vn_k(Alice) and vn_k(Bob).
 2.

newvn = $1 + \max\{\operatorname{vn}_k(\operatorname{Alice}), \operatorname{vn}_k(\operatorname{Bob})\}$

- Alice and Bob apply f to k repeatedly until vn_k(Alice) = vn_k(Bob) = newvn.
 - ► Works well if all nodes are more-or-less equally active.
 - To avoid degradation of forward security, it is necessary to resynchronise the version numbers held throughout the network.

Infrequent Network-Wide Events

Scheme

Nodes update keys to a specified version number when the event is detected.

- e.g. nodes could update to version number 100j after the jth occurrence of the event.
- Suitable when the amount of traffic between occurrences of the event does not vary greatly and can be reasonably estimated.
- e.g. an intruder detection system may be armed/disarmed by a flooded message triggered by the locking/unlocking of a door.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Requires no communication overheads.

Infrequent Local Events

Scheme

The first node to reach a specified version number triggers a flood prompting all nodes to update their keys to that number.

- Suitable when there are no network-wide events and the network can only support occasional flooding.
- This is the case for networks measuring events that occur locally, and in which there is a low amount of (mostly local) communication between nodes.

Regular Disconnection

Scheme

Nodes periodically execute a *leader election protocol* to determine the highest version number, then update their keys correspondingly.

- Could be used in a network that is temporarily disconnected, to resynchronise the version numbers held in the various components once connectivity is reestablished.
- It can be achieved in time O(D) with message complexity O(DE) (where D is the network diameter and E the number of edges,) using a variant of an algorithm due to Peleg.

- nodes send tuples (s, y, d, v)
 - ► *s*=node id
 - y=id of current most distant node
 - d=max current distance
 - v=highest known version number

- nodes broadcast tuple in response to first broadcast they receive
- once they receive responses from all their neighbours they broadcast updated tuple
- initiating node sends terminating condition when it receives tuples with identical *d* values in two consecutive pulses

・ロン ・回と ・ヨン・

Forward Security Through Key refreshing Key Refreshing Schemes Resynchronisation Schemes

Leader Election

	1	2	3	4
send	(1, 1, 0, 8)			

<ロ> (四) (四) (三) (三) (三)

Maura Paterson - Royal Holloway, University of London Key Refreshing in Wireless Sensor Networks

	1	2	3	4
send	(1, 1, 0, 8)			
receive		(1, 1, 0, 8)	(1, 1, 0, 8)	
send		(2, 2, 1, 8)	(3, 3, 1, 12)	

(ロ) (四) (E) (E) (E)

	1	2	3	4
send	(1, 1, 0, 8)			
receive		(1, 1, 0, 8)	(1, 1, 0, 8)	
send		(2, 2, 1, 8)	(3, 3, 1, 12)	
receive	(2, 2, 1, 8)			(2, 2, 1, 8)
	(3, 3, 1, 12)			
send	(1, 2, 1, 12)			(4, 4, 2, 17)

$$v_1 \underbrace{(8)}_{v_3 (12)}^{v_2 (6)} (17)^{v_4}$$

V1 (8)

	1	2	3	4
send	(1, 1, 0, 8)			
receive		(1, 1, 0, 8)	(1, 1, 0, 8)	
send		(2, 2, 1, 8)	(3, 3, 1, 12)	
receive	(2, 2, 1, 8)			(2, 2, 1, 8)
	(3, 3, 1, 12)			
send	(1, 2, 1, 12)			(4, 4, 2, 17)
receive		(1, 2, 1, 12)	(1, 2, 1, 12)	
		(4, 4, 2, 17)		
send		(2, 4, 2, 17)	(3, 3, 1, 12)	

(ロ) (四) (E) (E) (E)

 v_{1}

_	4	3	2 3	4
-				
-)	(1, 1, 0, 8)	1,0,8) (1,1,0,8)	
	2)	(3, 3, 1, 12)	2, 1, 8) (3, 3, 1, 12	
-	(2, 2, 1, 8)			,2,1,8)
	(4, 4, 2, 17)			4, 2, 17)
-	2)	(1, 2, 1, 12)	(1, 2, 1, 12) $(1, 2, 1, 12)$	
			4, 2, 17)	
(0) (17) V_4	?)	(3, 3, 1, 12)	4, 2, 17) (3, 3, 1, 12	
	(2, 4, 2, 17)			4, 2, 17)
10				
(12)	(4, 4, 2, 17)			4, 2, 17)
- 	(2, 2, 1, 8) $(4, 4, 2, 1)$ (2) $(2, 4, 2, 1)$ $(4, 4, 2, 1)$	(1,2,1,12) (3,3,1,12)	2, 1, 12) (1, 2, 1, 12 4, 2, 17) 4, 2, 17) (3, 3, 1, 12	,2,1,8 4,2,1 4,2,1 4,2,1

(ロ) (四) (E) (E) (E)

		1	2	3	4
	send	(1, 1, 0, 8)			
	receive		(1, 1, 0, 8)	(1, 1, 0, 8)	
	send		(2, 2, 1, 8)	(3, 3, 1, 12)	
	receive	(2, 2, 1, 8)			(2, 2, 1, 8)
		(3, 3, 1, 12)			
	send	(1, 2, 1, 12)			(4, 4, 2, 17)
	receive		(1, 2, 1, 12)	(1, 2, 1, 12)	
Vac			(4, 4, 2, 17)		
$V_1 \sim (17)^{V_4}$	send		(2, 4, 2, 17)	(3, 3, 1, 12)	
(8)	receive	(2, 4, 2, 17)			(2, 4, 2, 17)
16 12		(3, 2, 1, 12)			
V3(12)	send	(1, 4, 2, 17)			(4, 4, 2, 17)
	receive		(1, 4, 2, 17)	(1, 4, 2, 17)	
			(4, 4, 2, 17)		
	send		(2, 4, 2, 17)	(3, 4, 2, 17)	

		1	2	3	4
	send	(1, 1, 0, 8)			
	receive		(1, 1, 0, 8)	(1, 1, 0, 8)	
	send		(2, 2, 1, 8)	(3, 3, 1, 12)	
	receive	(2, 2, 1, 8)			(2, 2, 1, 8)
		(3, 3, 1, 12)			
	send	(1, 2, 1, 12)			(4, 4, 2, 17)
	receive		(1, 2, 1, 12)	(1, 2, 1, 12)	
Vac			(4, 4, 2, 17)		
$V_1 \sim 10^{-12} V_4$	send		(2, 4, 2, 17)	(3, 3, 1, 12)	
(8)	receive	(2, 4, 2, 17)			(2, 4, 2, 17)
1/2 10		(3, 2, 1, 12)			
V3(12)	send	(1, 4, 2, 17)			(4, 4, 2, 17)
	receive		(1, 4, 2, 17)	(1, 4, 2, 17)	
			(4, 4, 2, 17)		
	send		(2, 4, 2, 17)	(3, 4, 2, 17)	
	receive	(2, 4, 2, 17)			(2, 4, 2, 17)
		(3, 4, 2, 17)			
	send	(0, 4, 2, 17)			(4, 4, 2, 17)

Maura Paterson -Royal Holloway, University of London Key Refreshing in Wireless Sensor Networks

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Summary of Techniques

Scheme	Required Network Properties	Suitable Application Environments
Key Refreshing	•	
Mauw et al.	nodes communicate directly with the base station	
Klonowski <i>et al.</i>	keys are shared by pairs of nodes	
1. Event-driven	frequent occurrence of a network-wide event	synchronised clocks
2. Flooded	frequent flooding of messages	frequent flooding
3. Message-driven	-	any

・ロン ・回 と ・ ヨン ・ ヨン

æ

Summary of Techniques

Scheme	Required Network Properties	Suitable Application Environments
Resynchronisatio	on	
Periodic	occasional network-wide event	infrequent network-wide events
Flooded	capable of support- ing occasional flooded messages	infrequent local events
Leader Election	-	regular disconnection

イロト イロト イヨト イヨト 二日

Forward Security Through Key refreshing Key Refreshing Schemes Resynchronisation Schemes

Thank you!

Maura Paterson -Royal Holloway, University of London Key Refreshing in Wireless Sensor Networks

(ロ) (四) (E) (E) (E)